EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)

M. van de Panne, E. Saund (Editors)

A Pen-based Tool for Efficient Labeling of 2D Sketches

Aaron Wolin, Devin Smith and Christine Alvarado

Harvey Mudd College, CA
{awolin,dsmith,alvarado } @cs.hmc.edu

Abstract

High quality labeled data is essential for developing and evaluating sketch recognition algorithms. Unfortunately,
labeling freely-drawn sketches is time-consuming and difficult, if not impossible, using current technologies. These
difficulties and the resulting lack of labeled data fundamentally limit the development of recognition algorithms. We
present an intuitive, direct manipulation pen-based application for labeling sketch data in any two-dimensional
domain. Our labeling tool supports the three essential sketch recognition labeling tasks: stroke fragmentation,
stroke grouping and label application. Our interface integrates standard and novel interaction techniques to make
each task efficient and natural. In a user study, all users felt that labeling data with our tool was quick and efficient.

Categories and Subject Descriptors (according to ACM CCS): 1.5.5 [Pattern Recognition]: Implementation: Interac-

tive systems

H.5.2 [Information Interfaces and Presentation]: User Interfaces: Interaction styles

1. Introduction

Tablet computers have the potential to fundamentally change
the way people create and interact with diagrams. Their
pencil-and-paper-like interface allows users to sketch di-
rectly on the screen, alleviating many of the constraints of
the traditional mouse and keyboard interface. However, sim-
ply allowing people to draw on the computer is not enough
if their diagram is nothing more than an electronic picture.
To fully realize the the freedom and power of the Tablet PC,
the computer must interpret the user’s sketch and then allow
the user to interact with it, not simply as a sketch, but as a
meaningful system in a particular domain.

In recent years, researchers have improved low-level
stroke parsing [Sta04, SD04], isolated symbol recogni-
tion [HNO4, LKSO7] and free-sketch recognition [AD04,
GKSO05]. Low-level stroke parsing involves breaking a
stroke down into primitive components (usually lines and
arcs) by identifying the strokes’ corners. Isolated symbol
recognition involves recognizing a set of strokes known to
comprise a single object. Finally, free-sketch recognition in-
volves stroke grouping, or partitioning strokes into individ-
ual objects, in addition to symbol identification.

Advances in all of these areas require labeled sketch data

(© The Eurographics Association 2007.

for training and testing. Unfortunately, few standard datasets
exist [OADO4], and many recognition systems require do-
main and task-specific data.

The lack of standard corpora is due, in part, to the diffi-
culty of data labeling. Although data collection is relatively
straightforward, hand-labeling this data is at best tedious and
time-consuming and at worst impossible given current tech-
nologies. Usually researchers label only isolated shapes by
asking users to draw instances of a specific shape and saving
each instance in a separate file. This type of labeling suf-
fices for isolated shape recognition but it is not sufficient for
free sketch recognition where the goal is to simultaneously
group and classify multiple shapes in a large diagram. Sim-
ply associating a complete hand-drawn diagram with a list
of symbols in the diagram (or even with a domain-specific
structural representation of the diagram) is not enough be-
cause we need to know which strokes correspond to which
objects in the labeled diagram. Automatically creating this
association is a difficult recognition problem in itself. To la-
bel a freely-drawn sketch, a human must identify and mark
corners in each stroke, group strokes into individual objects,
and tag each group with a symbol label. This process is not
possible without a tool designed to support it. Currently no
such tool exists.

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

sl

Fe £it reb

Figure 1: Our labeler application

We have created an intuitive, pen-based direct manipula-
tion application to support two-dimensional sketch labeling
(Figure 1). Using a pen, the user interacts directly with the
strokes in the diagram, quickly and easily fragmenting them,
grouping them and applying labels. We developed the in-
terface using an iterative design process, and our final user
study indicates that the tool is intuitive, fast, and simple for
each of the labeling tasks.

This paper makes three central contributions to the field of
sketch based interface design. First, it identifies three major
sketch recognition and labeling tasks: stroke fragmentation,
stroke grouping, and symbol labeling. Second, it presents a
tool that provides integrated support for all three labeling
tasks in any two-dimensional user-defined domain through:

e an efficient fragmentation interface that combines auto-
matic and manual techniques,

e pen-centric mechanisms for selection and labeling,

e clear visual feedback that helps the user understand the
labeling as they work.

Finally, it describes a user study that evaluates the strengths
and weaknesses of this tool.

2. Data Labeling for Sketch Recognition

Data labeling involves annotating a user’s freely-drawn
sketch with semantic information needed to guide and eval-
uate recognition algorithms. We begin by examining briefly
the tasks involved in free-sketch recognition: fragmentation,
stroke grouping and symbol identification.

Fragmentation, or the task of breaking strokes at their cor-
ners into substrokes, is the first step in many free-sketch
recognition algorithms for two reasons. First, users some-
times draw more that one object with a single stroke, for
example, the wire and the bubble in the NOT gate in Fig-
ure 2. To recognize these objects correctly, a recognition sys-
tem must detect the boundary between the wire and the body

Figure 2: A NOT bubble and a wire can be drawn in a single
stroke

of the not gate, i.e., detect the corner in the stroke. Second,
symbol recognizers often work better with a consistent rep-
resentation for a symbol. Because users’ drawing styles can
vary, it is useful to break the strokes apart into their primitive
components (lines and arcs) to create a consistent represen-
tation.

Next, a free-sketch recognition algorithm must group
strokes (and substrokes) into individual objects, and identify
those objects as symbols in a given domain. In an automatic
recognition system, these tasks are inherently intertwined.
Simple temporal and spatial grouping techniques are not ro-
bust because symbols may overlap and because the user may
draw two symbols in parallel. On the other hand, naively
matching all templates to all parts of the user’s sketch is
computationally intractable.

Labeled data is essential to the development and quanti-
tative evaluation of each of the above tasks. Sketches drawn
within Tablet PC programs such as Windows®) Journal or
Microsoft® One Note are, in their most basic form, a se-
ries of time-ordered strokes. Each stroke is a series of time-
ordered points containing position and temporal information
sampled from when the user put the pen on the screen un-
til the user lifted the pen. Our goal is to tag the strokes in a
sketch with information corresponding to the three recogni-
tion subtasks defined above: where the corners of the strokes
are, how strokes are grouped into individual objects, and
what symbol each group of strokes represents. Figure 1 illus-
trates the results of all of these tasks. The red circles show
stroke corners (some are still missing), and colors indicate
the different labels applied to each symbol (e.g., green is an
OR gate, blue is a wire, salmon is text, etc.). By default the
interface does not indicate stroke groups explicitly, but click-
ing on any stroke highlights all of the strokes its stroke group
(see Section 3.4).

Existing tools provide only limited support for these la-
beling tasks, and no tool provides support for all three.
Automatic fragmentation techniques exist (e.g., [SSDOI1,
Sta04]) but they are not perfect. Indeed, one of the rea-
sons we need to manually label corners is to improve au-
tomatic fragmentation algorithms. Similarly, programs such
as Windows®) Journal and ScanScribe [SFLMO03] perform
automatic grouping. This grouping is domain-independent
and necessarily produces errors. Although these automatic

(© The Eurographics Association 2007.

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

)) >

wire AND OR NOT

P T 3> i

NAND NOR XOR label

Figure 3: The symbols in the digital circuit domain

techniques can aid in the labeling process, they are not suf-
ficient without the ability to manually correct and add more
groups. Finally, a number of exiting tools support the collec-
tion and labeling of isolated symbols (e.g., [OAD04,HN04]),
but these tools assume that the grouping is already done.

3. Interaction

Using an iterative design methodology, we designed a pen-
based tool to support all three of the above tasks. We chose to
design a pen-based interface because we wanted to support
efficient labeling specifically on a tablet computer. Sketch
recognition researchers often work only on a tablet com-
puter, without an external keyboard, mouse and monitor.
Compared to a track pad or eraser head mouse, the pen pro-
vides a more tangible, precise and fluid way of manipulating
stroke data.

Throughout the design process we worked with three
sketch recognition researchers (former members of our re-
search group) who are familiar with the labeling tasks. These
early, informal tests helped guide our design. We present a
more formal user study in the next section, but throughout
this section we refer to the results of this early testing to jus-
tify our design decisions where appropriate.

Our tool supports labeling in any two-dimensional do-
main, but here we focus on digital circuit diagrams for sim-
plicity. Figure 3 illustrates the symbols in this domain. We
examine the challenges involved in fragmenting, grouping
and labeling the strokes in the sketch in Figure 1, and we
describe how our labeler helps mitigate these challenges.

3.1. Grouping Strokes

Although recognition systems typically fragment strokes be-
fore grouping them, we begin with a discussion of how to
group strokes using our tool. Users group and label strokes
by selecting them and then applying a label to their selec-
tion. We implemented an interface that combines circle and
tap motions to make the stroke section process efficient and
powerful.

Early user tests revealed that people naturally tapped on
single strokes to select them and circled strokes to select a

(© The Eurographics Association 2007.

(b) Unwanted strokes selected

Figure 4: The lasso selection technique necessarily includes
unwanted strokes. (This sketch is not fully fragmented.)

group. However, a simple lasso selection is not sufficient to
create stroke groups. For example, to label the AND gate
in Figure 4(a) the user must group the two stroke fragments
that make the body of the gate. But when she circles the gate
she also selects the text inside the gate (Figure 4(b)).

To address this problem, our selection interface combines
lasso selection and stroke tapping. Users can select a group
of stroke using a lasso or select a single stroke by tapping
on it. Then, tapping on unselected strokes adds them to the
current selection while tapping on selected strokes removes
them from the selection. Tapping on the background clears
the current selection.

Other pen-based applications such as Windows®) Journal
provide a similar selection mechanism with one important
difference: these interfaces require that the user hold down
the control key while tapping to add or remove strokes from
the selection. People typically do not have access to the key-
board while using a pen-based interface. Our interface pro-
vides the same selection power using only the pen.

3.2. Labeling Symbols

The next task in the labeling process is to tag a group of se-
lected strokes with one or more labels. Once the user selects
a stroke or group of strokes, a button appears at lower right

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

Previous Label
Applied

[Jmmmmmmenes Ommememnes \ire (Blue) ¥
Wire (Blue) A
v AND (Brown) (3
OR (Green)
MOT (Purple)]
MAND (QOrange) o

Label Menu

Figure 5: Drop-down label menu. The most recently applied
label is displayed in the top box.

corner of the selection box. (Figure 4(b)). If the user wishes
to label a stroke or group of strokes, she moves her hand a
short distance to tap this button and a menu of pre-defined la-
bels appears (Figure 5). The button is small and unobtrusive
so users can ignore it and continue to modify the selection.

During a single labeling session, people usually label mul-
tiple sketches from a single domain, and each domain tends
to have small fixed number of symbols. Instead of forcing
the user to type in the name of every symbol, our tool al-
lows the user to load a domain file that specifies the symbol
names in the domain and the colors in which to display those
symbols when labeled.

The label menu also supports a number of other common
labeling behaviors. Our users tended to label all of the sym-
bols of a single type (e.g., all of the AND gates) and then
move on to labeling the symbols of another type, etc. We
support this process by displaying the most recently applied
label at the top of the label menu. Second, sketch recogni-
tion researchers sometimes wish to apply multiple labels to
a stroke or group of strokes (e.g., “gate” and “AND gate”).
Users can select multiple labels by clicking on each label in
turn, or they can unlabel a stroke or group of strokes in the
same fashion. The menu displays check boxes next to labels
to indicate what labels are associated with a stroke or group
of strokes.

3.3. Fragmentation

Manual fragmentation, though reliable, can be tedious. To
make the process more efficient, we integrate automatic and
manual fragmentation in our labeler. Clicking on the “Auto
Fragment” button at the top of the interface automatically
fragments all of the strokes in the sketch using the algorithm
described in [SSDO1] that splits strokes at points of max-
imum curvature and minimum speed. The system displays
fragment points as red dots on the strokes (Figure 6).

Figure 6: Our digital circuit sketch from Figure 1 with
strokes automatically fragmented. Corners are highlighted
with red dots. Some corners are missed.

Of course, automated processes make mistakes, so we al-
low users to correct false positives and false negatives with
a manual fragmentation interface (Figure 7). To manually
fragment this stroke the user selects it, clicks the “Hand
Fragment” button, and a new window appears displaying
the selected stroke. The user then adds fragment points by
“slicing” across the stroke with their pen. New fragment
points appear where user’s pen intersects the stroke. Users
can also remove fragment points by clicking the “Clear” but-
ton within the manual fragmentation window. This button
clears all fragment points in a given stroke. A stroke typi-
cally has only one or two true fragment points, so it is easier
for the user to clear all the points and then add the correct
points back in than it is to select the incorrect points to re-
move them.

3.4. Visualizing the Data

We use colors to communicate labels in our application, for
example, red for OR gates and blue for wires (Figure 5).
Users can specify their own color scheme in the domain file.

However, as described above, users apply labels to groups
of strokes, not just individual strokes, so our tool must com-
municate not only labels but also stroke groups. Although in
some cases stroke grouping is obvious (e.g., two AND gates
generally appear far apart in space), in other cases it is not.
For example, wire (a) in Figure 8(a) might belong any num-
ber of possible groups. To communicate groups within our
labeler, we visually thicken all of the strokes involved in a
stroke’s label when the user selects that stroke 8(b).

4. User Study

We designed our labeler through an iterative process where
we received user feedback during each phase. Overall we
wanted our labeler to:

e Provide quick and efficient pen-based sketch labeling
e Have a natural, intuitive interface
e Give helpful feedback to convey current labels

It is difficult to compare our final system to others because
there are not many other data labeling systems, and no avail-
able sketch labeling systems that support the labeling tasks

(© The Eurographics Association 2007.

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

(B[Fragment Stroke EE

Clear Done

Undo | Rede Cancel

<] Im [

A user draws a line where they want to split a stroke

(B[Fragment Stroke (effi=if

Cear | Done

Undo | Redo Cancel

The resulting fragmentation points are displayed

Figure 7: The pop up window supporting the manual frag-
mentation process

described here. We therefore relied solely on feedback from
a final user study to determine how well our labeler meets
our criteria.

4.1. Participants and Tasks

Our tool is designed to be used by sketch recognition re-
searchers, so for our final user study we recruited members
of the Harvey Mudd community with at least basic expe-
rience developing sketch recognition programs, but not in-
volved in the design of this tool. Four subjects participated
in our final evaluation (three men and one woman, three stu-
dents and one professor). All subjects had previous experi-
ence using a Tablet PC.

Users in our study completed several typical sketch label-
ing tasks. They were instructed to:

1. Automatically fragment an unlabeled sketch (Figure 9(a))

2. In the same sketch, hand-fragment strokes missed by the
automatic fragmenting process (Figure 9(a))

3. Completely label a simple sketch consisting of AND
gates, NOT gates and wires (Figure 9(a))

4. Open an intentionally mislabeled sketch and correct any
errors (Figure 9(b))

(© The Eurographics Association 2007.

(a)

(a) Stroke (a) could belong to several wire groups

(b) Strokes within a group are thickened when the user
selects any of the strokes in the group

Figure 8: Stroke group visual feedback

We observed users as they worked and encouraged them
to think aloud. After completing all four tasks, users re-
sponded to a short survey (Table 1) and provided qualitative
feedback about the strengths and weaknesses of the system.

4.2. Results

Overall users responded very positively to the labeling tool,
with an average response of 6.5 out of 7 to the statement
“Overall, the user interface was excellent.” All users felt our
labeler met the initial design criteria we expected to achieve.
Table 1 summarizes user survey responses.

All users agreed that labeling data was a quick and effi-
cient process. In their qualitative responses, users indicated
that the main interface features that support efficient labeling
are the placement of the label button next to the selection and
the automatic fragmenter. They commented that the “place-
ment of the label button ... was very nice” and the button
“made it quicker to label the [scenario’s] diagram.” Users
had no trouble invoking the automatic fragmenter or under-
standing where the fragmenter found corners (points high-
lighted with red dots).

Users also found the tool easy to learn. No user took

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

- 5 X]

(a) A simple sketch

O o[[0 [P [oo

7

il

(b) A sketch with labeling errors (the middle AND gate
and one of the wires on the right)

Figure 9: User study sketches taken from a student’s digital
design notes

longer than 30 minutes to complete the scenarios. Users
also mentioned that the interface as a whole “seems very
intuitive.” Color feedback effectively conveyed which labels
users had applied to the strokes. Users responded with an
average of 6.75 to the statement “Types of labels (AND, OR,
etc.) were well conveyed”.

We observed that users relied on both selection techniques
(lasso and tapping) but rarely combined the two. Users
tended to use lasso selection to select large single strokes or
groups of strokes and tap selection to select smaller strokes.
Users rarely made a selection using both lassos and taps.
In most cases where an initial lasso selection was incorrect,
users just tried re-lassoing the group they desired instead of
removing or adding strokes to the current selection through
taps. Selections involving both lassos and taps mainly oc-
curred when users were correcting intentionally mislabeled
data in Figure 9(b). This scenario required more complicated
selections, and probably made using both selection tech-
niques more desirable.

Our user study also revealed some possible areas for im-
provement. Although no users had trouble actually frag-
menting strokes by hand, one user felt that having to open

Statement mean | std dev

This tool was easy to learn to use 6.5 0.58

Labeling data was a quick and effi- | 6.25 0.5
cient process

Correcting any errors was simple 6 0.82
Hand-fragmenting strokes was intu- 5 2.83
itive

The application provided helpful | 5.75 0.5
feedback when I performed an ac-
tion

Types of labels (AND, OR, etc.) 6.75 0.5
were well conveyed

Stroke groupings were well con- | 5.75 L5
veyed

Button placement was unobtrusive 7 0

Overall, the user interface was ex- 6.5 0.58
cellent

Table 1: Summary of user survey responses (1=strongly dis-
agree, 7=strongly agree)

the stroke in a separate window was cumbersome. This user
strongly disagreed with the statement “Hand-fragmenting
strokes was intuitive” because she kept trying to use the
“Fragment Stroke” button as if she were switching between
selection and fragmentation modes and kept being confused
why nothing would happen. She did not notice the tooltip
for the button that stated a stroke must be selected before
manual fragmentation. A simple solution to this problem is
to present a helpful message to the user if she presses the
fragment button before she selects a stroke, but this solu-
tion does not address the issue that users may prefer a modal
interface to a separate window for stroke fragmentation. In
future work we plan to compare our current interface to one
that uses a separate mode for fragmenting strokes in the main
window.

We can also improve our interface by better supporting
multiple labels. Multiple labels (e.g., labeling a stroke as a
line and as part of an AND gate) are useful in sketch recog-
nition, but it is not yet clear how best to indicate multiple
labels through our interface. Our tool allows users to apply
more than one label to each stroke, but it colors the stroke
according to only the most recently applied label. One par-
ticipant in our study suggested that we “possibly make the
[coloring] stripy” to indicate more than one label.

Another participant disliked having the option to apply
multiple labels because it made correcting labeling errors
cumbersome: instead of simply selecting the correct label for
a stroke, he had to first unselect the incorrect label, reselect
the stroke or group of strokes and then select the correct la-
bel. Most of the time users were able to easily select a group
of strokes in a single lasso, but a more complicated selection

(© The Eurographics Association 2007.

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

sometimes took a few tries as users were getting used to our
lasso and tap methods.

One possible improvement to our system would be the in-
corporation of a “Previous Selection” button in the toolbar
that would reselect the user’s previous selection. This allevi-
ates the frustration that users encountered in having to select
a group of strokes multiple times, and it safeguards users
from accidentally clearing their selection by misclicking.

5. Implementation

A central piece of the labeling process is a data for-
mat that supports these labeling tasks. We use an XML
format developed at MIT that supports fluid, hierar-
chical labels (http://rationale.csail.mit.edu
/ETCHASketches/format/). In this format, sketches
consist of a series of strokes (points from when the user
put the pen down until the user lifted the pen). To support
fragmenting and labeling of portions of strokes, each stroke
is divided into one more more substrokes. Each substroke
holds a time-ordered series of points that contain position
(x,y) and, optionally, time information.

This format supports grouping and labeling by allowing
for the creation of “shapes”, which are simply named groups
of strokes, substrokes, or other shapes. Shapes may also con-
tain other meta data such as color, bounding box, creation
time, etc.

Sketches in any open format can be converted into the
XML format supported by our labeler. To facilitate simple
data collection and labeling, we also provide a conversion
tool that will convert Windows®Journal files to this XML
representation.

We programmed our labeler in C# 1.1, using Microsoft®)
Visual Studio® .NET 2003. It currently runs on Tablet
PCs running Microsoft® Windows(®) XP Tablet PC Edition
2005. It is available from http://www.cs.hmc.edu/
~alvarado/research/download.html.

So far, we have used this labeling tool to label hundreds of
sketches collected from students in Harvey Mudd College’s
digital design class. Our labeled data is also available at the
above URL.

6. Related Work

Labeling sketches is similar to other data labeling tasks. Rus-
sell e al. present a system for labeling image regions for im-
age recognition [RTMFOS5]. Their system, LabelMe, tries
to solve some of the same problems we do: the software
is designed to label portions of an image and they want to
clearly indicate any labeled regions. LabelMe works by hav-
ing users to click to outline the edge of the region in question
and then allows the user to type in their own label for the re-
gion. Although it solves a similar problem, LabelMe’s focus

(© The Eurographics Association 2007.

is simply to provide an online interface for this type of la-
beling; the authors do not focus on designing an efficient or
natural interface for this task. Their mouse-based interface
for creating polygons is somewhat tedious when the region
to label is complex with many corners. Applying the pen-
based techniques we present here to their task could provide
a more natural interface for labeling.

Diakopoulos and Essa present a pen-based system for
annotating video [DEO06]. Although grouping and tagging
video frames over time is somewhat different from group-
ing and tagging two-dimensional pieces of a single im-
age, we use similar pen-based metaphors where appropriate.
For example, both their interface and our interface use the
metaphor of the pen as a knife to split pieces of the video or
sketch.

Saund et al. explore a number of selection and grouping
interaction techniques that would make sense to integrate
into our tool [SFLMO3]. Although users found our man-
ual click selection interaction technique intuitive and easy to
use, automatic grouping (like automatic fragmenting) could
make the labeling process more efficient still. Furthermore,
Saund and Lank’s work on selection modality and sloppy
selection could further improve our interface by providing a
DWIM (“do what I mean”), modeless interface for selection
and fragmentation [SLO3,LS05].

7. Future Work

Automatic stroke fragmentation is one of the strongest as-
pects of our labeling tool. Following on this success, we
would like to incorporate automated techniques for other
parts of the labeling process, such as stroke grouping or
even, in some cases, symbol labeling. However, these tasks
are considerably more difficult than fragmentation and are
necessarily prone to errors. We will need provide a power-
ful error correction interface and to determine whether users
prefer correcting system errors over manual grouping and
labeling.

We would also like to re-examine our fragmentation inter-
face. Currently, the fragmentation interface opens a seperate
window, in part to support stroke resizing. However, some
users expressed that they would have preferred an interface
in which they toggled between fragmentation and selection
modes in the main window. We also would like to allow
users to remove fragmentation points with the eraser end fo
the digitizing pen, mimicking the process of removing un-
wanted content with a pencil on paper.

Currently our tool supports basic labeling, but eventu-
ally we would like a suite of tools that support all aspects
of sketch recognition development. One tool in this suite
would include an interface for comparing and testing dif-
ferent stroke grouping and recognition algorithms. This tool
would allow users to plug in different modules for different
parts of the recognition process, and run comparative tests

A. Wolin, D. Smith and C. Alvarado / A Pen-based Sketch Labeling Tool

on the same dataset and report recognition statistics. Such a
tool will help standardize the evaluation of sketch recogni-
tion algorithms, a process that is currently somewhat ad hoc.

Finally, we would like to provide a more flexible interface
for specifying domain information. Currently users must
load text files containing domain information. Although cre-
ating these text files is not hard, including the ability to cre-
ate and modify domain information inside the labeler itself
would eliminate the need to switch between our labeler and
a text editor whenever a user wants to make an adjustment
to the domain she is working with.

8. Conclusion

We have presented a pen-based tool designed to support the
critical yet often tedious and difficult task of labeling two-
dimensional sketch data. Labeled data is critical to the de-
velopment of sketch recognition algorithms, but currently
few labeled datasets exist. Our tool provides a critical step
in the creation of these datasets. It allows sketch recognition
researchers to quickly and easily label sketch data for their
own use, as well as for the use of the community.

9. Acknowledgments

We would like to thank our digital engineering students for
the sketch data they provided and our anonymous users for
useful feedback about our labeling interface. We also thank
Jason Fennell and Max Pflueger for help developing our ba-
sic software infrastructure. This work is supported in part
by an NSF CAREER award (IIS-0546809) and by the Baker
Foundation.

References

[ADO4] ALVARADO C., DAvVIS R.: Sketchread: A multi-
domain sketch recognition engine. In Proc. UIST (2004).

[DEO6] Di1AKOPOULOS N., EsSA I.: Videotater: an ap-
proach for pen-based digital video segmentation and tag-
ging. In UIST ’06: Proceedings of the 19th annual ACM
symposium on User interface software and technology
(New York, NY, USA, 2006), ACM Press, pp. 221-224.

[GKS05] GENNARI L., KARA L. B., STAHOVICH T. F.:
Combining geometry and domain knowledge to interpret
hand-drawn diagrams. Computers and Graphics: Special
Issue on Pen-Based User Interfaces (2005).

[HNO4] HSE H., NEWTON A. R.: Sketched symbol
recognition using zernike moments. In Proceedings of
the Pattern Recognition, 17th International Conference
on (ICPR’04) (2004).

[LKSO7] LEE W., KARA L. B., STAHOVICH T. F.: An
efficient graph-based symbol recognizer. Computers and
Graphics Special Issue on Sketch-Based Interfaces and
Modeling (2007).

[LS05] LANK E., SAUND E.: Sloppy selection: Provid-
ing an accurate interpretation of imprecise stylus selection
gestures. Computers and Graphics 29, 4 (August 2005),
490-500.

[OAD04] OLTMANS M., ALVARADO C., DAvIS R.:
Etcha sketches: Lessons learned from collecting sketch
data. In Making Pen-Based Interaction Intelligent and
Natural (Menlo Park, California, October 21-24 2004),
AAALI Fall Symposium, pp. 134-140.

[RTMF05] RUSSELL B. C., TORRALBA A., MURPHY
K. P., FREEMAN W. T.: Labelme: a database and web-
based tool for image annotation. MIT Al Lab Memo AIM-
2005-025 (2005).

[SD04] SEzZGIN T. M., DAVIS R.: Scale-space based fea-
ture point detection for digital ink. In Making Pen-Based
Interaction Intelligent and Natural, AAAI Spring Sympo-
sium (2004).

[SFLMO03] SAUND E., FLEET D., LARNER D., MA-
HONEY J.: Perceptually-supported image editing of text
and graphics. In UIST "03: Proceedings of the 16th annual
ACM symposium on User interface software and technol-
ogy (New York, NY, USA, 2003), ACM Press, pp. 183—
192.

[SLO3] SAuUND E., LANK E.: Stylus input and editing
without prior selection of mode. In UIST ’03: Proceed-
ings of the 16th annual ACM symposium on User interface
software and technology (New York, NY, USA, 2003),
ACM Press, pp. 213-216.

[SSDO1] SEzGIN T. M., STAHOVICH T., DAVIS R.:
Sketch based interfaces: early processing for sketch un-
derstanding. In PUI ’01: Proceedings of the 2001 work-
shop on Perceptive user interfaces (New York, NY, USA,
2001), ACM Press, pp. 1-8.

[Sta04] STAHOVICH T. F.: Segmentation of pen strokes
using pen speed. In AAAI Fall Symposium Series 2004:
Making Pen-Based Interaction Intelligent and Natural
(2004).

(© The Eurographics Association 2007.

