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1 Research Overview
Digital circuit simulation programs are powerful in edu-
cation because, unlike paper, they allow students to ex-
plore and verify the behavior of a physical system. Un-
fortunately, learning to navigate the interfaces to these
tools can be time consuming and useless from a peda-
gogical perspective. Our central aim is to build a tool that
allows students to sketch circuit schematics on a Tablet
PC and then simulate these circuits directly. Our hypoth-
esis is that such a recognition tool will enable students
to spend less time fighting with the interface and more
time learning the material. We will test this hypothesis
by completing a version of this tool for use in Harvey
Mudd College’s digital circuit design class, E85, starting
in the fall of 2007 1.

Our primary challenge is to construct a free-sketch
recognition system that places few constraints on users’
drawing styles and performs robustly enough to be used
in the classroom. Free-sketch recognition—recognition
without placing any constraints on the user’s drawing
style—is difficult because the symbols in a sketch may
vary in position, rotation, and scale, and because sketches
are messy. Free-sketch recognition is complicated by the
added challenge of grouping strokes into individual ob-
jects. Simple temporal and spatial grouping techniques
are not robust because symbols may overlap and because
the user may draw two symbols in parallel. On the other
hand, naively matching all templates to all parts of the
user’s sketch is computationally intractable.

To address these challenges we adapt, extend and com-
bine a number of state-of-the-art approaches to solving
more constrained sketch recognition problems. Our ap-
proach first labels individual strokes as wires or gates us-
ing a conditional random field (CRF) and then groups
labeled strokes into individual shapes. Because strokes
with the same label belonging to different symbols are
separated in time and space, boundaries between indi-
vidual symbols are easier to detect than in the unla-
beled sketch. These grouped strokes will then be rec-
ognized using a graph-based isolated-shape recognition

1After successfully using the tool at HMC, we plan to make it avail-
able for others teaching similar courses.

algorithm. Finally, the results of the recognition process
will feed back into the system to help it correct stroke
grouping errors.

Existing recognition technologies, including Tablet PC
gesture recognition, either place significant constraints
on users’ drawing style (e.g., forcing the user to group
strokes into symbols manually) [2, 5], recognize only a
limited set of symbols [6, 8], or have not been shown
to perform sufficiently robustly with end-users [1, 3]. A
few systems, such as MathPad2 [4], have achieved real-
world use for simple domains. Our goal is to achieve sim-
ilar success in a more complex domain.

1.1 Stroke Classification
Unlike most existing systems that assume stroke group-
ing will occur before symbol recognition, our approach
uses the results of single-stroke classification to inform
the process of stroke grouping. Szummer and Qi [8] il-
lustrated how conditional random fields effectively com-
bine stroke and contextual information for single-stroke
classification in organizational chart diagrams. We ex-
tend their approach to the more complex domain of cir-
cuit diagrams.

Briefly, a CRF is an undirected graphical model that rep-
resents the conditional probability distribution P (y|x)
where x is a set of input data and y is a set of labels
for that input data. The actual CRF consists of a graph
G = (V,E) and an associated set of potential functions
that together define P (y|x). Each node in V corresponds
to an element of the input, and each edge in E quantifies
a probabilistic dependence between nodes.

As in [8], we first fragment the strokes in the sketch by
finding corners using the algorithm presented in [7]. We
then automatically construct the graph by creating a node
for every fragment and linking nodes for fragments that
are spatially or temporally proximal. We consider two
types of potential functions: site potentials that measure
the compatibility between a stroke and its associated la-
bel, and pairwise interaction potentials that measure the
compatibility between neighboring labels. Both types of
potentials measure compatibility by linearly combining
parameters with a set of feature functions and passing the
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result through a non-linearity (we use the exponential).

Unlike in [8], our graphs are dense because of our rel-
atively complex domain. We must rely on approximate
inference methods for both learning and classification;
we use Loopy Belief Propagation. Loopy BP, while gen-
erally successful, is somewhat sensitive to initial condi-
tions. To address this problem we precondition by train-
ing first on smaller sets of data to get parameters that are
close to the optimal parameters.

1.2 Stroke Grouping
After labeling each stroke, we group strokes into individ-
ual objects. Even with perfect labels, stroke grouping is
not trivial. For example, different wires may overlap in
space and the same wire may be separated in time.

We use a graph theoretic method for stroke grouping that
treats each labeled stroke as a node in a graph, with edges
between adjacent strokes. The algorithm then finds the
connected components in the graph.

Two strokes are adjacent if their minimum distance is
lower than a given threshold. We designed specific dis-
tance metrics for the digital circuit domain. Given two
strokes, if neither stroke is a wire, then the minium dis-
tance between the strokes is the minimum distance be-
tween any two points in the strokes. If either stroke is a
wire, the minimum distance between the strokes is the
distance from an endpoint to any other point on the other
stroke. We use this modified distance because wires fre-
quently overlap even when they are not meant to repre-
sent the same component. In both cases, the minimum
distance is normalized by the sum of the diagonals of the
smallest bounding box around each of the strokes. This
normalization provides a unitless measure that is invari-
ant under uniform scaling.

2 Demonstration
Our system is unique in that it recognizes freely-drawn,
complete sketches, performing fragmentation, grouping
and (eventually) symbol recognition. Our demonstration
will illustrate each stage of this process.

We will recognize both real-world sketches collected
from students in E85 in spring and fall 2006 and sketches
produced by workshop participants. Given a raw sketch
(Figure 1(a)), we fragment the individual strokes in the
sketch at their corners (Figure 1(b)). Next, we classify in-
dividual strokes (Figure 1(c)), color coding them accord-
ing to their label. Additionally, mousing over the strokes
in the drawing shows the stroke’s id, the system’s inter-
pretation of the stroke, and the system’s belief in that
interpretation. Finally, we group strokes into individual
components, either connected wires or single gates (Fig-
ure 1(d)). Although not yet complete, the next step in this

process will be to classify each gate according to its spe-
cific type, and to detect which wires connect to which
gates in order to complete the circuit representation.

We will also demonstrate how our tool can be used to
manually fragment, group and label strokes in a sketch,
a crucial part of any sketch recognition effort.

3 Progress and Remaining Research Issues
We have some promising initial results, and we are ac-
tively working to complete our recognition tool chain,
develop a user interface for the tool, and link our tool in
with an existing simulator.

3.1 Initial Results
We tested our stroke labeling algorithm on a total of
51 circuit diagrams consisting of AND gates, OR gates,
NOT gates, XOR gates and wires. We used 17 samples
for full training and 4 or fewer samples for conditioning.
We tested two-label (wire vs. gate) and 5-label classifi-
cation. In the two-label case we achieved 96% accuracy,
while in the 5-label case we achieved 39% accuracy.

Two-label classification is likely sufficient at this stage
of processing, as the specific type of gate may be deter-
mined by the symbol recognizer in later steps. However,
we are working to improve multi-label classification by
developing a two-pass classification scheme that first dis-
tinguishes between wires and gates and then applies a
new CRF capable of distinguishing between only gates.

We tested our stroke grouping algorithms on the sketches
classified by the CRF in the previous step. We achieved
77% accuracy in grouping. Below we discuss our efforts
to incorporate an isolated-shape recognition algorithm
capable not only of recognizing individual symbols, but
also of detecting missing or superfluous strokes in the
symbol. This information will be fed back into the group-
ing algorithm, leading to an improved sketch grouping.

3.2 Remaining Issues
First, to complete the recognition system, we must in-
corporate a symbol recognition algorithm that identifies
groups of strokes. While many such algorithms exist, we
require an algorithm that not only classifies the shape, but
also detects superfluous or missing strokes to help correct
for stroke grouping errors. We are currently working with
Stahovich and his students to refine the symbol recogni-
tion algorithm presented in [5] for this purpose. In the
process, we will develop a method for refining the initial
stroke grouping produced by our algorithm.

Second, while improved recognition is essential in build-
ing sketch-based simulation tools, making full use its
power in educational software will require addressing
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(a) A raw sketch (b) Sketch after fragmentation

(c) Sketch after stroke-level recognition (d) Sketch after stroke grouping

Figure 1: Recognition Demonstration

new user interface challenges associated with this new
interaction paradigm. We have designed an experiment
to investigate the effect that recognition triggers, feed-
back mechanisms, error rates, and correction mecha-
nisms have on user satisfaction and overall efficiency. We
will carry out this study this spring, and the results of this
study will inform the development of our user interface.

Finally, we plan to link our recognition interface into Xil-
inx, a commercial digital circuit simulator. We have al-
ready written a program to translate recognized sketches
to Verilog, a format that Xilinx can import. We are
currently working to make the interaction between the
sketching interface and Xilinx as seamless as possible.
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