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Abstract

Despite the growing number of sketch recognition sys-
tems for education, little attention has been paid to how stu-
dents actually draw in practice. We examine freely-drawn
digital logic diagrams created by students in an electrical
engineering class in order to inform the design of a sketch
recognition digital circuit simulation tool. Our analysis
reveals considerable drawing style variation between stu-
dents and that standard drawing style restrictions made by
sketch recognition systems to aid recognition generally do
not match the way students draw. We identify drawing be-
haviors that can aid recognition while placing fewer un-
natural constraints on students’ drawing styles, and we de-
scribe specific recognition tasks whose solutions will lead
to more robust free-sketch recognition systems.

1. Introduction

Diagrams play a central role in education. Particularly
in engineering, diagrams allow students to reason about a
physical system, such as a circuit or a mechanical device.
Simulation programs enhance the power of diagrams by al-
lowing students to interactively explore the behavior of their
design. Yet these programs are fundamentally limited by
their mouse and keyboard interfaces. Menus and buttons
prevent students from simply drawing their desired sym-
bols, forcing them continually to consult menus to choose
pieces of the diagram.

Tablet computers provide a pencil-and-paper-like inter-
face, allowing users to sketch directly on the screen, allevi-
ating many of the constraints of the traditional mouse and
keyboard interface. A number of recent educational tech-
nologies attempt to combine the freedom of drawing on pa-
per with the power of computer simulation tools in a number
of domains including physics [6], chemistry [9], and electri-
cal engineering [4]. The power of these systems comes from
their ability to recognize a student’s hand-drawn strokes as
symbols in a particular domain.

One of the most difficult problems in creating a sketch
recognition system is handling the trade-off between ease
of recognition and drawing freedom. The more a system
constrains the user’s drawing style, the easier recognition
becomes. Existing sketch recognition systems place a va-
riety of restrictions on the way users draw in order to aid
recognition. For example, some systems require users to
draw each symbol with a single stroke while others require
users to pause between symbols.

Although these restrictions aid recognition, researchers
have paid little attention to how well they match the way
students naturally draw. These restrictions may force stu-
dents to change their drawing style so much that the bur-
den of using the system outweighs the benefit. Of course,
several factors influence how many and which restrictions
users will accept: the utility of the tool, the domain and
task, and how much of a burden these restrictions place on
their drawing style. Nevertheless, we believe that the fewer
restrictions we place on the user without sacrificing recogni-
tion accuracy the better. To leverage students’ natural draw-
ing behavior to improve recognition accuracy, we first must
understand this behavior.

This paper examines how students naturally draw digital
logic diagrams in order to inform the design of a recognition
system for education. We focus on three aspects of students’
drawing styles:
• Stroke order: Do students complete one symbol be-

fore moving to the next?
• Stroke timing: Do students pause between drawing

different symbols?
• Stroke number: How many strokes do users draw per

symbol? Do users draw more than one symbol with a
single stroke?

We focus specifically on how students draw because how
they draw may differ from how experienced designers draw.
For example, students’ symbols are probably messier, and
their circuit construction may be unconventional. Educa-
tional software must cope with these idiosyncrasies.

We focus on a single domain because previous work has
shown that domain-specific knowledge is essential in de-



signing a robust recognition system, and systems tailored
to a particular domain out-perform general recognition en-
gines [1, 4].

Finally, we focus on digital logic diagrams in particu-
lar because little work has been done in this domain, and
digital circuits present important challenges for recognition:
Many of the gates are similar in appearance, and the fact
that the form of wires is not defined by a consistent shape
leads to a great variety in possible drawing styles. Handling
these challenges likely will lead to advances that can inform
recognition algorithms in other domains.

Examining the above questions, this paper makes three
contributions to the development of sketch recognition-
based educational technologies. First, it examines how well
standard drawing-style restrictions match the way students
naturally draw. We find that students’ natural drawing pat-
terns violate standard restrictions up to 34% of the time,
and that there is considerable variation between students.
Second, our analysis informs the design of a free-sketch
recognition system for digital circuit diagrams. We iden-
tify new recognition challenges that arise from the way stu-
dents draw in practice, and we identify aspects of students’
natural drawing styles that can aid recognition. Third, we
believe similar drawing patterns exist in other domains, and
our analysis framework provides a template to investigate
this belief.

2. Background and Related Work

To understand why sketch recognition systems almost al-
ways incorporate drawing style restrictions, one must un-
derstand precisely why sketch recognition is difficult.

We focus on the task of stroke-based sketch recognition.
Unlike a static digram (e.g., a diagram drawn on paper and
then scanned into the computer), our input comes from a
digital collection device such as a tablet computer or a digi-
tizing pen. Stroke-based sketches consist of a set of strokes,
or collections of points sampled from when the user put the
pen down until the user lifted the pen. Each point in a stroke
has both position (x, y) and time information.

We highlight two core challenges of stroke-based recog-
nition: the problem of partitioning the strokes into individ-
ual symbols (stroke grouping) and the problem of identify-
ing the individual symbols (symbol identification).

Stroke grouping is difficult because it is inherently linked
with symbol identification. Figure 1 shows a sketch from
our data set. (We altered the thickness of the strokes for this
example). If the system could correctly group the three bold
strokes in this sketch, it likely could identify those strokes
as an XOR gate using a standard pattern matching technique
such as a neural network. Unfortunately, stroke grouping
is not as easy as it appears. Simple spatial and temporal
grouping approaches do not work: the three strokes that

Figure 1. A typical digram from our dataset
(stroke thickness altered for illustration).

form the XOR gate are not all touching each other, but they
are touching the input and output wires. In fact, the reason
these three strokes should be grouped together is precisely
because they form an XOR gate. But the system cannot tell
that they form an XOR gate until it knows to group them
together. In other words, if the computer can find the cor-
rect grouping, it will be able to match the strokes to a shape
in its library. However, naively trying all combinations of
stroke groups is prohibitively time-consuming.

Symbol identification is difficult because of the potential
variation in the way users draw shapes. For example, a user
may draw an AND gate with one stroke, two strokes, or
more. This variation presents a challenge because a system
cannot know how many strokes each object will contain,
nor the order in which these strokes will appear.

Most existing recognition systems place restrictions on
the user’s drawing style that mitigate one or both of the
above challenges. Here we list four common drawing
style restrictions that address these challenges, ordered from
most restrictive to least restrictive, and give examples of
systems that use each:

1. Users must draw each symbol using a pre-
specified pattern or gesture. (e.g., Palm Graffiti R©,
ChemPad [9])

2. Users must trigger recognition after each symbol (or
pause notably between symbols). (e.g., HHreco [5],
QuickSet [3])

3. Users must draw each symbol using temporally con-
tiguous strokes. (e.g., AC-SPARC [4])

4. Users may not use a single stroke that spans more than
one object (e.g., SketchREAD [1]).

Finally, some systems place few restrictions on the way
users draw, but rely on user assistance in stroke grouping.
To trigger recognition in MathPad2, for example, the user
must circle pieces of the sketch [6].

Although many systems restrict the way users can draw,
little work has been done on understanding how people
draw naturally. Oltmans et al. present some preliminary



observations from a dataset of sketches from several do-
mains collected in a laboratory setting [7]. We provide a
more thorough and sound analysis of their preliminary find-
ings. Shilman et al. have examined free-from handwritten
notes in detail, specifically focusing on identifying structure
and handwriting within these notes [8]. We focus on prop-
erties of diagrams extracted from within freeform notes. Fi-
nally Anderson et al. examined diagrams created by pro-
fessors while lecturing [2]. Because we aim to build tools
to support student learning, it is critical to understand the
students’ behaviors, in addition to the professors’.

3 Data collection and analysis

We collected the complete set of sketches and notes pro-
duced by students in a digital design and computer architec-
ture class. We gave each student participant a tablet com-
puter for the entire semester and asked them to use Windows
Journal whenever they would normally use paper: in their
note-taking, problem sets and circuit design labs. Our com-
plete dataset consists of hundreds of files containing hand-
drawn notes, equations, and diagrams. Our current study fo-
cuses on the diagrams students drew when completing their
problem sets and labs because our sketch-based simulation
tool will support these aspects of the course. We extracted
diagrams from the first three weeks of students’ problem
set and lab work (after the first three weeks the course focus
moves away from low-level circuit design).

We converted the Journal files to our own format and
then hand-labeled each diagram by grouping strokes into
objects and tagging each stroke group with the appropriate
symbol name from the symbols in Figure 2, or “other” if
it did not match any of these symbols. In grouping wires,
we grouped strokes along a single path from one object to
another. We grouped wire strokes that split off from other
wires into a separate wire symbol. For example, in Figure 1,
we grouped the horizontal wire from input A to the bold
XOR gate separately from the bent wire that progresses up-
ward into the AND gate. Even though these two wires carry
the same signal, we consider them separate objects because
they have different destinations.

The dataset we used for this study consists of 98 dia-
grams from 13 students. The number of diagrams analyzed
per student ranged from 4 to 11 (different students drew dif-
ferent numbers of diagrams when completing the same as-
signments). The average number of strokes per diagram was
50 (min=12, max=127, s.d.=24) and the average number of
symbols per diagram was 24 (min=7, max=82, s.d.=10).

We examined both quantitative and qualitative proper-
ties of our data. We gathered statistics from the data to ex-
amine patterns in the three properties listed in Section 1:
stroke order, stroke timing and stroke number. To inves-
tigate stroke order we counted how many of each symbol

A

wire AND OR NOT

NAND NOR XOR label

Figure 2. The symbols in the digital circuit do-
main

type students drew with temporally contiguous strokes and
how many they did not. A symbol is drawn with temporally
contiguous strokes if the strokes in the symbol are not in-
terrupted in time by strokes in a different symbol. To inves-
tigate stroke timing we compared the pause time (i.e., the
time between the last point in one stroke and the first point
in the next) between consecutive strokes in the same sym-
bol (e.g., the triangle and circle in a NOT gate) to the pause
time between consecutive strokes in two different symbols
(e.g., the circle in a NOT gate, and the wire connected to
the gate). Finally to investigate how consistent students are
in drawing each type of symbol, we counted the number
of strokes each student used to create each type of symbol.
We also considered how often a single stroke spanned more
than one symbol.

When we observed an interesting trend in the quantita-
tive analysis, we visually examined the spatial and temporal
properties of individual sketches to help explain our obser-
vations. Often this analysis included replaying the strokes
in the order in which they were drawn to understand how
the student created his or her sketch.

4. Results

4.1 Stroke Order

How often students draw symbols with consecutive
strokes varies both by symbol type and by student. Fig-
ure 3 illustrates how often students drew each type of sym-
bol with consecutive strokes. Overall, students drew 19%
of all symbols and 14% of gates (not including wires, la-
bels or other) with non-consecutive strokes. Figure 3 also
reveals that some symbols almost always consist of consec-
utive strokes (e.g., XOR, NOT), while others do not (e.g.,
NAND, Wire). In addition, on average a student drew 82%
of her symbols with consecutive strokes, but this percentage
varied from 96% to 70%.

Examining individual sketches, we found two qualita-
tively different drawing patterns underlying symbols drawn
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Figure 3. The percentage of each symbol
drawn with consecutive and non-consecutive
strokes. The numbers indicate the total num-
ber of each type of symbol.

with non-consecutive strokes. In some cases, the student
drew the majority of the symbol using consecutive strokes,
but returned to the symbol later in her drawing process to
add a single stroke. These single, non-consecutive strokes
appear to correct a part of the gate that was not fully con-
nected when the gate was drawn, or simply to trace over an
existing part of the gate, perhaps while the student contem-
plated what to draw next.

In other cases, the student left a symbol (frequently a
wire or a NAND gate) obviously unfinished and returned
later to finish it. For example, students often drew a por-
tion of a wire, moved on to draw a gate some distance from
the end of the wire, and then returned to extend the wire to
connect to the gate. In many cases when drawing a NAND
gate, students drew the body of the gate, moved away and
drew some wires, and then returned to draw the “bubble”
on the end. At first glance it appears that students realized
sometime after drawing the AND gate that they wanted to
invert the gate’s output. But in fact we observed this behav-
ior when students were instructed to build a circuit using
only NAND gates (and wires). It seems that because they
knew they were going to create a NAND gate, they simply
placed enough of the gate on the page to attach its inputs,
and added the bubble on the end only when they added the
output wire.

4.2 Stroke Timing

Our analysis reveals that while students do pause longer
when switching symbols, how long they pause between
symbols overlaps greatly with how long they pause between
strokes in the same shape. Furthermore, how long students
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Figure 4. The median pause time between
consecutive strokes in the same symbol and
in different symbols.

pause between strokes varies from student to student.
Figure 4 shows the median pause time per student be-

tween two strokes that are part of the same symbol and two
strokes that are part of different symbols. The error bars
on the graph show the interquartile range1. The data points
on this graph show that students do generally pause longer
when switching between symbols than when continuing to
draw the same symbol. This difference is significant for all
students (Wilcoxon rank sum, p << 0.001).

Unfortunately, the error bars reveal significant overlap
between the two distributions for many students, making it
impossible to find a reliable time threshold that would indi-
cate the start of a new symbol. To investigate pause time as a
discriminative measure, we measured how many errors per
user would result from using the single best user-specific
pause time threshold to classify each stroke as continuing
the previous symbol or not. Table 1 shows the results of
this analysis. Note that pause time is a more reliable indica-
tor of a symbol boundary for some students (e.g., 3 and 13)
than for others.

4.3 Strokes per Symbol

Finally we find that students vary in the number of
strokes they use to draw each symbol and that many stu-
dents themselves do not consistently draw each symbol with
the same number of strokes.

Figure 5 illustrates how many strokes each student drew
when creating each of the five major circuit symbols: AND
gates, NAND gates, OR gates, NOT gates and wires. The
graphs plot the fraction of each type of gate that the student

1We analyze the data using non-parametric methods because normal
probability plots revealed that our data is not normal.



User ID Threshold (msec) Error (%)
1 326 20.3
2 519 21.1
3 385 10.6
4 227 20.7
5 471 16.3
6 264 27.2
7 312 16.2
8 396 29.1
9 325 17.9
10 155 22.4
11 391 18.2
12 577 34.7
13 475 14.8

Table 1. Total classification error (new vs.
same symbol) for optimal time threshold

drew with one stroke, two strokes, three strokes, etc.
These data reveal several trends. First, in general the

number of strokes per symbol varies quite a bit across stu-
dents. For example, student 10 tended to draw AND gates
using one or two strokes, while student 8 drew AND gates
mostly with 3 or 4 strokes. Additionally, this variation is
greater for some symbols than for others. Most of the time
most students drew NAND gates with exactly three strokes
(although student 8, who used three strokes to draw AND
gates, used more strokes to draw NAND gates). On the
other hand, students drew OR gates with a wider range of
numbers of strokes.

Second, students vary in how consistent they are in draw-
ing each individual type of symbol. Some students consis-
tently used almost exactly the same number of strokes every
time they drew a symbol (e.g., students 1, 3, 4, 13); others
varied widely in how many strokes they used per symbol
(e.g., students 8 and 12); while the rest displayed moderate
variation. Individual students, however, tend to be either
consistent or inconsistent in their style across all symbol
types. For example, the students who were not consistent in
how they drew their AND gates also were not consistent in
the number of strokes they used to draw wires.

Not surprisingly, wires show the widest variation in
stroke number both between students and for each student
individually. This variation likely arises from the free-form
nature of wires. Still, Figure 5(f) shows two important
trends. First, most of the time most students draw each wire
with a single stroke. Second, several students (students 3, 4,
10, and 13) draw the vast majority of their wires using three
or fewer strokes. Note that these students do not necessarily
tend to use fewer strokes to draw the other symbols.

Finally, we found that students in our study rarely used a
single stroke that spanned multiple symbols (fewer than five

instances in the entire dataset). We believe that this trend is
quite domain-specific, as others have observed the tendency
for students to draw multiple symbols with a single stroke
in other domains, such as mechanical engineering [7, 4].

5 Discussion

Here we consider how our results inform the design of
digital circuit sketch recognition systems for education. We
identify trends in the way students draw that will aid recog-
nition, and we describe specific recognition tasks that must
be solved to build robust free-sketch recognition systems.

Pause time can aid stroke grouping. In the median
case, students did pause about half a second longer between
strokes when they started drawing a new symbol than when
they continued with the same symbol. While a student’s
natural pause time alone is not sufficient to reliably iden-
tify the boundaries between symbols (because of the over-
lap in the time distributions), it can be combined with other
stroke properties (such as position or length) potentially to
improve stroke grouping. Furthermore, teaching users to
extend how long they pause between symbols even by mil-
liseconds might vastly improve grouping and, consequently,
recognition. Direct user testing is necessary to determine
whether or not adapting to a slightly longer pause time in-
terrupts a student’s work flow.

User-specific learning may aid recognition. Overall
we found that few (if any) properties were consistent across
all students. However, in many cases, students themselves
were consistent across symbols and sketches. A recogni-
tion system that can learn how (and how consistently) a user
draws each symbol, how often she draw symbols with non-
consecutive strokes, how long she pauses between symbols,
etc., will likely outperform a recognition system that uses
a single model for all users. The challenge will be to iden-
tify user-specific properties reliably without requiring the
student to do excessive work.

Recognition systems must identify symbols that are
not drawn with consecutive strokes. While students draw
many shapes with consecutive strokes, a recognition sys-
tem must cope with non-trivial number of cases where they
do not. The specific drawing patterns we identify in Sec-
tion 4 will aid recognition systems in this task. For example,
tailored recognition algorithms might identify “touch-up”
strokes and handle them differently from strokes that add
significant visual content. Recognition routines that iden-
tify wires can expect the user to extend the end of the wire
with a stroke later in time, but not to add a stroke to the
middle of the wire.

Symbol recognizers must incorporate a wide range of
drawing styles (for most users). We saw that students var-
ied in the number of strokes they used to draw each sym-
bol. Furthermore, some individuals were inconsistent in
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Figure 5. Fraction of gates drawn with different numbers of strokes, by student.

how many strokes they used to draw each symbol. Forc-
ing these students to draw a symbol with a specific number
of strokes is likely to interfere with their drawing style and
thought process. On the other hand, if a system can iden-
tify a student who is consistent in the way he or she draws
gates and wires, it can tailor its recognition routines to that
student to improve recognition.

6 Conclusion

Sketch-based technologies have the potential to revolu-
tionize education, but we must match these technologies
to what the student does naturally so that they support the
learning process, rather than interfere with it. We present
drawing trends from a single domain in order to inform the
design of a sketch recognition-based tool for digital circuit
design, but our analysis framework can, and should, be ap-
plied to other domains. The results of these analyses, in-
cluding the results presented here, reveal important sketch-
ing behaviors that can be used to improve recognition with-
out placing unnatural constraints on the way students draw,
leaving students free to think about the material they are
learning, instead of focusing on exactly how to draw it.
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