
  

  

Abstract — In this paper we investigate a spectrum of 
approaches to region-based 3d visual reconstruction. On one 
hand, space-carving techniques require no prior environmental 
assumptions; on the other, triangulation based approaches 
offer built-in regularization to mitigate noise. Even at a coarse 
level, these region-based approaches are a promising 
complement to the successes of monocular mapping via point 
and line features. What is more, region-based approaches offer 
flexibility in scenes with dynamic texture (foliage) or without 
texture (walls), as well as on low-cost or educational platforms 
which offer only presegmented images. 

I. MOTIVATION AND CONTEXT 
ISION offers perhaps the highest bandwidth-to-cost ratio 
to robotic systems. In theory at least, one camera is a 
complete sensor suite. This potential, countered by 

pixels' close coupling of lighting, scene, and optics, has 
spurred decades of reconstructive research - reaching as far 
back as Shakey and the Stanford Cart. The progress in 3d 
reasoning from image streams has accelerated over the past 
five years: today's algorithms untangle even monocular data 
into consistent and accurate environmental representations 
[1-4]. Results such as [5] are, quite frankly, inspiring. 

 
Yet these remarkable systems exhibit a relatively narrow 

focus in their design: they rely on sparse, accurately 
reconstructed image features. Stepping back, one might 
consider a spectrum of reconstructive approaches in which 
features' precision trades off against their density, as 
sketched in Figure 1.  

 
Work to date emphasizes the bottom-up paradigm: SIFT, 

SURF, KLT, et al. provide locally distinct feature points, 
triangulate them into 3d via robust statistics, and hang 
textures onto the result [6,7]. An alternative path runs up-
then-across in Figure 1: segmentation algorithms [8,9] 
produce regions whose interframe correspondences yield a 
rough set of 3d surfaces. From those surfaces, texture 
mapping and further image processing sculpt more accurate 
world representations -- but only as required or desired.  

 
Indeed, with this work we argue that despite the successes 
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of environmental assembly, environmental sculpting offers a 
complementary approach useful in situations where precise 
feature matching can fail: 

 
(1) with densely or dynamically textured natural surfaces -  

such as bark, foliage, or water 
(2) with featureless surfaces typical of some indoor office 

environments  
(3) for tasks like obstacle avoidance, where the density of 

the world's representation supersedes its absolute accuracy 
(4) when only segmented regions are available, not the 

images themselves. 

This fourth use case has become increasingly common as 
low-cost platforms for research and education proliferate. 
For example, the Mach 5 [11], KIPR's XBC [12], and 
Lego’s NXT [13] offer access only to presegmented data 
through Cognachrome [14], CMUcam [15], or Mindsensors 
[16] interfaces. Other widely accessible platforms offer 
"blob" tracking as an option for a pedagogically accessible 
introduction to vision [17,18]. We contend that blobs, 
whether optional or required, do not preclude 3d reasoning 
on such platforms. 

A. Context and Contributions 
Figure 1's counterpoint of world-assembly and world- 

sculpting is nothing more than the computer vision 
community's dichotomy between structural reconstruction 
and space carving. This work simply leverages the fact that 
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Figure 1.  A taxonomy of visual reconstruction approaches. 
Bibliographic citation numbers place algorithms according to the 
precision and density of the underlying 2d features they use and 3d 
primitives they create. Whereas most algorithms first extract 
accurately localized features, usually points, and then assemble them 
into a 3d cloud, this work [*] transforms image  regions into coarser 
estimates of world structure. 



  

an incomplete and/or coarse space-carved approximation can 
offer a great deal of utility to a robotic agent. Perhaps 
because of its computational cost and pose-accuracy 
requirements, pure space carving has not seen substantial use 
for robotic environmental modeling. For instance, [19] eases 
the burden with human-segmented and -matched image 
patches; [20] space-carves automatically, but through a one-
dimensional camera retina. 

 
In contrast to many reconstructive algorithms which use 

direct range sensing along with vision [21,22], we follow [1] 
by using only monocular data and approximate odometry, 
such as that available on the low-cost platforms cited above. 
Our work concentrates on cameras whose optical axis 
remains parallel to the ground plane; thus, it allows fewer 
camera freedoms than [1]. This ground-plane restriction is 
not inherent; rather it reflects a natural starting point for this 
work. Thus, as a first step, this paper sets a foundation for 
useful region-based environmental reasoning via 

 
(1) A spectrum of algorithmic variations for coarse 

reconstruction via segmented image sequences  (Sec. 2) 
(2) Performance metrics and results for the tasks of 

obstacle avoidance and landmark reaquisition  (Sec. 3) 
(3) Data sets and source code openly available from [23].  
 
In the end, the techniques presented across Figure 1’s axes 

are neither mutually exclusive nor comprehensive. Though 
this work is in its early stages, we feel its algorithms show 
that -- depending on visual and environmental conditions -- 
roboticists' toolkits will find use for both assembling and 
sculpting approaches to monocular resonstruction. 
Ultimately, hybrids will combine the advantages of each.  

II. REGION-BASED RECONSTRUCTION 

A. Inputs: 2d image regions 
We begin by segmenting all input images using Edison 

[24]. Edison only segments; our system proceeds to compute 
region correspondences across the image series. Regions are 
matched between consecutive images based on location, 
color, size, and shape characteristics. At this 2d-reasoning 
stage, "objects" are simply collections of corresponding 
image regions, (hopefully) representing the same physical 
object viewed from different poses, as shown in Figure 2.  

B. (Alg.1)  Cylindrical reconstruction via triangulation 
We consider three algorithms for creating a coarse 3d 

representation from these 2d "objects." The first algorithm 
augments traditional triangulation [25] with the assumption 

that the centers of each object's 2d regions correspond to a 
consistent 3d point. Certainly, this is not true; it implicitly 
presumes that objects are spherical and unoccluded. Our 
approach estimates the radius of this presumed sphere from 
the camera's calibration and the 2d regions' widths. Because 
of the ground-plane assumption, we represent these objects 
as cylinders, not spheres. 

C. (Alg.2)   Fencepost reconstruction 
A partial refinement of the cylindrical triangulation of 

Alg. 1 instead builds a collection of planes by triangulating 
the left and right endpoints of each pair of corresponding 2d 
regions. This "fencepost" approximation builds a sheaf of 
vertical planar patches in 3d whose convex hull, in the 
absence of noise, contains the  object of interest. This 
approximation well approximates convex obstacles with 
polygonal cross-section, e.g., many man-made structures. 

D. (Alg.3)   Space-carving via fenceposts 
The third variation further 

leverages these fenceposts, 
i.e., the left and right 
vertical boundaries of 
objects from a particular 
viewpoint. Here, the world 
is presumed solid; obstacle 
volumes are carved away 
outside of those fenceposts' 
projections, as illustrated in 
Figure 3's top-down view.  

 
Step-by-step details of these algorithms appear in [26]; 

here, we augment these brief descriptions with the 
reconstructions in Figure 4 and section III. The 3d modeling, 
in part, uses the powerful computational geomtery library 
CGAL [27] and OpenGL for rendering the results. 

III. RESULTS AND EVALUATION 

A. Metrics for assessing reconstructions 
The promise of 3d representations is its support of both 

low-level tasks, e.g., obstacle avoidance, as well as higher-
level ones, e.g., navigation and loop closure. We evaluate 
our algorithms with metrics motivated by these goals. 

 
To assess our 3d maps' support for navigation-based tasks, 

we define recklessness as the fraction of actual obstacle area 
not enclosed by the corresponding reconstructed object. 

 
 

Figure 3.  Rays Rl and Rr project 
through an object's "fenceposts" 

for a particular image at Pl and Pr. 

 
Figure 4.  (L to R) An input image and example reconstructions of the 
two objects using cylindrical, plane-sheaf, and space-carved models. 

 
Figure 2.  (L to R) Two images (out of 75), with their segmentations. 



  

Paranoia is the fraction of reconstructed object area not 
enclosed by the actual obstacle. Both metrics are error 
measurements, ranging from 0.0 (perfect) and 1.0 (no 
intersection).  Figure 5 provides two numeric examples of 
each metric, based on only two images viewing the scene in 
Figure 4 almost head-on.    

 
To assess our maps' ability to help reaquire landmarks, 

e.g., for loop-closure or global path planning, we use the 
following algorithm:  

(1) choose a novel viewpoint; move the camera to it in 
both the real and rendered worlds 

(2) segment both the real and rendered images taken from 
this viewpoint and compute region correspondences 

(3) we define the reacquisition error to be the distance 

between the real and rendered region parameters (Fig. 6) 

B. Results 
The blocks-world testbed of Figures 2-6 has provided a 

convenient starting point to measure and compare these 
region-based approaches to 3d reconstruction: it provides 
ground truth and factors out the the efficacy of the "off-the-
shelf" segmentation system we employ.   

 

Trading off paranoia and recklessness 
 

Figure 7's data illustrate how cylindrical models outperform 
space-carving in both of these navigation-based metrics for 
large numbers of images, though for small numbers, 
triangulation is clearly superior in paranoia and space 
carving is superior in recklessness. 
 
 Triangulation benefits from additional viewpoints 
because they increase the accuracy of the centroid estimate.  
The radius of the reconstructed cylinder tends to remain 
relatively constant as the number of images increase. Space 
carving, in contrast, performed less well as the number of 
viewpoints increased. Given ideal segmentation, space 
carving would continue to improve in paranoia while never 
sacrificing perfect recklessness.  

  

 
Figure 5.  (L to R) Top-down projections of space-carved (blue) and 

cylindrical (red) reconstructions based on two input images. Real object 
footprints are in yellow. The recklessness and paranoia values track the 

tradeoff between aggressive and conservative occupancy estimates. 

   
Figure 6.  (L to R) Real and model-rendered segmented images from a 
novel camera viewpoint, along with the statistics used to quantify the 
differences between the resulting 2d regions; their sum constitutes the 

reacquisition error metric, stated for each object at bottom right. 
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Figure 7.  (top) A portion of the input image sequence (middle) top-

down views of reconstruction results at image numbers 2, 4, 8, and 18 
for space-carving (blue) and cylindrical triangulation (red) of the yellow 

object, whose reference position is also shown (bottom) plotting 
recklessness and paranoia values across this sequence. 

 
 



  

Correct segmentation would guarantee that any space inside 
the original object would be seen by the camera as such and 
would never be carved away. However, as we have 
imperfect segmentation, sometimes pieces of the true 
segment are lost. This means that space inside the actual 
object is carved away. As the number of images increases, 
inevitably so does the number of incorrect segments, and so 
does the recklessness of the space-carving reconstruction. 
 

Measuring landmark reacquitision 
 
Reacquiring landmarks is crucial to augmenting robots' 

reactive capabilities with higher-level reasoning about 
larger-scale environments. The ability to "close the loop" 
upon reentering a previously-viewed area forms the basis for 
both SLAM and path-planning algorithms. We have 
measured the reacquisition error of our reconstruction 
algorithms by selecting viewpoints at which to compare real 
and rendered images of the scene. Each of the Section II's 
three algorithms contributed a rendered image, based on its 
reconstruction from a full 75-image sequence. Figure 7's 18-
image subsequence shows part of that data: from there, the 
camera continued to circle the scene. Figure 8 provides 
additional snapshots and examples of reacquisition error. 

 
A taxonomy of landmark-matching errors 

 
Figure 8 also suggests a best-score matching algorithm: 

one that pairs a rendered landmark with the real image 
region that minimizes its reacquistion error. Because the 
actual object that gives rise to a rendered landmark may or 
may not be present in the real image, this leads to six 
possibilities for this matching. Three of them are correct: 

- a match seen in both images 
- no match, as the rendering is incorrect 
- no match in either the rendered or real image 

By the same token, three possibilities are incorrect: 
- a mismatched landmark 
- a missed match, though present in both images 
- a missed match, as the rendering is incorrect 
 

Figure 9 summarizes these six possible results for 
landmark-matching. For each image in the original 
sequence, we rendered the scene from that camera's pose and 
then ran the matching algorithm for landmark-reacquisition. 
The results appear in Figure 10.  

 
Figure 10's excellent results reflect as much about the 

simplicity of the scene as they do about the algorithm itself. 
Even so, errors did occur – and with increasing visual 
complexity, those errors would become even more common. 
Figure 11 shows one such error, in which the large 
difference in the size between the space-carved model (right) 
and the actual segmented image (left) leads to an incorrect 
correspondence. 

 
Although further tuning could fix Figure 11's particular 

mismatch, trying to avoid all such situations is fruitless. 
Rather, it is more important for a spatial-reasoning system to 

 
 

Figure 10.  Summary of landmark-reacquisition data for the red and 
yellow objects. These excellent results underscore how sensitive this 

metric is to the particulars of the environment. Yet even for these very 
distinctive landmarks, errors did occur, as shown in Figure 11. 

      
reacquisition error =  .25/.29      .31/.33  

     
reacquisition error =  .22/.19      .30/.28  

Figure 8.  (L to R) Two additional images of the blocks-world scene, 
their segmentations, cylindrical and space-carved reconstructions, 
projected onto the reference viewpoint. Below each landmark are its 
values for landmark-reacquisition error, computed using the criteria in 
Figure 6 and then normalized to a value between 0 (no error) and 1. As in 
these two examples, the triangulation-based reconstruction yields better 
landmark recognition overall than space-carved models (Figure 10). 

     
Figure 11. An example of a landmark mismatch even within our 

blocks-world dataset. The rendered red space-carved landmark matched 
most closely (0.34) with a shadowed background region. The low 

confidence difference of 0.003 (compare Figure 12) suggests that the 
system should place almost no faith in this match. 

 
Figure 9.  The three correct (left) and three incorrect (right) possibilities 

when matching 2d region-landmarks from rendered and real images. 



  

maintain an estimate of its confidence in a particular 
landmark-reacquisition match. We quantify this confidence 
as the difference between the best and second-best match-
scores for each rendered landmark, as seen in Figure 12. 

 
Not all images are equal: thoroughness and novelty 

 
Background conditions can change dramatically as the 

camera moves about a scene. Indeed, Figure 12's data 
illustrate how sensitive our confidence measure is to camera 
pose. A key problem with that plot is its equal treatment of 
each image – in practice, the system relies on some images 
far more than others in building its 3d reconstructions. For 
instance, a single view from one side of a landmark will 
contribute almost as much as a large collection of closely-
spaced images from the other side. In order to distinguish 
these different contributions from different input images, our 
system defines novelty and thoroughness for its inputs. 

  
Consider an image set s and an object o with perimeter p, 

and the portion s' of p visible in at least one image in 
s.  Then, the thoroughness of s with respect to o is s' / p, that 
is, the fraction of the perimeter of o visible in at least one 
image in s . To compute novelty, consider additionally an 
image n, the portion n' of p visible in n, and the portion sn' 
of p visible in both n and at least one image in s.  The 
novelty of n is (n'-sn')/n', that is, the fraction of n' that is not 
visible in at least one image in s.  

 
  Novelty and thoroughness, in turn, provide a backdrop 
against which to evaluate our three reconstruction 
algorithms. Figure 13 shows the confidence of the yellow 

object's reacquisition plotted against the novelty of the novel 
viewpoint. It confirms the natural trend for confidence to 
decrease as novelty increases for all of the algorithms, with 
space-carving the least confident of the three. Figure 14's 
plot of the yellow landmark model's recklessness and 
paranoia reprises the data from Figure 7.  Plotted against the 
thoroughness of the image set used, rather than image index, 
this new plot replaces Figure 7's anomalies with the smooth 
improvements expected with additional data.  

 
In the end, the coarsely reconstructed cylindrical and 

plane-sheaf landmarks perform better than space-carved 
landmarks – for obstacle avoidance (recklessness) and path 
planning (paranoia). Landmark-reacquisition further bears 
this out, both in overall match scores and in those matches' 
confidence. These differences persist even when accounting 
for the thoroughness and novelty of the underlying images.   

 
Figure 12.  Plot of landmark-reacquisition confidence (the best minus the 
second-best match score) in sequential images, for each of the three 
reconstruction algorithms. These huge variations prompted explicit 
consideraton of each image's contribution to the reconstructed 3d object 
models. The thoroughness and novelty metrics were the result (Fig. 12b) 

 
Figure 13.  Plot of the data from Figure 12, organized by the novelty of 
the contributing image. As expected, individual background differences 
yield a wide spread for each distinct novelty value. Yet in five of the six 
segments the expected downward trend is apparent.  

 
Figure 14.  Plot of the data from Figure 7, organized according to the 
thoroughness of the underlying image set. Here, paranoia decreases as 
more and more of the object is seen: the carving algorithm excises more 
of its generous initial assumption and the additional data tightens the 
triangulation algorithm's estimates by lessening the effects of noise. 
Reckless decreases similarly for the cylindrical models, but because 
space-carving can never recapture a region that has been carved away, 
recklessness there can only increase, albeit slowly. 

Figure 12b. Ilustrating 
thoroughness and novelty 
metrics for images that 
contribute to a 3d scene 
reconstruction. 



  

We do not feel these results, even as unambigous as they 
are, impugn the importance or potential of space-carving as 
a resource for region-based reconstruction. Rather, the 
message seems to reinforce the remarkable power of good 
prior models. After all, the two landmarks on which we 
focused are quite close to cylinders – and even closer to the 
convex hull of a sheaf of planes. Space carving's lack of 
prior assumptions enable it to handle for more complex 
landmarks without special accommodation. 

 
On the other hand, space carving can not recover well 

from noise or errors in the 2d segmented regions that are the 
input to the algorithm. There is no mechanism for 
"reclaiming" space that has already been carved away. This 
suggests a hybrid approach, in which coarse triangulated 
estimates are both refined by space carving and a fall back 
for ensuring that space carving does not carve away too 
much. By leveraging this experience with evaluating 
reconstructive approaches, we hope to help articulate and 
assess such hybrid algorithms in the future. 

IV. PERSPECTIVE 
The blocks-world examples presented here underscore 

how early in development we are with this work. Even at 
this preliminary stage, however, the approaches, metrics, and 
results suggest that sparse-feature-based reconstruction is 
not the only means to reason visually about the 3d world. 
Indeed, it would be surprising if the single strategy of 
interpolating from a small subset of accurately-localized 
image data sufficed for all visual conditions. The dual 
approach -- coarsely placing and/or sculpting objects from 
the visible environment and refining as needed -- opens up 
complementary capabilities.  

 
A lingering open problem is one of representation. What 

data structures will best mediate these differing sources of 
information and enable refinement of the 3d hypotheses they 
generate? It seems that multiple confidence resolutions will 
need to interleave with varying spatial resolutions to capture 
varying image contributions. 

 
We look forward to the robust algorithms that will emerge 

from combining these approaches into hybrid reasoning that 
smoothly incorporates both visually distinct features and 
more diffusely delimited data. Success in human-robot 
interaction will ultimately depend on robots' ability to reason 
about the 3d world in which humans perceive themselves. 
We will strive to help robotic systems realize this ability 
through the inexpensive, powerful, and richly varied channel 
of monocular vision.  
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