

Bitwise Biology: Crossdisciplinary Physical Computing Atop the Arduino

John Grasel, Wynn Vonnegut, and Zachary Dodds

Harvey Mudd College Computer Science Department
301 Platt Boulevard

Claremont, CA 91711
jgrasel, wvonnegut, dodds@hmc.edu

Abstract
We present the design and deployment of a physical
computing platform developed for a crossdisciplinary
introduction to biology and computer science. Using the
accessible Arduino interface as its foundation, students
instantiate increasingly nuanced physical interactions with
the environment. Biological and computational ideas
receive equal attention through three layered projects that
span from circuit design through the co-evolution of
predator-prey robot behaviors. The low-overhead platform
presented here scales to support sophisticated projects at
surprisingly modest time-and-money costs.

Motivation
Life computes – perhaps no other two-word sound bite
better captures the spirit and challenge of modern biology.
Life's computation spans orders of magnitude that dwarf
those of our artificial machines. Its sophistication and
intrinsic value offer a promise to which computer science
can, at its best, contribute both insight and intellectual
resources.

Tomorrow's Biology and CS curricula will be even more
intimately interconnected than today's. Poised to support
such efforts are embodied computational artifacts: after all,
unscripted environmental interaction is what distinguishes
life's cogitation from that of our computers. This paper
proposes and reports on how embodied computation – in
the form of a scalable, Arduino-based electronic tangible –
has supported hands-on laboratory exploration of the union
of the fields of biology and computer science.

Here we contribute the curricular context and the design of
that physical platform, depicted in Figures 3 and 4, used by
students in three projects:

• an exploration of circuit design and phototaxis,
• the physical modeling of bacterial motion, and

 Copyright © 2010, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

• an investigation of the phenotypic reinforcement of
genotype co-evolution in predator/prey relationships.

The classroom deployment of these materials is currently
underway; we report on our evaluation methodology and
interim results. Although these three projects are carefully
circumscribed, the possibilities for Figure 1's platform are
broad. We conclude with a description of some of the other
applications that such a scalable and accessible system
could support.

Background
The context for these three Arduino-based labs is an
integrated introductory curriculum deployed at Harvey
Mudd College (HMC) in the fall of 2009. The course
fulfills both the CS 1 and Biology 1 requirements that all
HMC students must complete by the end of their
sophomore year. Twenty-eight students were selected from
over fifty applicants for this pilot offering.

An introduction to biology and computer science

There is already a decade-long history introductory CS
courses using computational biology as motivating context
(LeBlanc and Dyer, 2004). Such efforts continue to expand
and mature (Soh et al., 2009). In addition, there are wide-
ranging examples of introductory biology curricula that
leverage computational tools and increase students' savvy
with them (Burhans and Skuse, 2004; Khuri, 2008;
McGuffee, 2007).

To our knowledge, however, there do not exist other
introductory courses that interweave biology and computer
science topics at a depth and breadth sufficient to fully
support majors of either discipline -- either separately or in
combination. Figure 1 presents an overview of such a
course's material and its integrated presentation.

A biologist presents the first lecture of each week; the
second lecture motivates and connects a fundamental

computational idea from that previous meeting's biological
basis. For homework by the end of the week students apply
that computational idea in order solve, model, or explore
two to five biological challenges. Python is the
computational currency of most of these student homework
assignments. To support this integrated approach we use
both a popular biology text (Sadava et al.) and an in-house
CS monograph, CS for Scientists and Engineers.

Example assignments

Figure 1 also summarizes three concrete examples of the
interweaving of computational and biological material
from the course. The full year of course assignments,
lecture slides, and supporting materials are freely available
from the course URL noted below.

Figure 1. Summary of fall-semester Bio/CS topics. The third
Arduino-based lab comes during the course's spring term.

Lab sessions

The course offers students a regularly scheduled, guided
laboratory session. Most weeks, this offers a low-pressure
setting in which to gain confidence with the Python
required to investigate the week's homework. Because of
the overhead associated with wet labs, we plan to offer
only one: a gel-electrophoresis task in the spring semester
in which students write Python-based image processing
programs in order to interpret the results. Yet even in our
dry labs we have sought hands-on computational
metaphors through which each lab can reinforce the
curriculum's primary theme: life computes.

We saw three opportunities for which hands-on, physically
embodied computation seemed particularly appropriate:

• To reinforce the ideas of modularity and composition

in both biological and artificial computation, we
wanted students to build simple physical circuits from

logic gates -- and then put them to use in a light-
seeking task, contrasting with biological phototaxis.

• When presenting the chemical basis for single-celled

organisms' volition, we wanted students to physically
model the directed random walks produced by the
choices in the direction of flagellar rotation.

• We also wanted students to investigate the

interrelationship between predator/prey genotypes, as
played out by their phenotypes. The genotypes
(software) co-evolve into a pair of increasingly fit
phenotypes (hardware) through a pair of mutually
recursive feedback loops. This project dovetails with
the course's coverage of evolutionary ecology.

Certainly we could have found a separate hardware
solution to support each of these three projects. Yet
bringing in new support materials for each investigation
suffers from several drawbacks. First, each distinct
hardware platform comes with its own, often significant,
learning curve. Second, multiple platforms increase
expense and, more worryingly, demand additional time for
curricular and software support and maintenance.

Perhaps most importantly, a separate-tool-for-each-project
approach unnaturally hides a fundamental insight common
to real biological and real computational systems: the
remarkable number of layers of abstraction that make such
complex systems possible. Although one might argue their
relative sophistication and efficiency, the hierarchy that
creates ecosystems out of elements and the hierarchy that
builds Google from gates share all the conceptual
challenges of modularity, interdependence, and staggering
depth.

The platform
Thus, we opted to explore single electronic tangibles that
might scale across each of the hands-on projects we hoped
to support. Seeking simplicity, ease of programmability,
and low cost, we settled on the materials shown in Figures
3 and 5, below.

Lab 1: the building blocks

The foundation of the platform is the popular and powerful
Arduino interface, whose open-source hardware and
software runs across operating systems. The first lab starts
with basic series circuitry (integrated circuits, LEDs,
resistors, and wire) and then adds with sensing and
actuation: a photoresistor and continuous-rotation
servomotor.

In our very typical computer-room lab space, each of the
14 pairs of students used the bill of materials detailed in
Figure 2, for a total cost of about $60 per pair. The size of
the components allows all of the building to fit between the
workstations at which each of a pair of students sits.

After creating a one-bit adder from gates to reinforce the
universality of the {AND, XOR, 0, 1} set of logical
primitives, students in Lab 1 use Python to manipulate
more extensive circuits programmatically. They hook up a
sequence of LEDs and design their own "hypnotizer," a
light-display pattern they show off to colleagues and
instructors. After their mesmerizing display works,
students add light sensing via a photoresistor and actuation
through a continuous-rotation servomotor. Students excited
about logic design have the option of building a 2-bit
adder, although Figure 4 testifies to its complexity.

Figure 2. Completed light-lab subprojects highlighting the
components used, including circuit composition in the one-bit

adder at left, LED outputs in the "hypnotizer," top right, sensing
via a photoresistor, and actuation through a continuous-rotation

servomotor (lower right). The support library and student-written
code are in Python, but could be in any language at all.

Figure 3. A list of parts and prices of Figure 2's materials.
Beside those are the additional components necessary to support

building and programming the biased-random-walk project
modeling bacterial chemotaxis, tethered or untethered.

The final product of the lab is a Python program that
combines the motor, sensor, and LEDs into a light meter
and a model of photophilic behavior. They attach a
penlight to the servomotor and set it in motion. Its output

impinges on the photoresistor. The LEDs then indicate
brightness on a scale from zero-to-eight. Figure 2 shows
some of the student teams' final systems.
Students control the motion, process the sensor data, and
light the LEDs through Python programs they build from
scratch during the lab. We found that two hours sufficed
for about half of the ten pairs to complete the lab. The
other half successfully created a program that integrated
LED display and light-sensing, but without the servomotor.
Future runs will streamline the introduction to ensure that
actuation fits into the two-hour timeframe. We were
heartened, however, that students wanted to (and did)
borrow the materials to complete the lab in their rooms.

Figure 4. Although a one-bit adder is more suitable for a 2-hour

lab, the construction of a two-bit adder (above) provides hard-
won appreciation of the complexity that both biological
organisms and today's computational devices embody!

Pedagogically this lab offers the students practice in the
careful composition of disparate software components.
Although they had practiced functional decomposition and
programming for five weeks, this lab provided the first
connection between their programs and human-scale
physical interactions. Because this activity overlaps with
the course's coverage of photosynthesis, we used the
opportunity to contrast the sensing and energy use in both
biological and artificial physical systems.

Lab 2: a robot "cell"

The introductory lab comes a bit before midterm; the
follow-up is one of the end-of-term final projects. Building
on the light-sensing and rotational actuation of the Light
Lab, Lab 2 challenges students to create and program a
physical model of bacterial chemotaxis in the form of a
small wheeled robot.

An advantage to the first lab's materials is that building a
mobile robot requires very little else. As the example robot
in Figure 5 attests, the breadboard can act as chassis,
scavenged plastic cup parts as wheels, and a hairclip can
serve as a stabilizing caster.

The backstory motivating this lab is the chemical signaling
that biases bacterial random walks. E. coli, for instance, are
too short to measure the spatial gradients of attractant and
repellant molecules directly. Rather, they estimate the
spatial gradient by time-averaging those molecules'
density.

These bacteria have only two actuation options: to move
forward at their current heading or to rotate in place to a
random orientation. Thus, they respond to favorable
gradients by predominantly choosing to move forward.
Unfavorable gradients cause a spike in random
reorientation, followed by shorter forward steps in an
attempt to escape.

The students implement precisely this behavior on their
robots. They use light gradients in lieu of chemical
gradients and can contrast direct spatial estimation, as done
by Braitenberg vehicles, with the time-integrated signal
that bacteria compute. The actuation is a natural extension
of Lab 1's turret to two motors supporting differential
drive. Figure 5 shows one such result.

Lab 3: Modeling predator-prey co-evolution

The second semester of this introduction to biology and CS
concludes with an even larger project. We chose to build a
capstone experience that investigates the co-evolution of
predator-prey genotypes. The interdependence of species'
genotype evolution has long been a cornerstone of
evolutionary ecology. This project builds from the robotic
modeling of the predator-prey co-evolution in (Floreano
and Nolfi, 1997) in a way that reinforces both its biological
and computational underpinnings.

The robots from the bacterial-modeling lab (Lab 2) can be
used unchanged. Following (Floreano et al, 2001), we have
them act as predator and prey by simply playing tag -- as
long as they know each other's relative position, which can
be provided by an overhead camera or in a software
simulation. Predators move faster but with a limited field
of view; the prey have 360-degree sensing, but move less
quickly.

The genotype of each species is modeled by a short bit
sequence. That sequence encodes coefficients relating
motor strength with the relative pose of the opposing agent.
When the predator succeeds in contacting, or "tagging," the
prey, its genotype's fitness is increased and the prey's is
decreased. When a prey phenotype evades a predator, that

reinforcement reverses. A genetic algorithm then uses
those fitness values to create a new pool of genotypes,
whose corresponding phenotypes continue the cycle.

Figure 5. A student-built robot that completed the biased-
random-walk project. At top, wheel designs are considered:

plastic cups superceded doughnuts, which were eaten instead.
The robot in the middle image runs tethered to the laptop

computer, with the USB bus providing all power and control
needed. As the bottom frame indicates, the transition to

untethered operation is not difficult. This robot and its light-
avoiding control program were both designed and built in the

time available in our two-hour lab session by a single student who
had previously worked through the light lab's introduction.

This summary describes an ongoing course. As such, this
predator-prey project has yet to be finalized; it will be
deployed in April, 2010. Even so, it is the software support
that will make or break this curricular experiment, and that

software has already been thoroughly vetted and tested.

Leveraging few external libraries Inspired by Myro's
Pythons all the way down philosophy (Blank, 2006), we
have built a lightweight library for interaction with the
Arduino in general and specifically for visualizing the state
of the students' Arduinobots. Both require nothing beyond
a standard Python 2.5.x or 2.6.x install and the pyserial
library; they work under Windows, Mac OS X, and Linux.

Figure 6. Snapshots from the robots' Python visualizer. The two
robots featured in the right side's frames are predator and prey.

They interact under the direction of their genetically-determined
mappings from sensors to motors. Those software genomes are
preserved in proportion to their fitness and mutated randomly.

Surprisingly capable predator- and prey-behaviors result.

The graphical interface is an adaptation of John Zelle's
wonderful graphics.py module with added support for
arbitrary affine transformations and simplified separate-
window GUI building. Because it uses the default Tkinter
interface, no packages or libraries beyond Python itself are
needed. It also runs as happily from within the IDLE
development environment as from the command line. This
was a deliberate consideration in its design, in order to
make the learning curve as gentle as possible for students
new to programming.

Our curriculum and software is freely available from the
same source from which student lab participants download
it: https://www.cs.hmc.edu/twiki/bin/view/CS6/Arduino.

Results
As of this writing, we have created and student-prototyped
the three projects that build upon this Arduino-based
platform. In addition, we have run the full class's 28
students through the circuit-building and light-seeking lab
(Lab 1). Also, selected students have twice completed the
bacterial-modeling lab (Lab 2) as preparation for full-class
deployment in December. The predator-prey lab (Lab 3)
has undergone thorough software testing, but its hardware
implementation remains to be completed.

Student responses from that lab experience have been
positive, both per se and relative to the lab and course
experiences that do not employ electronic tangibles. Figure
7 shows the distribution of the worthwhileness and
difficulty reported by students, two questions we have
asked for years about introductory CS assignments.

Figure 7. Student feedback from the "light" lab suggests a
suitable difficulty for a valuable learning experience.

We were heartened to see that this lab earned the highest
percentage of maximum worthwhileness scores to date.

Although head-to-head comparisons with other activities
are still being analyzed, we point out that our goal is not
that these physical computing labs replace or improve upon
any existing activity. Rather, our hope was to broaden both
the set of skills that students exercise and the comfort level
they achieve throughout the Bio/CS experience. End-of-
term feedback will provide data for measuring the extent to
which these materials helped in those efforts.

Anecdotally, however, the hardware lab was enjoyable
because it offered so different an interface to computation
from previous weeks. Formally submitted responses to the
lab include "I really liked the lab this week." and "2-bit

adder. YEAH!" Informal feedback reinforces these positive
sentiments. Even so, a particularly thoughtful response
pointed out that there is still considerable room for
improvement:

Lab was awesome, just seemed like a very broad
topic being crammed into a tad too little time.
Perhaps splitting it into two different days, with
the first having more emphasis on getting the
'xor' and 'and' gates to work, and the second
involving the python programming of the arduino
would be better suited?

Certainly we look forward to refining all of these labs for
future offerings. In fact, we hope to expand at least the
introductory Arduino lab to all 200+ students who take
CS1 each fall, not only those who opt for Bio/CS.

Perspective
Computational interaction among physical systems is
fundamental to both biology and computer science.
Inexpensive interfaces, such as the Arduino, are a robust
and accessible foundation for building curricular links
between those two fields in an engaging and hands-on
manner. What is most exciting, in our opinion, is the
generality of the toolset presented here.

This paper's labs only hint at the possibilities. These
materials offer the most accessible bridge we have
encountered between computation and the physical world.
What's more, they scale well pedagogically. By adding
other off-the-shelf circuit components, we use the same
software and hardware to control indoor and outdoor fleets
of robots used by students in elective classes, robot
competitions, and research projects. Other departments at
our institution are joining us on the bandwagon: an
Arduinobot-based engineering elective focusing on feul-
cell creation and power-autonomy will run in Fall 2010.

Electronic tangibles, in short, open a vast space of
opportunities for deep, cross-disciplinary student
engagement. We look forward to further exploring that
space -- both within our own curriculum and in concert
with the broader educational community.

Acknowledgments
The authors thank the anonymous reviewers for their
insights and suggestions; we also acknowledge the
generous support of funding from HHMI award
#52006301, NSF DUE CCLI #0536173, and Harvey Mudd
College.

References
Blank, D. 2006. Robots make computer science personal,
Communications of the ACM, 49(12), pp. 25-27, ACM Press.

Burhans, D and Skuse, G. 2004. The Role of computer science in
undergraduate bioinformatics education, SIGCSE '04, pp. 417-
421, Norfolk, VA. ACM Press.

Floreano, D. and Nolfi, S. 1997. God Save the Red Queen!
Competition in Co-Evolutionary Robotics, Proc. Genetic
Programming '97, pp. 398-406, Morgan Kaufmann.

Floreano, D., Nolfi, S., and Mondada, F. 2001. Co-Evolution and
Ontogenetic Change in Competing Robots, in M. Patel, V.
Honavar, and K. Balakrishnan (eds.) Advances in the
Evolutionary Synthesis of Intelligent Agents, MIT Press.

Khuri, Sami. 2008. A bioinformatics track in computer science,
SIGCSE '08, pp. 508-512, Portland, OR. ACM Press.

LeBlanc, M. and Dyer, B. 2004. Bioinformatics and computing
curricula 2001: why computer science is well positioned in a
post-genomic world, ITiCSE-WGR '04: Working group reports
from ITiCSE on Innovation and technology in computer science
education, pp. 64-68, Leeds, U.K., ACM Press.

McGuffee, J. 2007. Programming languages and the biological
sciences, Journal of Computing in Small Colleges, 22(4), pp.178-
183, CCSC Press.

Sadava, D. Heller, H., Orians, G., Purves, W., and Hillis, D. Life:
The Science of Biology, W. H. Freeman and Co. NY, NY.

Soh, Leen-Kiat, Samal, Ashok, Scott, Stephen, Ramsay, Stephen,
Moriyama, Etsuko, Meyer, George, Moore, Brian, Thomas,
William G. and Shell, Duane F. 2009. Renaissance computing: an
initiative for promoting student participation in computing,
SIGCSE '09, pp. 59-63, Chattanooga, TN, ACM Press.

