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Abstract 
We present the design and deployment of a physical 
computing platform developed for a crossdisciplinary 
introduction to biology and computer science. Using the 
accessible Arduino interface as its foundation, students 
instantiate increasingly nuanced physical interactions with 
the environment. Biological and computational ideas 
receive equal attention through three layered projects  that 
span from circuit design through the co-evolution of 
predator-prey robot behaviors.  The low-overhead platform 
presented here scales to support sophisticated projects at 
surprisingly modest time-and-money costs. 

Motivation  
Life computes – perhaps no other two-word sound bite 
better captures the spirit and challenge of modern biology. 
Life's computation spans orders of magnitude that dwarf 
those of our artificial machines. Its sophistication and 
intrinsic value offer a promise to which computer science 
can, at its best, contribute both insight and intellectual 
resources. 
 
Tomorrow's Biology and CS curricula will be even more 
intimately interconnected than today's. Poised to support 
such efforts are embodied computational artifacts: after all, 
unscripted environmental interaction is what distinguishes 
life's cogitation from that of our computers. This paper 
proposes and reports on how embodied computation – in 
the form of a scalable, Arduino-based electronic tangible – 
has supported hands-on laboratory exploration of the union 
of the fields of biology and computer science.  
 
Here we contribute the curricular context and the design of 
that physical platform, depicted in Figures 3 and 4, used by 
students in three projects: 
 
• an exploration of circuit design and phototaxis, 
• the physical modeling of bacterial motion, and 
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• an investigation of the phenotypic reinforcement of 
genotype co-evolution in predator/prey relationships. 

 
The classroom deployment of these materials is currently 
underway; we report on our evaluation methodology and 
interim results. Although these three projects are carefully 
circumscribed, the possibilities for Figure 1's platform are 
broad. We conclude with a description of some of the other 
applications that such a scalable and accessible system 
could support.  

Background 
The context for these three Arduino-based labs is an 
integrated introductory curriculum deployed at Harvey 
Mudd College (HMC) in the fall of 2009. The course 
fulfills both the CS 1 and Biology 1 requirements that all 
HMC students must complete by the end of their 
sophomore year. Twenty-eight students were selected from 
over fifty applicants for this pilot offering.  
 
An introduction to biology and computer science 
 
There is already a decade-long history introductory CS 
courses using computational biology as motivating context 
(LeBlanc and Dyer, 2004). Such efforts continue to expand 
and mature (Soh et al., 2009). In addition, there are wide-
ranging examples of introductory biology curricula that 
leverage computational tools and increase students' savvy 
with them (Burhans and Skuse, 2004; Khuri, 2008; 
McGuffee, 2007). 
 
To our knowledge, however, there do not exist other 
introductory courses that interweave biology and computer 
science topics at a depth and breadth sufficient to fully 
support majors of either discipline -- either separately or in 
combination. Figure 1 presents an overview of such a 
course's material and its integrated presentation. 
 
A biologist presents the first lecture of each week; the 
second lecture motivates and connects a fundamental 



computational idea from that previous meeting's biological 
basis. For homework by the end of the week students apply 
that computational idea in order solve, model, or explore 
two to five biological challenges. Python is the 
computational currency of most of these student homework 
assignments. To support this integrated approach we use 
both a popular biology text (Sadava et al.) and an in-house 
CS monograph, CS for Scientists and Engineers. 
 
Example assignments 
 
Figure 1 also summarizes three concrete examples of the 
interweaving of computational and biological material 
from the course. The full year of course assignments, 
lecture slides, and supporting materials are freely available 
from the course URL noted below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   Summary of fall-semester Bio/CS topics. The third 
Arduino-based lab comes during the course's spring term. 

 
Lab sessions 
 
The course offers students a regularly scheduled, guided 
laboratory session. Most weeks, this offers a low-pressure 
setting in which to gain confidence with the Python 
required to investigate the week's homework. Because of 
the overhead associated with wet labs, we plan to offer 
only one: a gel-electrophoresis task in the spring semester 
in which students write Python-based image processing 
programs in order to interpret the results. Yet even in our 
dry labs we have sought hands-on computational 
metaphors through which each lab can reinforce the 
curriculum's primary theme: life computes. 
 
We saw three opportunities for which hands-on, physically 
embodied computation seemed particularly appropriate: 
 
• To reinforce the ideas of modularity and composition 

in both biological and artificial computation, we 
wanted students to build simple physical circuits from 

logic gates -- and then put them to use in a light-
seeking task, contrasting with biological phototaxis. 

 
• When presenting the chemical basis for single-celled 

organisms' volition, we wanted students to physically 
model the directed random walks produced by the 
choices in the direction of flagellar rotation. 

 
• We also wanted students to investigate the 

interrelationship between predator/prey genotypes, as 
played out by their phenotypes. The genotypes 
(software) co-evolve into a pair of increasingly fit 
phenotypes (hardware) through a pair of mutually 
recursive feedback loops. This project dovetails with 
the course's coverage of evolutionary ecology. 

 
Certainly we could have found a separate hardware 
solution to support each of these three projects. Yet 
bringing in new support materials for each investigation 
suffers from several drawbacks. First, each distinct 
hardware platform comes with its own, often significant, 
learning curve. Second, multiple platforms increase 
expense and, more worryingly, demand additional time for 
curricular and software support and maintenance.  
 
Perhaps most importantly, a separate-tool-for-each-project 
approach unnaturally hides a fundamental insight common 
to real biological and real computational systems: the 
remarkable number of layers of abstraction that make such 
complex systems possible. Although one might argue their 
relative sophistication and efficiency, the hierarchy that 
creates ecosystems out of elements and the hierarchy that 
builds Google from gates share all the conceptual 
challenges of modularity, interdependence, and staggering 
depth. 

The platform 
Thus, we opted to explore single electronic tangibles that 
might scale across each of the hands-on projects we hoped 
to support. Seeking simplicity, ease of programmability, 
and low cost, we settled on the materials shown in Figures 
3 and 5, below. 
 
Lab 1: the building blocks 
 
The foundation of the platform is the popular and powerful 
Arduino interface, whose open-source hardware and 
software runs across operating systems. The first lab starts 
with basic series circuitry (integrated circuits, LEDs, 
resistors, and wire) and then adds with sensing and 
actuation: a photoresistor and continuous-rotation 
servomotor.  
 



In our very typical computer-room lab space, each of the 
14 pairs of students used the bill of materials detailed in 
Figure 2, for a total cost of about $60 per pair. The size of 
the components allows all of the building to fit between the 
workstations at which each of a pair of students sits. 
 
After creating a one-bit adder from gates to reinforce the 
universality of the {AND, XOR, 0, 1} set of logical 
primitives, students in Lab 1 use Python to manipulate 
more extensive circuits programmatically.  They hook up a 
sequence of LEDs and design their own "hypnotizer," a 
light-display pattern they show off to colleagues and 
instructors. After their mesmerizing display works, 
students add light sensing via a photoresistor and actuation 
through a continuous-rotation servomotor. Students excited 
about logic design have the option of building a 2-bit 
adder, although Figure 4 testifies to its complexity. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Completed light-lab subprojects highlighting the 
components used, including circuit composition in the one-bit 

adder at left, LED outputs in the "hypnotizer," top right, sensing 
via a photoresistor, and actuation through a continuous-rotation 

servomotor (lower right). The support library and student-written 
code are in Python, but could be in any language at all. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.   A list of parts and prices of Figure 2's materials. 
Beside those are the additional components necessary to support 

building and programming the biased-random-walk project 
modeling bacterial chemotaxis, tethered or untethered. 

 
The final product of the lab is a Python program that 
combines the motor, sensor, and LEDs into a light meter 
and a model of photophilic behavior. They attach a 
penlight to the servomotor and set it in motion. Its output 

impinges on the photoresistor. The LEDs then indicate 
brightness on a scale from zero-to-eight. Figure 2 shows 
some of the student teams' final systems. 
Students control the motion, process the sensor data, and 
light the LEDs through Python programs they build from 
scratch during the lab. We found that two hours sufficed 
for about half of the ten pairs to complete the lab. The 
other half successfully created a program that integrated 
LED display and light-sensing, but without the servomotor. 
Future runs will streamline the introduction to ensure that 
actuation fits into the two-hour timeframe. We were 
heartened, however, that students wanted to (and did) 
borrow the materials to complete the lab in their rooms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.   Although a one-bit adder is more suitable for a 2-hour 

lab, the construction of a two-bit adder (above) provides hard-
won appreciation of the complexity that both biological 
organisms and today's computational devices embody!  

 
Pedagogically this lab offers the students practice in the 
careful composition of disparate software components. 
Although they had practiced functional decomposition and 
programming for five weeks, this lab provided the first 
connection between their programs and human-scale 
physical interactions. Because this activity overlaps with 
the course's coverage of photosynthesis, we used the 
opportunity to contrast the sensing and energy use in both 
biological and artificial physical systems.  
 
Lab 2: a robot "cell" 
 
The introductory lab comes a bit before midterm; the 
follow-up is one of the end-of-term final projects. Building 
on the light-sensing and rotational actuation of the Light 
Lab, Lab 2 challenges students to create and program a 
physical model of bacterial chemotaxis in the form of a 
small wheeled robot.  
 



An advantage to the first lab's materials is that building a 
mobile robot requires very little else. As the example robot 
in Figure 5 attests, the breadboard can act as chassis, 
scavenged plastic cup parts as wheels, and a hairclip can 
serve as a stabilizing caster.  
 
The backstory motivating this lab is the chemical signaling 
that biases bacterial random walks. E. coli, for instance, are 
too short to measure the spatial gradients of attractant and 
repellant molecules directly. Rather, they estimate the 
spatial gradient by time-averaging those molecules' 
density.  
 
These bacteria have only two actuation options: to move 
forward at their current heading or to rotate in place to a 
random orientation. Thus, they respond to favorable 
gradients by predominantly choosing to move forward. 
Unfavorable gradients cause a spike in random 
reorientation, followed by shorter forward steps in an 
attempt to escape.  
 
The students implement precisely this behavior on their 
robots. They use light gradients in lieu of chemical 
gradients and can contrast direct spatial estimation, as done 
by Braitenberg vehicles, with the time-integrated signal 
that bacteria compute. The actuation is a natural extension 
of Lab 1's turret to two motors supporting differential 
drive. Figure 5 shows one such result. 
 
Lab 3: Modeling predator-prey co-evolution 
 
The second semester of this introduction to biology and CS 
concludes with an even larger project. We chose to build a 
capstone experience that investigates the co-evolution of 
predator-prey genotypes. The interdependence of species' 
genotype evolution has long been a cornerstone of 
evolutionary ecology. This project builds from the robotic 
modeling of the predator-prey co-evolution in (Floreano 
and Nolfi, 1997) in a way that reinforces both its biological 
and computational underpinnings. 
 
The robots from the bacterial-modeling lab (Lab 2) can be 
used unchanged. Following (Floreano et al, 2001), we have 
them act as predator and prey by simply playing tag -- as 
long as they know each other's relative position, which can 
be provided by an overhead camera or in a software 
simulation. Predators move faster but with a limited field 
of view; the prey have 360-degree sensing, but move less 
quickly. 
 
The genotype of each species is modeled by a short bit 
sequence. That sequence encodes coefficients relating 
motor strength with the relative pose of the opposing agent. 
When the predator succeeds in contacting, or "tagging," the 
prey, its genotype's fitness is increased and the prey's is 
decreased. When a prey phenotype evades a predator, that 

reinforcement reverses. A genetic algorithm then uses 
those fitness values to create a new pool of genotypes, 
whose corresponding phenotypes continue the cycle. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.   A student-built robot that completed the biased-
random-walk project. At top, wheel designs are considered: 

plastic cups superceded doughnuts, which were eaten instead.  
The robot in the middle image runs tethered to the laptop 

computer, with the USB bus providing all power and control 
needed. As the bottom frame indicates, the transition to 

untethered operation is not difficult. This robot and its light-
avoiding control program were both designed and built in the 

time available in our two-hour lab session by a single student who 
had previously worked through the light lab's introduction. 

 
This summary describes an ongoing course. As such, this 
predator-prey project has yet to be finalized; it will be 
deployed in April, 2010. Even so, it is the software support 
that will make or break this curricular experiment, and that 



software has already been thoroughly vetted and tested. 
 
Leveraging few external libraries   Inspired by Myro's 
Pythons all the way down philosophy (Blank, 2006), we 
have built a lightweight library for interaction with the 
Arduino in general and specifically for visualizing the state 
of the students' Arduinobots. Both require nothing beyond 
a standard Python 2.5.x or 2.6.x install and the pyserial 
library; they work under Windows, Mac OS X, and Linux. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Snapshots from the robots' Python visualizer. The two 
robots featured in the right side's frames are predator and prey. 

They interact under the direction of their genetically-determined 
mappings from sensors to motors. Those software genomes are 
preserved in proportion to their fitness and mutated randomly. 

Surprisingly capable predator- and prey-behaviors result. 
 
The graphical interface is an adaptation of John Zelle's 
wonderful graphics.py module with added support for 
arbitrary affine transformations and simplified separate-
window GUI building. Because it uses the default Tkinter 
interface, no packages or libraries beyond Python itself are 
needed. It also runs as happily from within the IDLE 
development environment as from the command line. This 
was a deliberate consideration in its design, in order to 
make the learning curve as gentle as possible for students 
new to programming. 
 
Our curriculum and software is freely available from the 
same source from which student lab participants download 
it: https://www.cs.hmc.edu/twiki/bin/view/CS6/Arduino.  

Results 
As of this writing, we have created and student-prototyped 
the three projects that build upon this Arduino-based 
platform. In addition, we have run the full class's 28 
students through the circuit-building and light-seeking lab 
(Lab 1). Also, selected students have twice completed the 
bacterial-modeling lab (Lab 2) as preparation for full-class 
deployment in December. The predator-prey lab (Lab 3) 
has undergone thorough software testing, but its hardware 
implementation remains to be completed. 
 

Student responses from that lab experience have been 
positive, both per se and relative to the lab and course 
experiences that do not employ electronic tangibles. Figure 
7 shows the distribution of the worthwhileness and 
difficulty reported by students, two questions we have 
asked for years about introductory CS assignments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Student feedback from the "light" lab suggests a 
suitable difficulty for a valuable learning experience. 

 
We were heartened to see that this lab earned the highest 
percentage of maximum worthwhileness scores to date. 
 
Although head-to-head comparisons with other activities 
are still being analyzed, we point out that our goal is not 
that these physical computing labs replace or improve upon 
any existing activity. Rather, our hope was to broaden both 
the set of skills that students exercise and the comfort level 
they achieve throughout the Bio/CS experience. End-of-
term feedback will provide data for measuring the extent to 
which these materials helped in those efforts. 
 
Anecdotally, however, the hardware lab was enjoyable 
because it offered so different an interface to computation 
from previous weeks. Formally submitted responses to the 
lab include "I really liked the lab this week." and "2-bit 



adder. YEAH!" Informal feedback reinforces these positive 
sentiments. Even so, a particularly thoughtful response 
pointed out that there is still considerable room for 
improvement: 
 

Lab was awesome, just seemed like a very broad 
topic being crammed into a tad too little time. 
Perhaps splitting it into two different days, with 
the first having more emphasis on getting the 
'xor' and 'and' gates to work, and the second 
involving the python programming of the arduino 
would be better suited? 

 
Certainly we look forward to refining all of these labs for 
future offerings. In fact, we hope to expand at least the 
introductory Arduino lab to all 200+ students who take 
CS1 each fall, not only those who opt for Bio/CS. 

Perspective 
Computational interaction among physical systems is 
fundamental to both biology and computer science. 
Inexpensive interfaces, such as the Arduino, are a robust 
and accessible foundation for building curricular links 
between those two fields in an engaging and hands-on 
manner. What is most exciting, in our opinion, is the 
generality of the toolset presented here. 
 
This paper's labs only hint at the possibilities. These 
materials offer the most accessible bridge we have 
encountered between computation and the physical world. 
What's more, they scale well pedagogically.  By adding 
other off-the-shelf circuit components, we use the same 
software and hardware to control indoor and outdoor fleets 
of robots used by students in elective classes, robot 
competitions, and research projects. Other departments at 
our institution are joining us on the bandwagon: an 
Arduinobot-based engineering elective focusing on feul-
cell creation and power-autonomy will run in Fall 2010. 
 
Electronic tangibles, in short, open a vast space of 
opportunities for deep, cross-disciplinary student 
engagement. We look forward to further exploring that 
space -- both within our own curriculum and in concert 
with the broader educational community. 
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