
Breadth-First CS 1 for Scientists
Zachary Dodds, Christine Alvarado, Geoff Kuenning, Ran Libeskind-Hadas

Harvey Mudd College Computer Science Department
301 Platt Boulevard

Claremont, CA 91711
909-607-1813

{dodds, alvarado, geoff, hadas}@cs.hmc.edu

ABSTRACT
This paper describes an introductory CS course designed to
provide future scientists with a one-semester overview of the
discipline. The course takes a breadth-first approach that
leverages its students' interest and experience in science,
mathematics, and engineering. In contrast to many other styles of
CS 1, this course does not presume that its students will study
more computer science, but it does seek to prepare them should
they choose to do so. In addition to describing the curriculum and
resources, we summarize our preliminary assessments of this
course and a comparison with the more traditional, imperative-
first introduction it replaced. The data thus far suggest that this CS
for Scientists course improves our students' understanding of CS,
its applications, and practice.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science Education

General Terms
Measurement, Design, Human Factors

Keywords
CS for scientists, introductory CS, CS 1 assessment

1. CS FOR SCIENTISTS
Scrutiny seems an unavoidable fate for introductory computer
science. In a field as dynamic as CS, we who teach CS0 and CS1
should strive to remain relevant and current. At the same time, we
try to retain those topics and skills that enable our students to cope
with next year's changes as well as last year's. This balance is
particularly delicate when designing introductory CS for
scientists. The evolving impact of CS on all scientific disciplines
has been dramatic and well documented, e.g., [27][29]. As George
Johnson put it, "All science is computer science." [17]

In contrast, many scientific programs of study present facets of
CS only as needed: programming skills and styles may derive
from a particular language or environment, e.g., Matlab or
LabView. This approach presumably keeps such programs

relevant and up-to-date, but it emphasizes particular tools over the
broader computational skills so vital in all areas of science today.

To leverage CS's growing importance, we replaced our traditional
CS 1 course with a breadth-first version nicknamed CS for
Scientists in 2006 [1]. Our goal was to create a curriculum
"suitable for any student intending to major in science or
engineering (including CS students)." [24] In particular, we hoped
this new offering would (1) develop programming and problem-
solving skills useful across engineering, mathematics, and the
natural sciences, (2) attract students to continue studying CS, and
(3) provide a coherent, intellectually compelling picture of
computer science, even as final CS course.

1.1 Context and Related Work
It is a wonderful time to teach CS 1! Curricular innovations within
introductory CS are both inspiring and numerous. Many of these
experiments draw strength in a similar manner: by weaving a
thematic structure amid introductory CS topics [22][15].

One of the most widespread of these themes for introductory CS
is media computation [14][20]. Other themes now scaffolding
CS1 include games [3][13][18][30], robotics [5], computer vision
[21], and art [12][25]. In each of these cases, the thematic overlay
tends to pull away from CS and toward the specifics of the
course's theme. Throughout CS for Scientists we strove to keep
the focus on CS, with applications motivating that focus.

Science and engineering enjoys a long history as a CS theme
[2][16][19][26]. Yet these experiments, both new and old, tend to
be service courses rather than CS per se, e.g., they do not
contribute to a CS degree. Courses like [8] and [28] present facets
of CS to specialists in other disciplines. Our course, on the other
hand, represents a full-fledged CS 1 designed to generate interest
in and prepare students for additional courses within the field.
Although we feel our students' ability and work ethic are unusual,
we also believe that scaled versions of this course could serve the
computational requirements of future scientists from a wide
variety of backgrounds.

Pedagogically popular styles of CS 1, such as imperative-first or
objects-first [10], all make the implicit assumption that there will
be something second. We knew that only a fraction of our
students would continue with CS, though we hoped to make it a
sizeable fraction! We hypothesized that breadth-first would best
suit students for whom the class might also be breadth-last.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006...$5.00.

Breadth-first CS is far from new. As CC2001 summarizes aptly,

the breadth-first model has not enjoyed the success that its
proponents had envisioned… most breadth-first courses that
exist today seem to be lead-ins to a more traditional
programming sequence. This model, which has several
successful implementations, is outlined in CS100B… [10]

Our CS for Scientists takes this hard-won experience to heart;
CS100B is our curriculum's basis. Yet our course has significant
shifts in emphasis to serve future scientists and engineers: multi-
paradigm programming, leveraging existing code, CS's influence
on science today, and acknowledging the reality that many
students would not be able to take another CS course afterwards.

Perhaps the work closest to CS for Scientists is Sedgewick and
Wayne's forthcoming text [24] and the Princeton University
course, COS126, from which it has grown. While our debt to
COS126 is strong in spirit, several differences distinguish our
offering. First, rather than work only within the object-oriented
paradigm offered by Java, we take a multiparadigm approach via
Python. Because of this change, we have contributed a freely-
available body of Python software to support our assignments and
laboratories. Further, we have been able to compare students'
responses to different programming styles and evaluate our
curriculum and students' gains from it.

1.2 Contributions
Thus, this paper presents four specific contributions that CS for
Scientists adds to the effort begun in [24]:

- A complete CS 1 curriculum. Two fifteen-week sets of
homework assignments and lecture slides are online: one set
for students with no programming experience and another for
students with a year (or more) of programming background.

- Guided laboratory exercises. Accompanying the assignments
and slides are step-by-step exercises used during structured
laboratory sessions each week through the semester.

- Support software. We have written and tested supporting
Python code for simulating a simple computer architecture,
its machine and assembly languages, easily accessible 2d
graphics, and manipulating audio files.

- Evaluation. All of the materials above have been classroom-
tested. We report initial results from weekly assessments of
student engagement and understanding and we compare the
new curriculum with the prior Java-based CS 1 course.

The data thus far suggest that CS for Scientists succeeds in three
ways: students "get" the importance of CS to their future scientific
endeavors; students also feel they can leverage their CS skills to
support those endeavors. Students are attracted to continue
studying CS at the same rate as from traditional alternatives. It is
our hope that the curriculum, support materials, and assessments
presented here will be of use to other CS educators serving future
scientists, mathematicians, and engineers.

2. CURRICULUM
186 first-year college students took CS for Scientists in the fall of
2006: 74 of them in an accelerated section for those with at least a
year of high-school programming experience and 112 of them in a
section for those with no CS or programming background. All 186
students are pursuing a degree in some natural science, i.e.,

mathematics, engineering, physics, chemistry, biology, CS, or
combinations of these fields. Though they had acknowledged an
interest in science, the majority of the students have not yet
chosen their major field of study, a decision not required until the
second year at our institution.

To implement our breadth-first curriculum, we broke the semester
into five three-week units (see Table 1) in which students would
learn and practice different programming paradigms. In order to
support all of these with a minimum of syntactic overhead, we
heed [6] and [9] in choosing a multi-paradigm language, Python.

Table 1. Summary of CS for Scientists' Curriculum

Weeks Paradigm Samples of the labs and assignments

1-3 functional integration, random walks, ciphers

4-6 low-level recursion in assembly, 4-bit multiplier

7-9 imperative Markov text generation, game of life

10-12 objects/classes Connect Four player, sudoku solver

13-15 CS theory uncomputability, finite-state machines

2.1 Modules, example labs, and assignments
To underscore the role of small, task-specific functions as the
basic building blocks of computation, we started with functional
programming, i.e., functional (de)composition, map, reduce,
higher-order functions, and lambda expressions. While software
engineers will persuasively argue that objects and classes are
computation's basic building blocks, the programming needed
most often by practicing scientists and engineers is smaller in
scale, e.g., quick scripts to analyze, summarize, or reformat data.
Moreover, by starting with a functional approach we built upon
students' prior ability and comfort with mathematical functions.

The second module, "low-level" computation, reinforced the idea
of modularity and composition via logic gates: students built 4-bit
ripple-carry adders from AND, NOT, and OR gates in Carl
Burch's outstanding Logisim tool [7]. Those adders then became
building blocks in 4-bit multipliers. Combinational-circuit design
segued to larger-scale computer architecture: students capped this
experience by implementing recursion (the stack and function
calls) in Hmmm, a Python-based assembly language simulator.

The transition is smooth from the register-level jmp and cmp
assembly instructions to the repetitive control structures and
variable reassignment of imperative programming, our third
module. We felt that students with high-school Java experience
needed supplemental material: implementing Huffman coding and
Mastermind kept them engaged in what was otherwise largely
review. In labs all students implemented Mandelbrot-set drawing
and John Conway's Game of Life using vPython [23].

Students then augmented procedural programming with class- and
object-based constructs. They created a Date class to answer
questions like "how many days apart are June 25, 2007 and
February 30, 1712" and "which day of the week is most likely to
be the 13th of the month."† Implementing Connect Four and a

† Sweden observed Feb. 30, 1712, which fell 107,852 days before June 25, 2007.

Friday is strictly more common as the 13th than any other day of the week.

sudoku solver provided deeper design practice with both object-
oriented programming and 2d arrays.

A medium-sized final project further exercised object-oriented
style, with students choosing among three options: a physical
simulator and GUI for a game of pool; a state-based controller
that could navigate a simulated robot through its environment; or
a finite-automaton simulator, with graphics, of a small space-
filling agent similar to Karel [4].

The finite-state machines used in the latter two final projects
complemented in-class exercises on (un)computability and
deterministic finite automata. These lectures, reinforced by final-
exam questions, wrapped up the term with a bird's-eye view of
what computation can and cannot do. Examples included the
halting problem, several other uncomputable functions, and an
abstract perspective on program state and models of computation.

Figure 1 shows examples of different students' work from fall
2006 – all from the novice programmers' section. They highlight
some of the different examples of interfaces used throughout the
course. Details on the support software follow.

Figure 1. Student work from fall 2006's CS for Scientists Top

left: visualizing numeric integration Top right: turtle-graphics art
Middle left: a four-bit multiplier circuit Middle right: physics-
based pool, a final project Bottom left: a Karel-like automaton
exploring its environment Bottom right: a finite-state machine
submitted on the final exam (featuring object-oriented syntax!)

Lecture Slides The course used seventy 50-minute Powerpoint
presentations (30-40 slides each) that constitute the foundation of
the course materials. Without a text, we sought to use visual
representations as much as possible; less than a quarter of the

slides are text-only. Figure 2 shows two slides from the second
module on circuits and assembly language programming.

Labs, Assignments, Exams We used a set of guided 2-3 hour
laboratories, one per week, and two sets of 4-6 hour out-of-class
assignments – one for the accelerated and one for the beginner's
section of the course. On average, students completed four
programming problems per week. Students took two 1-hour
midterms and a 3-hour final.

Figure 2. Course slides on Hmmm, module 2's assembly

language, and a bit of potential circuit-level implementation.

Support Software To supplement the freely available Logisim
[7] for circuit design and vPython [23] for 3d graphics, we have
created several Python-based tools for CS for Scientists:

- The Hmmm assembler and simulator. Hmmm is a 16-
instruction, 8-bit assembly language for a 256-word machine. It
has a Python assembler and simulator/debugger. Simple enough
for CS1, Hmmm is powerful enough to enable small recursive
implementations: students built recursive factorial and towers-
of-Hanoi programs in it. The slides in figure 2 diagram the
Hmmm machine and a bit of its (potential) circuit-level design.

- A csplot.py package for 2d graphics. In contrast to John
Zelle's excellent graphics.py package [32] that introduces
students to writing their own interfaces, csplot provides
autoscaling and mouse-based translation and zoom. csturtle
extends this package with a Logo-like turtle interface; Python's
builtin turtle.py lacks rescaling and recentering. These
tools are visualizers for computational results more than
resources for learning GUI programming. The top left and right
images in Figure 1 show csplot and csturtle,
respectively

- A csaudio.py package that enables reading, manipulation,
and writing of sound files. While Mark Guzdial's JES and
MediaTools [14] incorporate audio processing into a unified
IDE using Java, this lightweight package is a stand-alone
Python implementation that runs on PCs and Macs alike.

Indeed, all of the support material for the course runs on Linux,
Mac OS X, and Windows. Portability was important: our labs are
Mac-based; many students worked on their own PCs running a
Microsoft OS; a few diehards used their own Linux installs, too.
The course does not use a text; hence, all of these materials come
from the course's website [1].

3. EXPERIENCES AND EVALUATION
Although not all of our institutional course-evaluation data is
available to us as of this writing, we have assessed the impact of
the course in the following four ways:

3.1 Pre- and post-term surveys
To assess the course's success in conveying both the import and
span of CS, students completed pre- and post-term surveys asking
"What is computer science?" and "Describe one thing a researcher
in CS might study."

The responses to "What is CS?" have been coded into four levels
of sophistication: Level 1 (none) represents non-answers such as
"the science of computers" or "the study of technology," as well
as purely derivative/analytic ones, e.g., "using code to get
computers to do things" or "figuring out how computers work."
Responses that articulate some of synthesis or breadth within CS
are Level 2 (naive), e.g., "software and hardware design" and
"coding, debugging, and analyzing problems to develop
computer-based solutions." Answers that acknowledged the field
beyond physical computers and their software became Level 3
(basics), e.g., "the study of computational algorithms and their
applications." Finally, the most nuanced answers become Level 4
(details): "a lot is about general, language-agnostic even system-
agnostic algorithms and relative merits of speed and efficiency
and in some cases … actually wondering how and if it is possible.
CS is not programming, it is implemented in programming."

The pre- and post-survey percentages appear in the inset, below.
The bar chart summarizes the most commonly cited "things a CS
researcher might study." Note that the latter categories were not
supplied, but the result of a clustering of the responses provided.
HCI and UI design appeared a good deal in the "other topics" list
after the course, but not at all beforehand.

We were both surprised and heartened by this assessment:
surprised by many of the impressions of CS articulated by our
incoming undergraduate science students, but heartened by the
substantial differences evident by the end of the semester.

In the initial surveys, many students clearly saw CS as a
derivative field whose practitioners investigate artifacts created by
other scientists: a typical comment was "[a CS researcher would]
study what makes computers work." By the end of the term, this
perception had completely disappeared. We also feel the
substantial drop in the answer "programming" confirmed our
success at conveying the breadth of CS beyond the skills that
superficially characterize the discipline in many students' minds.

3.2 Affective assessment of CS's impact
We measured students' perceptions of the impact CS will have on
them personally by asking "how important you think CS or
programming skills will be in your future" with Likert-scale
responses ranging from 1 – "not at all" to 7 – "very."

While the means of these before-and-after distributions are
identical at 5.1, their shapes are significantly different. Indeed, the
heavier tails on both ends of the scale suggest that more students
have "taken sides" as to whether or not they feel comfortable and
eager to draw upon and build upon their CS skills in the future.

3.3 Comparison with a traditional CS 1
Because this course replaced a procedural-then-objects Java
course, similar in approach to [11] and [31], we were interested in
comparing the responses of the two courses' students to the
statements (A) The course stimulated my interest in the subject
matter and (B) I learned a great deal in this course. The table
below shows a significant uptick in student agreement with these
statements – unsurprising, perhaps, given that CS for Scientists
was designed to better address its students' interests. Even so, we
feel these data do support both the approach and curriculum. The
first and last rows show how CS1 compared with all of our
college's courses in all departments.

Table 2. Comparing student agreement with (A) and (B)

Students Considered
Agreement
with (A),
from 1-7

Agreement
with (B),
from 1-7

Fall 2005: all courses 5.65 5.71

Fall 2005: traditional CS1 5.14 5.81

Fall 2006: CS for Scientists 5.89 6.11

Fall 2006: all courses 5.70 5.80

3.4 Subsequent CS Enrollment
A full comparison between CS for Scientists and the more
traditional CS1 course it replaced will not be possible until formal
course evaluations get back to the instructors. However, an initial
assessment of comparative student impact can be based on the
numbers of students who choose to enroll in CS2 in the spring
semester following the two versions of CS 1.

The figure above shows the trend from the last 4 years, including
a breakdown by student gender. Continuing enrollments are
normalized to this year's CS1 class size of 186. Increasing the
number of students majoring in CS was not a goal of the redesign,
though we had hoped for an increase. Even as additional, more
thorough investigations into these numbers are underway, we are

happy that this change has at least maintained the numbers both of
students and of women who choose to continue studying CS.

4. VERDICT
From these data and in looking back broadly at our initial offering
of CS for Scientists, we are optimistic about its approach to
teaching future scientists introductory computer science.

As always, there remain a number of rough edges that we look
forward to addressing next fall. Some assignments (Connect Four)
required more time than we wanted students to spend; others
frustrated students because the tools (vPython) were as new to us
as them. Additional final-project options would have been
welcome, and we would also like to schedule homework-based
reinforcement of module 5, computability and state machines.

More generally, we intend to pull more examples from
mathematics, engineering, physics, chemistry, and biology to
strengthen the overarching theme of the class. This first offering
has convinced us that enabling students to choose their own path
through a set of lab and homework problems alleviates the
differences in background inevitable in any large class. Further,
multiple pathways permit students to personalize the course
content without sacrificing our central focus on CS itself.

Overall, we feel our experience with CS for Scientists provides
additional evidence of the effectiveness of thematically structured
introductory courses. We look forward to working with other CS
educators targeting math, science, and engineering students to
benefit from and improve upon the curriculum, software, and
insights gained from this experiment.

5. REFERENCES
[1] CS 5 website, https://www.cs.hmc.edu/twiki/bin/view/CS5/WebHome

[2] Bachnak, R. and Steidley, C. An interdisciplinary laboratory for computer
science and engineering technology. Journal of Computing Sciences in
Colleges 17(5) April 2002, 186-192.

[3] Bayliss, J. D. and Strout, S. Games as a "flavor" of CS1. In Proc. SIGCSE
2006; Houston, TX, USAA, 500-504.

[4] Bergin, J., Roberts, J., Pattis, R., and Stehlik, M. Karel++: A Gentle
Introduction to the Art of Object-Oriented Programming. John Wiley & Sons,
NY, NY, 1996

[5] Blank, D. Robots Make Computer Science Personal. Communications of the
ACM 49(12) (Dec. 2006), 25-27.

A ACM Press, New York, New York, USA

[6] Budd, T. A. and Pandey, R. K. Never mind the paradigm, what about
multiparadigm languages? ACM SIGCSE Bulletin 27(2) (June 1995), 25-30.

[7] Burch, C. Logisim: a graphical system for logic circuit design and simulation.
Journal on Ed. Resources in Computing (JERIC) A 2(1) (3/2002), 5-16.

[8] Burhans, D. T. and Skuse, G. R. The role of computer science in
undergraduate bioinformatics education. In Proc. SIGCSE 2004; Norfolk, VA,
USAA, 417-421.

[9] Close, R., Kopec, D., and Aman, J. CS1: perspectives on programming
languages and the breadth-first approach. In Proc. CCSCNE 2000; Mahwah,
NJ, USAA, 228-234.

[10] Computing Curricula 2001. Journal on Educational Resources in Computing
(JERIC) A, Joint Task Force on Computing Curricula, eds. Volume 1, Issue 3es
(Fall 2001).

[11] Crescenzi, P., Loreti, M. and Pugliese, R. Assessing CS1 java skills: a three-
year experience. In Proc. ITiCSE 2006; Bologna, ItalyA, 348.

[12] Davis, T. A. and Kundert-Gibbs, J. The role of computer science in digital
production arts. In Proc. ITiCSE 2006; Bologna, ItalyA, 73-77.

[13] Giguette, R. The Crawfish and the Aztec treasure maze: adventures in data
structures. ACM SIGCSE Bulletin 34(4) (Dec. 2002), 89-93.

[14] Guzdial, M. A media computation course for non-majors. In Proc. ITiCSE '03;
Thessaloniki, GreeceA, 104-108.

[15] Guzdial, M. and Tew, A. E. Imagineering inauthentic legitimate peripheral
participation: an instructional design approach for motivating computing
education. In Proc. ICER 2006; Canterbury, UKA, 51-58.

[16] Jehn, L. A., Rine, D. C., and Sondak, N. Computer science and engineering
education: Current trends, new dimensions and related professional programs.
In Proc. SIGCSE 1978; Pittsburgh, PA, USAA, 162-178.

[17] Johnson, George. All Science is Computer Science. New York Times March
25, 2001.

[18] Ladd, B. C. The curse of Monkey Island: holding the attention of students
weaned on computer games. Journal of Computing Sciences in Colleges 21(6)
(June 2006), 162-174.

[19] Lambrix, P. and Kamkar, M. Computer science as an integrated part of
engineering education. In Proc. ITICSE 1998; Dublin, IrelandA, 153-156.

[20] Matzko, S. and Davis, T. A. Teaching CS1 with graphics and C. In Proc.
ITiCSE 2006; Bologna, ItalyA, 168-172.

[21] Olson, C. F. Encouraging the development of undergraduate researchers in
computer vision. In Proc. ITiCSE 2006; Bologna, ItalyA, 255-259.

[22] Paul, J. Leveraging students' knowledge: introducing CS 1 concepts. Journal
of Computing Sciences in Colleges 22(1) (Oct. 2006), 246-252.

[23] Scherer, D., Dubois, P., and Sherwood, B. VPython: 3D interactive scientific
graphics for students. Computing in Science and Eng. 2(5) 2000, 56-62.

[24] Sedgewick, R. and Wayne, K. Introduction to Programming (in Java),
preliminary version, Pearson Addison Wesley, 2006. ISBN 0-536-31807-7.

[25] Smith King, L. A. and Barr, J. Computer science for the artist. In Proc.
SIGCSE 1997; San Jose, CA, USAA, 150-153.

[26] Stevenson, D. E. Science, computational science, and computer science: at a
crossroads. In Proc. ACM '93; Indianapolis, IN, USAA, 7-14.

[27] Steering the future of Computing. Nature 440(7083) (March 2006 special issue
on 2020 Computing), 383-580.

[28] Tesser, H., Al-Haddad, H. and Anderson, G. Instrumentation: a multi-science
integrated sequence. In Proc. SIGCSE 2000; Austin, TX, USAA, 232-236.

[29] Towards 2020 Science, by the 2020 Science Expert Group. Microsoft Press,
Redmond, WA, USA. 2006.

[30] Wallace, S. A. and Nierman, A. Addressing the need for a java based game
curriculum. Journal of Computing Sciences in Colleges 22(2) 12/2006, 20-26.

[31] Weir, G. R. S., Vilner, T., Mendes, A. J., and Nordström, M. Difficulties
teaching Java in CS1 and how we aim to solve them. In Proc. ITiCSE '05;
Caparica, PortugalA, 344-345.

[32] Zelle, J. Python Programming: An Introduction to Computer Science.
Franklin, Beedle & Associates. Wilsonville, OR. 2004. ISBN 1-887902-99-6.

