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ABSTRACT 
This paper describes an introductory CS course designed to 
provide future scientists with a one-semester overview of the 
discipline. The course takes a breadth-first approach that 
leverages its students' interest and experience in science, 
mathematics, and engineering. In contrast to many other styles of 
CS 1, this course does not presume that its students will study 
more computer science, but it does seek to prepare them should 
they choose to do so. In addition to describing the curriculum and 
resources, we summarize our preliminary assessments of this 
course and a comparison with the more traditional, imperative-
first introduction it replaced. The data thus far suggest that this CS 
for Scientists course improves our students' understanding of CS, 
its applications, and practice. 
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1. CS FOR SCIENTISTS 
Scrutiny seems an unavoidable fate for introductory computer 
science. In a field as dynamic as CS, we who teach CS0 and CS1 
should strive to remain relevant and current. At the same time, we 
try to retain those topics and skills that enable our students to cope 
with next year's changes as well as last year's. This balance is 
particularly delicate when designing introductory CS for 
scientists. The evolving impact of CS on all scientific disciplines 
has been dramatic and well documented, e.g., [27][29]. As George 
Johnson put it, "All science is computer science." [17] 

 
In contrast, many scientific programs of study present facets of 
CS only as needed: programming skills and styles may derive 
from a particular language or environment, e.g., Matlab or 
LabView. This approach presumably keeps such programs 

relevant and up-to-date, but it emphasizes particular tools over the 
broader computational skills so vital in all areas of science today. 
 
To leverage CS's growing importance, we replaced our traditional 
CS 1 course with a breadth-first version nicknamed CS for 
Scientists in 2006 [1]. Our goal was to create a curriculum 
"suitable for any student intending to major in science or 
engineering (including CS students)." [24] In particular, we hoped 
this new offering would (1) develop programming and problem-
solving skills useful across engineering, mathematics, and the 
natural sciences, (2) attract students to continue studying CS, and 
(3) provide a coherent, intellectually compelling picture of 
computer science, even as final CS course. 

 

1.1 Context and Related Work 
It is a wonderful time to teach CS 1! Curricular innovations within 
introductory CS are both inspiring and numerous. Many of these 
experiments draw strength in a similar manner: by weaving a 
thematic structure amid introductory CS topics [22][15].  
 
One of the most widespread of these themes for introductory CS 
is media computation [14][20]. Other themes now scaffolding 
CS1 include games [3][13][18][30], robotics [5], computer vision 
[21], and art [12][25]. In each of these cases, the thematic overlay 
tends to pull away from CS and toward the specifics of the 
course's theme. Throughout CS for Scientists we strove to keep 
the focus on CS, with applications motivating that focus. 
 
Science and engineering enjoys a long history as a CS theme 
[2][16][19][26]. Yet these experiments, both new and old, tend to 
be service courses rather than CS per se, e.g., they do not 
contribute to a CS degree. Courses like [8] and [28] present facets 
of CS to specialists in other disciplines. Our course, on the other 
hand, represents a full-fledged CS 1 designed to generate interest 
in and prepare students for additional courses within the field. 
Although we feel our students' ability and work ethic are unusual, 
we also believe that scaled versions of this course could serve the 
computational requirements of future scientists from a wide 
variety of backgrounds. 
 
Pedagogically popular styles of CS 1, such as imperative-first or 
objects-first [10], all make the implicit assumption that there will 
be something second. We knew that only a fraction of our 
students would continue with CS, though we hoped to make it a 
sizeable fraction! We hypothesized that breadth-first would best 
suit students for whom the class might also be breadth-last. 
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Breadth-first CS is far from new. As CC2001 summarizes aptly,  
 

the breadth-first model has not enjoyed the success that its 
proponents had envisioned… most breadth-first courses that 
exist today seem to be lead-ins to a more traditional 
programming sequence. This model, which has several 
successful implementations, is outlined in CS100B… [10] 
 

Our CS for Scientists takes this hard-won experience to heart; 
CS100B is our curriculum's basis. Yet our course has significant 
shifts in emphasis to serve future scientists and engineers:  multi-
paradigm programming, leveraging existing code, CS's influence 
on science today, and acknowledging the reality that many 
students would not be able to take another CS course afterwards. 
 
Perhaps the work closest to CS for Scientists is Sedgewick and 
Wayne's forthcoming text [24] and the Princeton University 
course, COS126, from which it has grown. While our debt to 
COS126 is strong in spirit, several differences distinguish our 
offering. First, rather than work only within the object-oriented 
paradigm offered by Java, we take a multiparadigm approach via 
Python. Because of this change, we have contributed a freely-
available body of Python software to support our assignments and 
laboratories. Further, we have been able to compare students' 
responses to different programming styles and evaluate our 
curriculum and students' gains from it. 
 

1.2 Contributions 
Thus, this paper presents four specific contributions that CS for 
Scientists adds to the effort begun in [24]: 
 

- A complete CS 1 curriculum. Two fifteen-week sets of 
homework assignments and lecture slides are online: one set 
for students with no programming experience and another for 
students with a year (or more) of programming background.  

- Guided laboratory exercises. Accompanying the assignments 
and slides are step-by-step exercises used during structured 
laboratory sessions each week through the semester. 

- Support software. We have written and tested supporting 
Python code for simulating a simple computer architecture, 
its machine and assembly languages, easily accessible 2d 
graphics, and manipulating audio files. 

- Evaluation. All of the materials above have been classroom-
tested. We report initial results from weekly assessments of 
student engagement and understanding and we compare the 
new curriculum with the prior Java-based CS 1 course.  
 

The data thus far suggest that CS for Scientists succeeds in three 
ways: students "get" the importance of CS to their future scientific 
endeavors; students also feel they can leverage their CS skills to 
support those endeavors. Students are attracted to continue 
studying CS at the same rate as from traditional alternatives. It is 
our hope that the curriculum, support materials, and assessments 
presented here will be of use to other CS educators serving future 
scientists, mathematicians, and engineers. 
 

2. CURRICULUM 
186 first-year college students took CS for Scientists in the fall of 
2006: 74 of them in an accelerated section for those with at least a 
year of high-school programming experience and 112 of them in a 
section for those with no CS or programming background. All 186 
students are pursuing a degree in some natural science, i.e., 

mathematics, engineering, physics, chemistry, biology, CS, or 
combinations of these fields. Though they had acknowledged an 
interest in science, the majority of the students have not yet 
chosen their major field of study, a decision not required until the 
second year at our institution. 

To implement our breadth-first curriculum, we broke the semester 
into five three-week units (see Table 1) in which students would 
learn and practice different programming paradigms. In order to 
support all of these with a minimum of syntactic overhead, we 
heed [6] and [9] in choosing a multi-paradigm language, Python. 

Table 1. Summary of CS for Scientists' Curriculum 

Weeks Paradigm Samples of the labs and assignments 

1-3 functional integration, random walks, ciphers 

4-6 low-level recursion in assembly, 4-bit multiplier 

7-9 imperative Markov text generation, game of life 

10-12 objects/classes Connect Four player, sudoku solver 

13-15 CS theory uncomputability, finite-state machines 

 

2.1 Modules, example labs, and assignments 
To underscore the role of small, task-specific functions as the 
basic building blocks of computation, we started with functional 
programming, i.e., functional (de)composition, map, reduce, 
higher-order functions, and lambda expressions. While software 
engineers will persuasively argue that objects and classes are 
computation's basic building blocks, the programming needed 
most often by practicing scientists and engineers is smaller in 
scale, e.g., quick scripts to analyze, summarize, or reformat data. 
Moreover, by starting with a functional approach we built upon 
students' prior ability and comfort with mathematical functions.  

The second module, "low-level" computation, reinforced the idea 
of modularity and composition via logic gates: students built 4-bit 
ripple-carry adders from AND, NOT, and OR gates in Carl 
Burch's outstanding Logisim tool [7]. Those adders then became 
building blocks in 4-bit multipliers. Combinational-circuit design 
segued to larger-scale computer architecture: students capped this 
experience by implementing recursion (the stack and function 
calls) in Hmmm, a Python-based assembly language simulator. 

The transition is smooth from the register-level jmp and cmp 
assembly instructions to the repetitive control structures and 
variable reassignment of imperative programming, our third 
module. We felt that students with high-school Java experience 
needed supplemental material: implementing Huffman coding and 
Mastermind kept them engaged in what was otherwise largely 
review. In labs all students implemented Mandelbrot-set drawing 
and John Conway's Game of Life using vPython [23].  

Students then augmented procedural programming with class- and 
object-based constructs. They created a Date class to answer 
questions like "how many days apart are June 25, 2007 and 
February 30, 1712" and "which day of the week is most likely to 
be the 13th of the month."† Implementing Connect Four and a 

                                                                    
† Sweden observed Feb. 30, 1712, which fell 107,852 days before June 25, 2007. 

Friday is strictly more common as the 13th than any other day of the week.  



sudoku solver provided deeper design practice with both object-
oriented programming and 2d arrays. 

A medium-sized final project further exercised object-oriented 
style, with students choosing among three options: a physical 
simulator and GUI for a game of pool; a state-based controller 
that could navigate a simulated robot through its environment; or 
a finite-automaton simulator, with graphics, of a small space-
filling agent similar to Karel [4].  

The finite-state machines used in the latter two final projects 
complemented in-class exercises on (un)computability and 
deterministic finite automata. These lectures, reinforced by final-
exam questions, wrapped up the term with a bird's-eye view of 
what computation can and cannot do. Examples included the 
halting problem, several other uncomputable functions, and an 
abstract perspective on program state and models of computation. 

Figure 1 shows examples of different students' work from fall 
2006 – all from the novice programmers' section. They highlight 
some of the different examples of interfaces used throughout the 
course. Details on the support software follow. 

    

    

   
Figure 1.  Student work from fall 2006's CS for Scientists  Top 

left: visualizing numeric integration  Top right: turtle-graphics art   
Middle left: a four-bit multiplier circuit  Middle right: physics-
based pool, a final project  Bottom left: a Karel-like automaton 
exploring its environment  Bottom right: a finite-state machine 
submitted on the final exam (featuring object-oriented syntax!) 

Lecture Slides   The course used seventy 50-minute Powerpoint 
presentations (30-40 slides each) that constitute the foundation of 
the course materials. Without a text, we sought to use visual 
representations as much as possible; less than a quarter of the 

slides are text-only. Figure 2 shows two slides from the second 
module on circuits and assembly language programming. 

Labs, Assignments, Exams   We used a set of guided 2-3 hour 
laboratories, one per week, and two sets of 4-6 hour out-of-class 
assignments – one for the accelerated and one for the beginner's 
section of the course. On average, students completed four 
programming problems per week. Students took two 1-hour 
midterms and a 3-hour final.  

  

 

 
Figure 2.  Course slides on Hmmm, module 2's assembly 

language, and a bit of potential circuit-level implementation. 

Support Software   To supplement the freely available Logisim 
[7] for circuit design and vPython [23] for 3d graphics, we have 
created several Python-based tools for CS for Scientists: 

- The Hmmm assembler and simulator. Hmmm is a 16-
instruction, 8-bit assembly language for a 256-word machine. It 
has a Python assembler and simulator/debugger. Simple enough 
for CS1, Hmmm is powerful enough to enable small recursive 
implementations: students built recursive factorial and towers-
of-Hanoi programs in it. The slides in figure 2 diagram the 
Hmmm machine and a bit of its (potential) circuit-level design. 

- A csplot.py package for 2d graphics. In contrast to John 
Zelle's excellent graphics.py package [32] that introduces 
students to writing their own interfaces, csplot provides 
autoscaling and mouse-based translation and zoom. csturtle 
extends this package with a Logo-like turtle interface; Python's 
builtin turtle.py lacks rescaling and recentering. These 
tools are visualizers for computational results more than 
resources for learning GUI programming. The top left and right 
images in Figure 1 show csplot and csturtle, 
respectively 

- A csaudio.py package that enables reading, manipulation, 
and writing of sound files. While Mark Guzdial's JES and 
MediaTools [14] incorporate audio processing into a unified 
IDE using Java, this lightweight package is a stand-alone 
Python implementation that runs on PCs and Macs alike. 

Indeed, all of the support material for the course runs on Linux, 
Mac OS X, and Windows. Portability was important: our labs are 
Mac-based; many students worked on their own PCs running a 
Microsoft OS; a few diehards used their own Linux installs, too. 
The course does not use a text; hence, all of these materials come 
from the course's website [1]. 

3. EXPERIENCES AND EVALUATION 
Although not all of our institutional course-evaluation data is 
available to us as of this writing, we have assessed the impact of 
the course in the following four ways: 



3.1 Pre- and post-term surveys 
To assess the course's success in conveying both the import and 
span of CS, students completed pre- and post-term surveys asking 
"What is computer science?" and "Describe one thing a researcher 
in CS might study."  

The responses to "What is CS?" have been coded into four levels 
of sophistication: Level 1 (none) represents non-answers such as 
"the science of computers" or "the study of technology," as well 
as purely derivative/analytic ones, e.g., "using code to get 
computers to do things" or "figuring out how computers work." 
Responses that articulate some of synthesis or breadth within CS 
are Level 2 (naive), e.g., "software and hardware design" and 
"coding, debugging, and analyzing problems to develop 
computer-based solutions." Answers that acknowledged the field 
beyond physical computers and their software became Level 3 
(basics), e.g., "the study of computational algorithms and their 
applications." Finally, the most nuanced answers become Level 4 
(details): "a lot is about general, language-agnostic even system-
agnostic algorithms and relative merits of speed and efficiency 
and in some cases … actually wondering how and if it is possible. 
CS is not programming, it is implemented in programming." 

The pre- and post-survey percentages appear in the inset, below. 
The bar chart summarizes the most commonly cited "things a CS 
researcher might study." Note that the latter categories were not 
supplied, but the result of a clustering of the responses provided. 
HCI and UI design appeared a good deal in the "other topics" list 
after the course, but not at all beforehand. 

We were both surprised and heartened by this assessment: 
surprised by many of the impressions of CS articulated by our 
incoming undergraduate science students, but heartened by the 
substantial differences evident by the end of the semester. 

In the initial surveys, many students clearly saw CS as a 
derivative field whose practitioners investigate artifacts created by 
other scientists: a typical comment was "[a CS researcher would] 
study what makes computers work." By the end of the term, this 
perception had completely disappeared. We also feel the 
substantial drop in the answer "programming" confirmed our 
success at conveying the breadth of CS beyond the skills that 
superficially characterize the discipline in many students' minds. 

3.2 Affective assessment of CS's impact 
We measured students' perceptions of the impact CS will have on 
them personally by asking "how important you think CS or 
programming skills will be in your future" with Likert-scale 
responses ranging from 1 – "not at all" to 7 – "very."   

While the means of these before-and-after distributions are 
identical at 5.1, their shapes are significantly different. Indeed, the 
heavier tails on both ends of the scale suggest that more students 
have "taken sides" as to whether or not they feel comfortable and 
eager to draw upon and build upon their CS skills in the future. 

      

3.3 Comparison with a traditional CS 1 
Because this course replaced a procedural-then-objects Java 
course, similar in approach to [11] and [31], we were interested in 
comparing the responses of the two courses' students to the 
statements (A) The course stimulated my interest in the subject 
matter and (B) I learned a great deal in this course. The table 
below shows a significant uptick in student agreement with these 
statements – unsurprising, perhaps, given that CS for Scientists 
was designed to better address its students' interests. Even so, we 
feel these data do support both the approach and curriculum. The 
first and last rows show how CS1 compared with all of our 
college's courses in all departments. 
 

Table 2. Comparing student agreement with (A) and (B) 

Students Considered 
Agreement 
with (A), 
from 1-7 

Agreement 
with (B),  
from 1-7 

Fall 2005:  all courses 5.65 5.71 

Fall 2005:  traditional CS1 5.14 5.81 

Fall 2006:  CS for Scientists 5.89 6.11 

Fall 2006:  all courses 5.70 5.80 

3.4 Subsequent CS Enrollment 
A full comparison between CS for Scientists and the more 
traditional CS1 course it replaced will not be possible until formal 
course evaluations get back to the instructors. However, an initial 
assessment of comparative student impact can be based on the 
numbers of students who choose to enroll in CS2 in the spring 
semester following the two versions of CS 1.            

The figure above shows the trend from the last 4 years, including 
a breakdown by student gender. Continuing enrollments are 
normalized to this year's CS1 class size of 186. Increasing the 
number of students majoring in CS was not a goal of the redesign, 
though we had hoped for an increase. Even as additional, more 
thorough investigations into these numbers are underway, we are 



happy that this change has at least maintained the numbers both of 
students and of women who choose to continue studying CS. 

        

4. VERDICT 
From these data and in looking back broadly at our initial offering 
of CS for Scientists, we are optimistic about its approach to 
teaching future scientists introductory computer science. 

As always, there remain a number of rough edges that we look 
forward to addressing next fall. Some assignments (Connect Four) 
required more time than we wanted students to spend; others 
frustrated students because the tools (vPython) were as new to us 
as them. Additional final-project options would have been 
welcome, and we would also like to schedule homework-based 
reinforcement of module 5, computability and state machines. 

More generally, we intend to pull more examples from 
mathematics, engineering, physics, chemistry, and biology to 
strengthen the overarching theme of the class. This first offering 
has convinced us that enabling students to choose their own path 
through a set of lab and homework problems alleviates the 
differences in background inevitable in any large class. Further, 
multiple pathways permit students to personalize the course 
content without sacrificing our central focus on CS itself. 

Overall, we feel our experience with CS for Scientists provides 
additional evidence of the effectiveness of thematically structured 
introductory courses. We look forward to working with other CS 
educators targeting math, science, and engineering students to 
benefit from and improve upon the curriculum, software, and 
insights gained from this experiment. 
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