
When CS 1 is Biology 1:
crossdisciplinary collaboration as CS context

Zachary Dodds
Harvey Mudd College CS Dept.

301 Platt Blvd.
Claremont, CA 91711 USA

00+1+909-607-1813

dodds@cs.hmc.edu

Ran Libeskind-Hadas
Harvey Mudd College CS Dept.

301 Platt Blvd.
Claremont, CA 91711 USA

00+1+909-621-8976

hadas@cs.hmc.edu

Eliot Bush
Harvey Mudd College Biology Dept.

301 Platt Blvd.
Claremont, CA 91711 USA

00+1+909-607-0653

bush@hmc.edu

ABSTRACT
We present the curriculum, deployment, and initial evaluation of a
course, BioCS1, designed to serve as CS1 and Biology1 for
majors of either (or both) disciplines. Cotaught by professors in
both fields, BioCS1 interweaves fundamental biology and
computational topics in a manner similar to contextual approaches
to CS1. In contrast to other contextual approaches, however,
BioCS1 emphasizes both CS and its context equally. The results
suggest that cross-disciplinary collaborations can succeed at the
introductory level, as they have at later stages of the curriculum.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science Education

General Terms
Measurement, Design, Human Factors

Keywords
Contextualized CS, CS 1, Biology 1, contextual peers

1. MOTIVATION
Life computes – perhaps no other two-word sound bite better
captures the spirit and challenge of modern biology. Life's
computation spans orders of magnitude that dwarf those of our
artificial machines. Its sophistication and intrinsic value offer a
promise to which CS can, at its best, contribute both insight and
intellectual resources.

Coordinated approaches to Biology and CS, even in shared spaces
such as bioinformatics, now see each field as crucial but
independent contributors. Introductory courses remain tethered to
parent departments. Believing that tomorrow's Bio and CS fields
will be even more interconnected than today's, we have extended
work in contextualized CS in order to design, deploy, and assess a
novel, shared BioCS1 curriculum. The key difference from media,

robot, and web-based contexts for CS1 [15,19,22,23] is that in our
course Biology was not only context but also peer: BioCS1 had to
serve as both Bio1 and CS1.

This paper summarizes our BioCS1 curriculum and the student-
generated evidence both for and against its effectiveness. In brief,
the results show that

• Students gained at least the CS and Biology skills of those in
control groups – for overlapping topics.

• Students gained algorithm-design and implementation skills
beyond that of the control group, as motivated by biological
context and problems.

• Students taking BioCS1 show an increase in interest,
understanding, and excitement in both of those fields.

We necessarily await our jury on several other counts: future
enrollment, performance in subsequent CS and Biology courses,
and choices of academic major. Here we focus on BioCS1's
curricular context, its topics and lab material, and the evaluations
of students' knowledge, skills, and affect. We conclude with a
vision of how BioCS1 might most usefully – and feasibly –
evolve in the future.

2. BIO/CS BACKGROUND
This effort rests on the shoulders of at least a decade-long
foundation of collaborative Biology and CS education. Each
discipline's futurists foresee deeper links with the other [1,4]; for
the moment, bioinformatics dominates the collaboration.
Bioinformatics-specific courses [24,25] and programs [5,9,10,11]
abound.

In the above-cited curricula, however, the disciplinary merge
follows students' introductions to the fields. Indeed, this late-
curriculum convergence grows appropriately from the specialized
subsets of CS and Bio that make up bioinformatics. Other efforts
tend to take sides: they offer either biologically-motivated projects
for CS students [2,3,7,8] or computational thinking for biology
students [16].
A second trend has seen introductory CS courses using biology
and genomics as motivating context [12,13]. Such efforts continue
to expand and mature [20]. In addition, there are wide-ranging
examples of introductory biology curricula that leverage
computational tools and increase students' savvy with them
[14,26]. Recent examples build with or from biology to span data-
analysis skills important for all scientists [6,17]. Importantly, such
efforts are not so new that all have succeeded [21]!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’10, June 26–30, 2010, Bikent, Ankara, Turkey.
Copyright 2010 ACM 978-1-60558-820-9/10/06...$10.00.

Perhaps Wellesley's BiSc303 course [24] is most similar to the
course described here: it is also co-taught – in Python – by a
biologist and computer scientist with a significant capstone
project. Yet BiSc303 is an advanced elective for majors of both
disciplines; to our knowledge, there do not exist other
introductory courses that interweave biology and computer
science topics at a depth and breadth sufficient to fully support
majors of either discipline -- either separately or in combination.
Indeed, since Bio1 and CS1 are well-established curricula, a
single-semester, full-fledged combination might seem impossible.

Yet contextualized CS has shown, compellingly, that adding more
to CS1 is possible with no reduction in students' CS skills and
knowledge. In fact, students' interest and performance can increase
appreciably [23]. This work takes the next step: we hypothesize
that a peer, Biology1, can succeed as a context for CS1.
Symmetry dictates that we are making an equally strong statement
about Biology1's use of a CS-based context! It is only the CS-
themed venue that prompts the first formulation.

But why BioCS1? After all, a contextual peer is a far greater
burden. Off-the-shelf contextualized curricula presume that an
instructor will quickly pick up the context necessary to motivate
the material [22,23]: this does not hold for Biology. On the other
hand, we believed that the following advantages of
interdependence would outweigh our discomfort at losing
independence:

1. students' equal or better mastery of CS1 & Bio1 skills
2. students' application of crossdisciplinary thinking
3. students' increased appreciation of both fields
4. students' increased freedom in subsequent courses

The next section summarizes our curriculum; the results then
highlight points 1-3, above. Although point 4 will require more
time to measure, the final section peeks ahead toward possible
futures for Biology/CS collaborations.

3. CURRICULUM AND STUDENT WORK
The setting for this curricular experiment is the BioCS1 class at
Harvey Mudd College in fall '09. Twenty-eight first-year students
joined this pilot offering, comprising two lectures and a two-hour
closed lab per week. This structure is identical to our CS 1 and
Bio1 courses, except that Bio1 replaces lab with a recitation
section. As we encourage pair-based programming and problem-
solving except on exams, we felt that BioCS1's closed labs could
adequately serve in lieu of recitation sections, as well.

We took pains to ensure that Biology and CS had equal footing
throughout the course. A biologist presented the Monday's lecture
each week; the second lecture, by a CS professor, connected a
fundamental computational idea with Monday's topic. For the
weekly assignments, students applied that computational idea in
order solve, model, or explore two to five biological challenges.
Python was the computational currency of most of these student
homework assignments. We used both a popular biology text [18]
and an in-house CS monograph.

Figure 1 presents an overview of our course's material, its
integrated presentation as five modules, and a small subset of
student homework. Introductions to data and functions offer an
opportunity to develop intuition about the alien environment of
cell biology: "Do proteins in water feel more like people in a
sandbox or people in a ballpit?" The sizes of nucleotide-space (4n,

big) and protein-space (20n, bigger) are explored computationally,
and CS1's traditional assignment exercising conditionals and user-
interaction evolved from Rochambeau to Hydro-chambeau, in
which students wrote programs to reason about molecules'
hydrophobicity based on their biochemistry.

Figure 1. Summary of BioCS1's syllabus, biological and
computational topics, and a small subset of student work [0]

Crucially, not all topics are integrated across the two disciplines.
They diverge in module 2, where assembly-language
programming and circuit-design are presented with photosynthesis
and electron transport chains. Yet even there each lecture forges
higher-level connections, e.g., modularity and composition among
the building blocks from which all circuits, metabolic or synthetic,
arise. Though we never had more than one such problem per
week, Figure 2 shows HW problem #4 of week 5, a rare example
in which no programming is used at all.

Figure 2. This screenshot shows problem 4 of homework 5 in
BioCS1. Not all coursework uses both Biology and CS.

The focus shifts from monomer to polymer in module 3, with
imperative programming growing out of module 2's low-level
computation. Loop-and-counter idioms, in turn, allow students to
implement transcription and translation, Bio and CS's most
ubiquitous shared topics. More nuanced biological understanding
then motivates more sophisticated computational applications:

tracking open reading frames (ORFs) despite introns and exons
and determining gene presence via the expected lengths of ORFs.

Module 4 departs from our traditional CS1 curriculum to exploit
the opportunity to build skills and intuition in algorithm design.
We emphasize the use-it-or-lose-it strategy that recursively - and
exponentially - compares solutions in the case that the input's first
element is used and the case in which it is not used. As CS
education terminology is not standardized here, Figure 3 provides
an example of student-written code from week 8's closed lab.

 Figure 3. An example of use-it-or-lose-it problem solving by a
student with no CS/programming background before BioCS1.
This Python code here is unaltered from week 8's submitted
version except that its spacing has been slightly compressed.

Students also write such exponential solutions for global sequence
alignment and minimum-energy RNA folding (the latter with a
graphical interface using Python's turtle package). Because the
course is also Biology1, they leverage their programs to draw
conclusions about phylogenetic relationships. Also, the frustrating
slowness of their solutions does more than any CS lecture to
motivate the speedups available through memoizing calls. That
approach, in turn, prompts 2d data structures, students'
implementation of Conway's Game of Life, and its extension to
modeling ommatidia (eye-facet) development in Drosophila
through lateral inhibition and state-change.

The final module runs concurrent with three medium-sized
capstone projects from which the students choose. An HIV-
modeling option stretches students' data-structure familiarity and
extends 2d cellular automata; a gene-finding project builds
module 4's small exercises into full-organism analysis and
classification: speed is of the essence! A robot-building and
programming option ties module 2's low-level computation into
module 5's systems biology emphasis. As lectures present the
sensing, signaling, and methylation-based adaptation of flagellar
chemotaxis, students implement analogous phototaxic behaviors
on a hand-built robot. Module 5's computational lectures segue
from the efficiencies of memoization to complexity and several
examples of uncomputability.

Topic Tradeoffs What did BioCS1 lose relative to Bio1 and
CS1? Its students did miss a great deal: compression, image-
manipulation, writing the DFT to analyze sounds, Markov-text
generation, the Mandelbrot set, a web-based TextClouds project,
and a Connect-4 tourney, to name a few from CS1. Population
biology, some innovations in laboratory techniques, and some
context of biological breakthroughs were also postponed. Yet
rather than focus on such "losses," we feel BioCS1's curriculum is
a win for both Bio and CS because it adds to the corpus of
examples with which each field can engage its students.

3.1 Laboratory Sessions
The course offers students a regularly-scheduled closed lab. Most
weeks, lab is a low-pressure setting in which to review biological
concepts while gaining confidence with the Python required to
investigate the week's homework. Because our Biology1 course
does not offer wetlabs, neither does BioCS1. Yet we did
intersperse many "drylab" activities with which we sought hands-
on computational metaphors to reinforce BioCS1's primary
theme: life computes. Figure 4 highlights these.

Figure 4. Nonprogramming lab activities in BioCS1. (L-R):
FoldIt, Avida-Ed, enzyme kinetics plots, Logisim. Below, we

describe our Arduino-based physical circuit construction.
Within this sequence of closed labs, we identified two
opportunities for which hands-on, physically embodied
computation seemed particularly appropriate:

• To reinforce module 2's ideas of modularity and composition
in biological and artificial computation, we wanted students
to build simple physical circuits from logic gates -- and then
put those circuits to use in a tabletop light-seeking task.

• When presenting the chemical basis for single-celled
organisms' volition in module 5, we hoped students could
physically model the directed random walks produced by
changes in flagellar rotation.

Certainly we could have provided an off-the-shelf circuit-building
kit for the former lab and a prebuilt robot to support the latter final
project option. Yet distinct hardware platforms each require their
own, often significant, learning curve. More importantly, using a
separate tool for each project unnaturally hides an insight
common to real biological and real computational systems: the
layers of abstraction that make such complex systems possible.
Although we might argue their relative sophistication, the
hierarchy that creates ecosystems from elements and the one that
creates Google from gates share all the challenges of modularity,
interdependence, and staggering depth.

Thus, we opted to explore single electronic tangibles that might
scale through the term. Seeking simplicity, ease of Python
programmability, and low cost, we settled on Figure 5's Arduino-
based materials for these two physical-computation labs. As a
result of this decision, the 13 students opting to implement a
phototaxic model of bacterial behavior did so via their own hand-
built robot platforms. Step-by-step guidance on these materials
and running the labs appears with the complete course at [0].

These BioCS7 hardware resources had an immediate impact on
our simultaneously-running introductory CS course: students in
CS1 also wanted to gain experience with physical circuit
construction and control. To meet that demand, we hastily
scheduled five completely optional two-hour labs. Because these
sessions attracted 73 attendees from CS1's 190 students, these
hardware labs will become an official part of CS1 in the future.

Figure 5. [top] Light-lab subprojects showing the components
used, including circuit composition in the one-bit adder at left,
LED outputs in students' "hypnotizers," top right, sensing via
a photoresistor, and actuation through a continuous-rotation
servomotor (lower right). [bottom] Parts and prices of those
labs' materials, along with Cookiebot, one of 7 final-project

robots, and two generations of a student's HIV-modeling CA.

4. EVALUATION AND RESULTS
Ultimately, it is student development that determines the success
or failure of crossdisciplinary efforts such as this. That is, can
students in BioCS1 exhibit both CS skills and Biology skills to the
extent that peers in CS1 & Bio1 can?

Figure 6. Comparison of identical CS exam questions and
near-identical Biology questions. Highlighted in bold are the
differences significant at the t < .05 level: circuit design and
enzymes. In both of these cases we note that BioCS's much

richer experience did not appear in the assessment.

Shared CS and Bio work We placed three identical
computational questions on the CS1 and BioCS1 final exams. We
also compared nearly-identical questions between Bio1 homework
problems and BioCS1 hw/exam questions. Figure 6 summarizes
the performances of each cohort. Only two differences significant
at the t < .05 level emerged: circuit-building and enzyme/inhibitor
analysis. In the latter case, Bio1 students submitted a take-home
assignment, but the BioCS1 students answered a question on a
timed exam – the delivery may have contributed to the
differences. Although future coursework will elucidate these data,
Figure 6's similarities especially encourage us because those CS
questions were far less biological than BioCS1's coursework and
because BioCS1's students were all first-years, but Bio1 had only
sophomores or beyond.
Additional skills In the same breath as Figure 6's comparisons,
we should point out that BioCS1 students developed and
exercised a set of skills above and beyond CS1 or Bio1 students.
In fact, the curriculum of BioCS1 comprises only about 80% of
CS1 and 80% of Bio1: the module on algorithmic development
comes in lieu of CS1's equal-sized module introducing OO
programming. The system-biology module similarly replaces
three weeks of population biology in Biology1. The most
meaningful assessment of such incommensurate differences will
come from our tracking of student work in future courses.

Affective outcomes Particularly at our school, where students
do not choose a major until their second year, course choice offers
an important barometer of student affect. That 21 of the 28
students in BioCS1 chose to take the now-underway BioCS2
course offers a strong, if not unanimous, vote of confidence in the
BioCS1 experience. In fact, interviews revealed that 6 of the 7
students headed elsewhere switched not from dissatisfaction with
BioCS1, but from rapidly developing interests in other disciplines.
Anonymous feedback reinforced this message, including "labs are
awesome" and "I like how bio and cs are so closely linked." First-
offering jitters also showed, however: "sometimes the integration
of bio and cs seems a bit forced or unrealistic" and "rethink and
unify terminology."
Workload We sought to layer Biology and CS in the low-
overhead spirit of many contextualized CS offerings, but we only
almost succeeded in keeping workload consistent. Figure 7
summarizes anonymous surveys from CS1 and BioCS1 students,
all of whom share courseloads. (The sophomore schedules of Bio1
students are different.)

Figure 7. Student-reported workload data from CS1 and

BioCS1 had differences significant at the t < .05 level. Lecture
pace and perceived difficulty, slightly higher, did not differ
significantly from those of the control group, all first-years.

Confounding factors Placement is one confounding factor we
have wrestled with: all BioCS1 students opted to take the course,
but only most of the CS1 students did: 22 of the 50 interested in
BioCS1 were placed into CS1 for lack of space. In both CS1 and
in BioCS1 a subset of students arrived with some computational
background and a larger subset had none (whereas almost all of
both groups did have high-school biology). Yet we do not know
the relative sizes of those subsets.

Conclusions We feel that even the most conservative conclusion
we might draw – that students must choose BioCS1 to succeed in
it – opens exciting and largely unexplored opportunities for the
computational education of coming generations of scientists.

5. PERSPECTIVE
As with any initial offering, this BioCS1 course did have its rough
edges! We believe those transient effects do not detract from the
course's primary message: that full-fledged crossdisciplinary
collaborations can succeed as CS1 contexts. Conversely, the
evidence suggests that CS can also succeed as a context for
introductory biology. We plan to offer a smoother-edged BioCS1
with twice as many students in Fall 2010. In addition, we are
tracking 2009's students through CS, Biology, and other academic
choices they make in the next three years.

Curricular combinations such as BioCS1 help confirm that, far
from detracting from or "displacing" material, computation can
enhance the knowledge, contributions, and disciplinary-specific
thinking that Biology1 seeks to convey. We hope this effort
sparks similar peer-as-context approaches in chemistry,
engineering, mathematics, physics, and beyond. We look forward
to an era of integrative science education in which computation
can act as both an effective collaborator and an inspiring catalyst.

6. ACKNOWLEDGMENTS
The authors thank HHMI award #52006301, NSF DUE CCLI
#0536173, and Harvey Mudd College for their generous support.

7. REFERENCES
[0] Course URL: www.cs.hmc.edu/twiki/bin/view/CS6/Fall2009HW
[1] 2020 Science Group. 2005. Towards 2020 Science Microsoft.

[2] Adams, J, Matheson, S, and Pruim, R. 2008. Blasted:
integrating biology and computation. J. Comp. Small Coll. 24(1):
47-54.

[3] Beck, J, Buckner, B, and Nikolova, O. 2007. Using
interdisciplinary bioinformatics undergraduate research to recruit
and retain CS students. Proc. SIGCSE 38 ACM Press: 358-361.
[4] Board on Life Sciences. 2003. Bio 2010 Nat. Acad. Press.

[5] Bruhn, R and Jennings, S. 2007. A multidisciplinary
bioinformatics minor. Proc. SIGCSE 38 ACM Press: 348-352.

[6] Burhans, D and Skuse, G. 2004. The role of CS in
undergraduate bioinformatics education, Proc. SIGCSE 35 ACM
Press: 417-421.

[7] Cutter, P. 2007. Having a BLAST: a bioinformatics project in
CS2. Proc. SIGCSE 38 ACM Press: 353-357.

[8] D’Antonio, L. YEAR. Incorporating Bioinformatics in an
algorithms course SIGCSE Bulletin, ACM Press 35(3): 211-214.

[9] Doom, T., Raymer, M., Krane, D., and Garcia, O. 2002. A
proposed undergraduate bioinformatics curriculum for computer
scientists. Proc. SIGCSE 33 ACM Press: 78-81.

[10] Goode, E. and Trajkovski, G. 2007. Developing a truly
interdisciplinary bioinformatics track: work in progress. J.
Comput. Small Coll. 22(6): 73-79.

[11] Khuri, S. 2008. A bioinformatics track in computer science,
Proc. SIGCSE 39 ACM Press 508-512.

[12] LeBlanc, M. D. and Dyer, B D. 2004. Bioinformatics and
CC2001: why computer science is well positioned in a post-
genomic world, SIGCSE Bull., ACM Press 36(4): PAGES.

[13] LeBlanc, M. D. and Dyer, B D. 2003. Teaching together: A
three-year case study in genomics. J. of Comp. Small Coll. CCSC
Press 18(5): 85-95.

[14] McGuffee, J. 2007. Programming languages and the
biological sciences, J. of Comput. Small Coll. 22(4): 178-183.

[15] Pearce, J. and Nakazawa, M. 2008. The funnel that grew our
CIS major in the CS desert. Proc. SIGCSE 39 503-507.

[16] Qin, H. 2009. Teaching computational thinking through
bioinformatics to biology students. Proc. SIGCSE 40 188-191.
[17] Robbins, K. 2010. vip.cs.utsa.edu/classes/cs1173f2009
[18] Sadava, D., Heller, H, Orians, G, Purves, W, and Hillis, D.
Life: The Science of Biology, W. H. Freeman and Co. NY, NY.

[19] Schaub, S. 2009. Teaching CS1 with web applications and
test-driven development. SIGCSE Bull. 41(2): 113-117.

[20] Soh, L-K, et al. 2009. Renaissance computing: an initiative
for promoting student participation in comp., SIGCSE 40 59-63.

[21] Stone, J. A., Medica, D. L., and Fetsko, L. A. 2009.
Experiences with a CS1 for the health sciences. SIGCSE Bull.
41(2): 122-126.

[22] Summet, J., Kumar, D., O'Hara, K., Walker, D., Ni, L.,
Blank, D., and Balch, T. 2009. Personalizing CS1 with robots.
SIGCSE Bull. ACM Press 41(1): 433-437.

[23] Tew, A E, McCracken, W M, and Guzdial, M. 2005. Impact
of alternative introductory courses on programming concept
understanding. Proc. ICER 1 ACM Press: 25-35.

[24] Tjaden, B. 2007. A multidisciplinary course in comp.
biology. J. Comput. Small Coll. CCSC Press 22(6): 80-87.

[25] Toth, C. and Connelly, R. 2006. A bioinformatics experience
course. J. Comput. Small Coll. CCSC Press 21(6): 100-107.

[26] Wray, K.A. 2005. Perl algorithm to calculate and categorize
ϕ and ψ angles in a protein. J. Comp. Sci. in Coll. 20(5): 98-99.

