
34 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

The mechanical components that
make up robots aren’t getting much
cheaper. That’s the bad news. The good
news, of course, is that electronics and
processors continue their steady march
toward higher performance and lower
cost. As an engineer, you have to figure
out how to use the extra resources and
capabilities most effectively. In some
cases, extra processing allows you to
use lower-cost mechanical compo-
nents, which can effectively reduce
the system’s overall cost.

With this idea in mind, I’ll tackle the
robot drive train armed with a modest
amount of computing power. When I’m
done, you’ll have two different closed-
loop drive train designs that would
make R2-D2’s head spin with envy. I’ll
show you how to accomplish this
using inexpensive permanent
magnet motors and a clever feed-
back scheme that requires no
mechanical overhead. Let’s begin
by addressing the topic of motors.

MOTOR OPTIONS
Clearly, selecting a motor is one

of the most important decisions to
make when designing the drive
train. If you’ve played with motors
and gears, you’ve certainly devel-
oped the following intuition: more
gear reduction results in less speed
and more torque, and less gear
reduction results in more speed and
less torque. Modified RC servomo-
tors, which are often used in robot
drive trains, have large gear reduc-
tions (typically 300:1) resulting in
high torques and low speeds. As a

to the motor, the robot takes much
longer to stop. With less gear reduc-
tion, the robot will coast!

Sometimes stopping quickly is impor-
tant (e.g., stairs ahead), or your robot
may do something hazardous to its
health. This brings up an important
point: motors with high gear reduc-
tions stop quickly when power is
removed. But this is a silly reason to use
these motors. It’s like telling a begin-
ning driver to drive only in first gear to
avoid getting into an accident. What the
driver really needs is better driving
skills. Similarly, what you need is a
better motor controller.

CLOSING THE LOOP
A motor controller that doesn’t receive

any feedback information from the
motor is an open-loop controller.
The main advantage of open-loop
controllers is simplicity. All that’s
required is a way to control the
voltage or current going to the
motor. The Lego Mindstorms RCX
controller, for example, uses an
open-loop motor controller that
allows you to select from several
voltages (by varying the pulse-
width modulator duty cycle)
depending on how much speed and
torque you want to deliver to your
robot’s wheels.

A disadvantage of open-loop con-
trol is inaccuracy. Others include
the inability to deal with uncon-
trollable variables such as bumps
in a floor, inclines, and low batter-
ies, which can create an undesir-
able situation by slowing or stop-

Closed-Loop Motion Control for Mobile Robotics

FEATURE ARTICLE by Rich LeGrand

result, robots that use them are typically
slow. Large gear reductions make some
problems easier, as you’ll see, but no one
wants a slow robot if they can help it. If
you’ve used these motors, you might
have wanted to trade in some torque
for some speed.

The 9-V Lego motors shown in Photo 1
are readily available. They are part of
the Mindstorms kit, so you can build
the rest of your robot base out of
Legos, which is a good thing for the
mechanically challenged like me.

Fortunately, the Lego motor has
much less gear reduction (14:1) and is
well suited for attaching a wheel direct-
ly to the output shaft. If you’ve done
this, you know that you get a quick
robot, but it’s difficult to control.
Particularly, when you shut off power

Rich recently came up with two closed-loop drive train designs for mobile robots. All it took
were some inexpensive permanent magnet motors and a simple feedback scheme. In this
article, he covers everything from PID control and tuning to trajectory generation and opera-
tional space control for two robot bases. He also explains the software.

Photo 1—Lego is an excellent medium for implementing robots such as
the four-wheeled HUMR. The Gameboy Advance acts as the controller and
provides 32-bit RISC processing performance, a color LCD, and sound.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2004 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 169 August 2004 35

taken literally. A control loop typically
entails a software loop that repeatedly
executes a control algorithm. Each rep-
etition of the control algorithm is
called a control cycle. The control algo-
rithm can be described simply with the
following expressions, which are eval-
uated once per control cycle:

Basically, there is a function, f, which
determines the value to send to your
controller (VCONTROL) as a function of the
error. VMEASURED is the measured (sensed)
value, and VDESIRED is the desired (com-
manded) value. The difference between
the values is the control error. Note
that one of the simplest control meth-
ods is the bang-bang controller, which
you can find in your thermostat.

My thermostat doesn’t automatical-
ly select between heating and cooling;
it would be nice if it did. Many robots
use bang-bang controllers for their
motors. However, PID control is a
much more effective technique:

V k kCONTROL () ()
()
 = V +

V + V
PROPORTIONAL

INTEGRAL DERIVATIVEE

PROPORTIONAL P

INTEGRAL I

V = K error

V = K

k

k k

k

()

() × ()

() × error j

k

j

()

() × () −

∑

= 0

k

DERIVATIVE DV = K error k

error kk 1

error k = V k V kDESIRED MEASURED

−()

() () − ()

k

VCONTROL = Heat if error > 1

 Cool if erro

°
rr < 1

 Off otherwise

− °

error

VCONTROL

 = V V

 = f error
DESIRED MEASURED−

()

ping the motor. What’s required is a
way to sense the motion of the motor
and compensate by increasing or
reducing the power. Closed-loop con-
trollers can do both.

Closed-loop controllers are found in
all sorts of places: thermostats, cruise
control systems, and elevators just to
name a few. Almost without excep-
tion, commercial robots use closed-
loop motor control. Even the Roomba,
a $199 vacuuming robot, uses a
closed-loop motor controller.

Closed-loop control requires a method
for sensing the motor’s motion. Table 1
lists some popular methods. The method
that will work best for you depends as
much on project constraints as your pref-
erences. The majority of closed-loop
motor controllers use optical-mechanical
encoders for position feedback, but the
extra cabling and mechanical complexity
are usually worth avoiding. I chose back
EMF as a feedback method. The mechan-
ical simplicity (no mechanics) and lack
of cables make it an attractive option.

Back EMF exploits the fact that perma-
nent magnet motors are also generators.
When a motor spins, a voltage is gener-
ated across its terminals. The voltage,
referred to as the back EMF voltage, is
directly proportional to the motor’s veloci-
ty. Thus, when sensing the back EMF volt-

age with an A/D converter, for example,
you can infer the motor’s velocity. When
the voltage is integrated (summed) over
time, the position can be inferred as well.

The main disadvantage of back EMF
sensing is that the inferred position
drifts over time with respect to the
actual position because of noise in the
back EMF voltage. In practice, howev-
er, the error introduced by position
drift is small when compared to the
error introduced by wheel slippage
alone. This performance can be
obtained with a 9-V Lego motor and
robot controller from Charmed Labs,
which uses back EMF sensing.

PID CONTROL
Closed-loop motor control entails both

sensing and controlling the motor’s
motion. I have described different
sensing techniques. The general con-
sensus is that an H-Bridge with pulse-
width-modulation (PWM) is the best
method for controlling the motor. (For
more information, refer to L. Mays’s
article, “Muscle for High-Torque
Robotics,” Circuit Cellar, issue 153,
2003.) Here, a PWM signal switches an
H-Bridge to control the voltage going
into the motor and its speed. Note that
I will refer to this type of controller
throughout the rest article as a PWM

controller. Its
input will be
referred to as the
PWM value.

When combin-
ing sensing and
control in a
closed-loop con-
troller, the word
“loop” can be

Method Description Advantages Disadvantages Sources

Optical-mechanical A rotating slotted disk is placed No drift. Digital output integrates Typically expensive. Requires extra Hewlett Packard,
encoders between a light source and detector easily with digital controllers. Long cables. computer mouse

to infer position. lifetime.

Mechanical Switches are triggered by the motor’s No drift. Typically expensive. Requires extra Vishay, various
encoders motion to infer position. cables. Imposes drag. Output needs industrial vendors

debouncing. Lower speed. Shorter
lifetime.

Hall effect sensors When used with a magnet, they can No drift. Uses existing gear in gear Typically expensive. Requires extra Allegro, various
sense metallic (ferrous) gear teeth to train. ables, extra magnet, and ferrous gear. industrial vendors
infer position.

Back EMF The back EMF voltage of a motor is No extra mechanical components or Drift. Requires A/D converter and Acroname,
measured to infer velocity. cables. Typically inexpensive. extra computation to obtain position. Charmed Labs

Table 1—There are a few popular feedback methods for sensing motor motion. Back EMF sensing is often overlooked, but its advantages can be attractive to many robotics applications.

Tragectory
 generator

Endpoint

Velocity

Acceleration

+
–

PositionDESIRED Error
MotorPID

controller

VPWM

PositionMEASURED

Figure 1—A PID controller is typically used to control the velocity and position of a
motor. I’ll focus on implementing a PID position controller, which is shown here with
the trajectory generator.

36 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

The control value at time k is equal to
the sum of the proportional, integral,
and derivative terms (VPROPORTIONAL, VINTE-

GRAL, and VDERIVATIVE) at time k. KP, KI, and
KD are the PID gains, which are easily
determined through experimentation, a
process known as tuning. The PID con-
troller is popular because of its effective-
ness and relative simplicity. All that’s
required is a set of reasonable gain values.

Let’s consider the relevant problem
of controlling a motor’s position (see
Figure 1). VCONTROL becomes VPWM,
which is the PWM value sent to the
motor’s PWM controller. VDESIRED

becomes PositionDESIRED, which is the
desired position of the motor, and VMEA-

SURED becomes PositionMEASURED, which
is the measured position of the motor.

To get a feel for how the PID con-
troller works, consider the proportion-
al term by itself. If the position error
is large, so is the proportional term
and hence the resultant PWM value,
VPWM. This causes the motor to move
quickly toward the desired position.
As the motor closes in on the desired
position (as the error decreases), the
proportional term decreases, which
slows the motor. Thus, the propor-
tional term does almost all of the work.
The other integral and derivative terms
correct for problems that the propor-
tional term cannot correct by itself.
You will better understand these
terms when I cover tuning a PID loop.

TRAJECTORY GENERATION
The PID controller is designed to

get to the desired position

(PositionDESIRED) as fast as possible. If
your robot’s only speed is “as fast as
possible,” it may cause harm to you and
others. It’s often useful to specify the
speed and acceleration when command-
ing the motor controller. This is where
the trajectory generator comes in. It pro-
duces a continuous stream of positions,
or waypoints, for the PID controller to
use to regulate the motor’s motion. The
trajectory generator sits outside the
PID control loop as shown in Figure 1.

For example, a simple trajectory
generator provides constant accelera-
tion until the desired velocity is
reached. It holds this velocity until it
nears the desired endpoint position.
Next, it provides constant decelera-
tion until the endpoint is reached. This
trajectory results in the velocity profile
shown in Figure 2. It’s called a trape-
zoid trajectory because of its shape. For
simplicity, the acceleration and deceler-
ation are equal in magnitude. Figure 2

also shows the corresponding positions
associated with the velocity profile.
These positions are quickly fed into the
PID position controller, usually once
per control cycle. The idea is that the
trajectory generator provides positions
rapidly enough so the motor moves
smoothly along the desired trajectory.

Generating trapezoid trajectories is
relatively straightforward. Refer to the
Circuit Cellar ftp site for a working
implementation.

WRITING CODE
Let’s write some real code! I’m a big

fan of C++. Its class and class inheri-
tance concepts mean that I don’t have
to write as much code. And writing less
code is right up there with watching
less TV and reducing my cholesterol.

This closed-loop motor controller
lends itself nicely to a class hierarchy.
CAxesOpen is the base class and an
easy starting point. It implements an

End position

Acceleration Constant velocity Deceleration

Time

Position

Velocity

Start position

Figure 2—The trapezoid trajectory gets its name from
the shape of the velocity profile. It is used to move a
motor to a desired end-position in a controlled manner.

Listing 1—CAxesOpen and CAxesClosed form the first two classes in the motor controller class hier-
archy and a majority of the code. The complete implementation can be found on the Circuit Cellar ftp site.

#define AC_MAX_AXES 4
class CAxesOpen
{
public:

CAxesOpen(int servoAxes); // Constructor
virtual ~CAxesOpen(); // Destructor

virtual int GetPosition(int axis);
void SetPWM(int axis, int pwm);

//...
};
class CAxesClosed : public CAxesOpen
{
public:

CAxesClosed(int servoAxes, int operationalAxes=1);
// Constructor

virtual ~CAxesClosed(); // Destructor

void Periodic(); // Called once per control cycle
bool Done(int axis);

// Returns true if trajectory is finished
void SetPIDGains(int pGain, int iGain, int dGain);
void Stop(int axis); // Stop immediately
void Hold(int axis, bool val); // Hold current position
virtual void Move(int axis, // Perform trajectory move

int endPosition, int velocity, int acceleration);
virtual int GetPosition(int axis);

protected:
// Called by GetPosition()

virtual void ForwardKinematics(const int servoVal[], int
operVal[]);

// Called by Periodic()
virtual void InverseKinematics(const int operVal[], int
servoVal[]);

private:
void TrapezoidTrajectory();
void PIDControl(); (Continued)

www.circuitcellar.com CIRCUIT CELLAR® Issue 169 August 2004 37

open-loop motor controller, which
allows you to set the PWM value and
get the position of each motor axis
within a set of axes. As Listing 1 shows,
CAxesOpen is extremely simple with
its two public functions. Note that
SetPWM() accepts a signed PWM value.
It is intended that the sign of this value
determine the direction of the motor.
CAxesOpen is an easy first step, but

it isn’t very useful by itself. You need
to implement another class that closes
the loop. The closed-loop controller
class is called (not surprisingly)
CAxesClosed, and inherits from
CAxesOpen. As shown in Listing 1,
CAxesClosed is a little more com-
plex. The complete source code is
posted on the Circuit Cellar ftp site.
CAxesClosed is bigger, but it’s doing

almost all of the work in the closed-loop
control system. It implements the PID
control algorithm and the trapezoid tra-
jectory generator, and ties it all together.

Using CAxesClosed entails periodical-
ly calling Periodic() for each control
cycle from an external source. Looking at
the contents of Periodic() in Listing 2,
it makes a call to the trajectory generator
(TrapezoidTrajectory()) and the PID
controller (PIDControl()). It also makes
a call to InverseKinematics(), which
contains the kinematics of your robot
base, if applicable. CAxesClosed’s imple-
mentation of InverseKinematics()
doesn’t do anything useful, but a
derived class can override this member
function if it wishes, as you will see.

Call the Move() function when you
want your motor to move. It takes the
desired trajectory parameters as inputs
and initiates a trajectory, which will
hopefully result in the desired motion.
But, before you can move any motors,
you need to tune the PID control loop.

TUNING
You can use CAxesClosed to help

tune the PID control loop. Listing 3
provides a simple program that you
can use for tuning purposes. You
instantiate CAxesClosed with one
axis for tuning. The actual control
loop is the while loop that calls
Periodic(). The ResetTimer() and
GetTimer() functions reset and read
the timer value, respectively. The
implementations of these functions are

Listing 2—The code that implements the PID position controller (PIDControl()) is surprisingly simple.
It is called from Periodic(), which is called once per control cycle.

void CAxesClosed::Periodic()
{

TrapezoidTrajectory();
InverseKinematics(m_generatedTrajectoryPosition,
m_desiredPosition);

PIDControl();
}
void CAxesClosed::PIDControl()
{

int error, pwm;
for (int axis=0; axis<m_servoAxes; axis++)
{

if (m_trajectory || m_hold)
{

error = m_desiredPosition[axis] �
CAxesOpen::GetPosition(axis);

pwm = m_pGain*error +
m_iGain*m_errorIntegral[axis] +
m_dGain*(error � m_errorPrevious[axis]);

m_errorIntegral[axis] += error;
m_errorPrevious[axis] = error;

}
else

pwm = 0;
SetPWM(axis, pwm);

}
}

Listing 3—A simple program for tuning the PID control loop entails holding the current position. Typically,
Periodic() is called from a timer-generated interrupt service routine, which effectively makes the con-
trol loop a background process. But to simplify implementation and testing, I used a while() loop to call
Periodic() here.

#define TIMER_PERIOD 5000 // Microseconds
main()
{

CAxesClosed cAxis(1); // One axis
cAxis.SetGains(100, 0, 0);
cAxis.Hold(0, true); // Hold current position
while(1)
{

ResetTimer();
cAxis.Periodic();
while(GetTimer()<TIMER_PERIOD);

}
}

Listing 1—Continued.

int m_servoAxes, m_operationalAxes;
// Trajectory input parameters

int m_trajectoryEndPosition[AC_MAX_AXES];
int m_trajectoryVelocity[AC_MAX_AXES];
int m_trajectoryAcceleration[AC_MAX_AXES];
unsigned int m_trajectory; // True if trajectory is active

// Trajectory generator output
int m_generatedTrajectoryVelocity[AC_MAX_AXES];
int m_generatedTrajectoryPosition[AC_MAX_AXES];

// PID controller variables
int m_pGain, m_iGain, m_dGain;
int m_desiredPosition[AC_MAX_AXES];
int m_errorIntegral[AC_MAX_AXES];
int m_errorPrevious[AC_MAX_AXES];
unsigned int m_hold; // For maintaining the current position

};

38 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

platform-specific and keep the calls to
Periodic() evenly spaced in time.

The control frequency is the number
of control cycles executed per second. In
general, the higher the control frequen-
cy, the better the control. Your proces-
sor’s available bandwidth typically deter-
mines the control frequency, however.
Choose a frequency that spares enough
bandwidth for the other computing tasks
you’ve slated for your processor. Note
that calling Periodic() from within
a while loop will consume all of your
processor’s bandwidth (see Listing 4).
Periodic() is intended to be called
from within an interrupt-driven timer
routine to prevent this from happening.
Calling Periodic() from within a
while loop is much easier to imple-
ment and debug, so you can defer the
added complexity for now.

The call to Hold() before the while
loop enables the PID loop but not the
trajectory generator. In other words, it
causes the motor to hold its position.
If you try to move the motor, it will
resist. And if you manage to turn the
motor and then let go, the motor zips
back to its original position and
resumes holding its position. At least
that’s what is supposed to happen. It
only happens when the PID loop is rea-
sonably well tuned.

There is plenty of literature avail-
able regarding how to tune a PID con-
trol loop. I tuned mine by hand, which
means I determined a set of PID gains
through experimentation.

Before you begin tuning by hand, it
is useful to attach a wheel to the
motor shaft, preferably the wheel you
will be using on your robot. This
makes it easier to turn the shaft and
witness the control loop’s response.
When I said “by hand,” I meant it lit-
erally! Also, make sure the position
feedback and PWM control have the
same sign. When providing the motor
with a positive PWM value, the position
feedback value should increase as the
motor moves under its own power.
Similarly, when providing negative PWM,
the position feedback should decrease.

As mentioned earlier, the proportion-
al gain does most of the work. Tuning
should begin by adjusting this value.
Start with a small value like, say, 10
(e.g., cAxis.SetGains(10, 0, 0)).

After recompiling and running, grab
the wheel, turn it a good half turn,
and then release it. (Do this with the
wheel off the ground!) This is called

perturbing the control system, which
is a simple way of determining the
response of the PID control loop.

After releasing the motor, it should

Listing 4—CDiffBase derives from CAxesClosed and allows operational space control of a differen-
tial base by substituting its own kinematics routines.

#define DIFF_AXES 2
#define TRANSLATE_AXIS 0
#define ROTATE_AXIS 1
CDiffBase : public CAxesClosed
{
public:

CDiffBase(int rotationScale, int translationScale, int controlFreq);
virtual ~CDiffBase();
virtual void Move(int axis,

int endPosition, int velocity, int acceleration);
virtual int GetPosition(int axis);

private:
virtual void ForwardKinematics(const int servoVal[], int
operVal[]);

virtual void InverseKinematics(const int operVal[], int
servoVal[]);

int m_convNumerator[DIFF_AXES];
int m_convDemonimator[DIFF_AXES];

};
CDiffBase::CDiffBase(int translationScale, int rotationScale, int
controlFreq)
: CAxesClosed(DIFF_AXES, DIFF_AXES)

{
// Initialize scaling constants

m_convDenominator[TRANSLATE_AXIS] = translationScale;
// (ticks/meter)

m_convNumerator[TRANSLATE_AXIS] = 1000; // (millimeter/meter)
m_convDenominator[ROTATE_AXIS] = rotationScale;
// (ticks/revolution)

m_convNumerator[ROTATE_AXIS] = 6283; // 2 × pi × 1000
// (milliradians/revolution)

m_controlFreq = controlFreq;
SetGains(500, 0, 500);

}
void CDiffBase::ForwardKinematics(const int servoVal[], long
operVal[])

{ // �>> 1� is equivalent to dividing by 2
operVal[0] = (servoVal[0] + servoVal[1])>>1; // Translation
operVal[1] = (servoVal[1] � servoVal[0])>>1; // Rotation;

}
void CDiffBase::InverseKinematics(const int operVal[], int
servoVal[])

{
servoVal[0] = operVal[0] + operVal[1]; // Left wheel
servoVal[1] = operVal[0] � operVal[1]; // Right wheel

}

void CDiffBase::Move(int axis,
int endPosition, int velocity, int acceleration);

{
// Convert endPosition, velocity, and acceleration to �ticks�

endPosition = endPosition*m_convDenominator[axis]
/m_convNumerator[axis];

velocity = velocity*m_convDenominator[axis]*m_control
Freq/m_convNumerator[axis];

acceleration = acceleration*m_convDenominator[axis]*
m_controlFreq*m_controlFreq/m_convNumerator[axis];

// Execute move command
CAxesClosed::Move(axis, endPosition, velocity, acceleration);

}

www.circuitcellar.com CIRCUIT CELLAR® Issue 169 August 2004 41

at least attempt to return to its origi-
nal position. Increasing the propor-
tional gain causes the motor to return
to its original position more quickly
after being perturbed. Increasing the
gain further will eventually result in the
motor overshooting the original position
and then oscillating back and forth.
Continue to increase the proportional
gain until the motor starts to oscillate
in this manner after being perturbed.

Oscillation is more pronounced in
motors with low friction or drag.
Motors with large gear reduction tend
to have more friction and oscillate
less. The Lego motors have little fric-
tion, which makes them efficient but
more challenging to control. To reduce
the oscillation, you need to increase
the derivative gain. The derivative
gain adds velocity damping: the deriv-
ative of the error is equal in magni-
tude but opposite in sign to the motor
velocity. Thus, the derivative term
wants to slow down the motor in
direct proportion to the motor velocity.

What else slows things down in pro-
portion to velocity? Friction.
Increasing the derivative gain is like
adding friction to your motor, which
may sound like something you should
avoid. However, increasing the deriva-
tive gain does not adversely affect the
efficiency of your motor as friction
does. Go ahead and continue to
increase the derivative gain until the
oscillation is under control. If increas-
ing the derivative gain does not
remove the oscillation, the proportion-
al gain may be too high. Try reducing
the proportional gain, setting the deriva-
tive gain to zero, and starting over. We
are shooting for a motor that returns to
its original position as quickly as pos-
sible and then stops (not oscillates)
after being perturbed. It’s acceptable
for the motor to overshoot the original
position slightly before coming to rest.

After the oscillation is under con-
trol, you can choose to be satisfied and
stop here, or you may want to see how
far you can push things. If so, try
increasing the proportional gain again,
which will bring the oscillations back.
Again, you can quell the oscillations
by increasing the derivative gain. You
can proceed in this manner until you
reach a proportional gain that results

in oscillations that cannot be sufficient-
ly reduced by increasing the derivative
gain. At this point, you’ve pushed
things too far. Reduce the proportional
gain and find a suitable derivative gain
that produces the desired response
after perturbing the motor.

Sometimes, friction or another dis-
turbance prevents the motor from
reaching its desired position. That’s
where the integral term comes in. It
ensures that the error will always
reach zero in the steady state. For

example, if the motor comes to rest at
a position that is relatively close to its
desired position, the error is small.
And, if the error is small, the propor-
tional term may not provide enough
PWM to move the motor the extra dis-
tance to reach its desired position. This
is likely to happen if your motor has
static friction, or if your robot’s wheels
have external forces acting on them,
such as those from an incline or hill.

Because the integral term is inte-
grating the error over time, a nonzero

42 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

error causes the integral term to grow
gradually over time. Eventually, the
integral term will become large
enough to overcome the external force
(e.g., friction or an incline). The larger
the integral gain, the faster it over-
comes the external force. But bear in
mind that a sufficiently large integral
gain can introduce oscillations to your
system. Because the Lego motors have
little static friction, I choose to set the

integral gain to zero. However, most
control systems can benefit from a
small amount of integral gain. It
depends on how much steady-state
error your motor typically experiences
and how much you are willing to tol-
erate in your system.

As I mentioned before, a higher con-
trol frequency results in better con-
trol. A higher control frequency allows
you to increase the PID gains (particu-

larly the proportional gain) for a bet-
ter, faster responding system. A con-
trol frequency of a few hundred hertz
is usually sufficient, however. When
changing the control frequency, be
sure to retune PID gains to achieve
the best response.

TESTING A SINGLE AXIS
After tuning your PID control loop,

you can fire up the trajectory genera-
tor and move your motor. This
entails calling Move() with your
desired trajectory parameters. Move()
starts the trajectory generator
TrapezoidTrajectory(). If every-
thing is working, the motor smoothly
accelerates to the desired velocity,
holds the desired velocity, and then
decelerates and stops exactly at the
desired position. Nice! You can play
with the trajectory parameters until
the motor moves to your satisfaction.
Note that it is possible to specify
velocity and acceleration values that
are beyond your motor’s capabilities.
The source code for performing the test
is posted on the Circuit Cellar ftp site.

Photo 2—The differential robot base is popular because of its simplicity. Only two motors are required. It’s usually
more intuitive to specify motion in terms of translation and rotation instead of left and right wheel motion.

Left motor Right motor

Translation

Left wheel
positive direction

Left wheel

Right wheel
positive direction

Rotation

Right wheel

www.circuitcellar.com CIRCUIT CELLAR® Issue 169 August 2004 43

You may have noticed that I have
completely ignored units so far,
which makes specifying reasonable
trajectory values difficult. (What does
a velocity of 1,000 actually mean?) I
will remedy this in the next few sec-
tions. The lack of recognizable units
in the lower levels of the control sys-
tem saves a significant amount of
computing bandwidth.

I’ve described how to implement a
complete closed-loop PID position
controller with trajectory generator
for a set of motor axes. This alone
gives you precise control of your
robot’s motors. I could stop here, but
this is where things start getting
interesting! The next sections will
integrate the kinematics of the robot
base into the control system.
Kinematics makes the robot base eas-
ier and more intuitive to control.

DIFFERENTIAL ROBOT BASE
The differential base is the classic

robot base and probably the most pop-
ular. It consists of two motors and
drive wheels, as shown in Photo 2.
Often, the base is circular and the
wheels are mounted colinearly with
the center of the base. This allows the
robot to rotate around the center of the
base, which simplifies path planning.

The differential base has two
motors and two degrees of freedom.
When thinking about its motion, you
usually think of it moving forward,
turning, moving backward, etc. In
other words, you imagine the robot
translating, rotating, or both. In gen-
eral, describing the robot’s motion in
terms of translation and rotation is
more intuitive than describing the
motion of each wheel (e.g., right
wheel clockwise, left wheel counter-
clockwise, etc.)

I call the degrees of freedom (or axes)
with which I prefer to describe motion
(translation and rotation) my operational
space. The motors themselves (left and
right wheels) make up the servo space,
or alternatively the joint space when it
applies to robot manipulators.[1]

The mathematical expressions I use
when mapping from servo space to
operational space are called the for-
ward kinematics. The forward kine-
matics for the differential base are:

where r is the wheel radius of both
wheels, and b is the distance between
them. Note that the right_wheel,
left_wheel, and rotation variables are
expressed in radians. The inverse of
these expressions, which map opera-
tional space to servo space, is called
the inverse kinematics:

Note that most robotics professionals
and scholars are accustomed to seeing
the kinematics expressions in matrix
form instead of the expanded form
shown here.

Now you’re ready to implement a
differential base controller class called
CDiffBase (see Listing 4). Most
importantly, note that CDiffBase is
derived from CAxesClosed and over-
rides InverseKinematics() and
ForwardKinematics() with its own
versions. These versions contain the
simplified differential base kinemat-
ics, which allow CAxesClosed to
convert operational space axis posi-
tions into servo space axis positions
and vice versa. As a result,
CDiffBase now accepts motion com-
mands (e.g., Move()) in terms of
translation (axis index 0) and rotation
(axis index 1), which make up its
operational space.

Let’s examine what is going on.
Assume a working implementation of
your base class CAxesOpen such that
the left wheel is axis index 0 and the
right wheel is axis index 1. Next in
the hierarchy, CAxesClosed calls
InverseKinematics() from within
Periodic() (see Listing 2).
InverseKinematics() takes opera-
tional space positions from the trajec-
tory generator as inputs and outputs
the corresponding servo space posi-
tions. The PID controller uses these
positions to control the position of
each motor. Note that almost all of the

left_wheel =

 rotation

right_wheel

2

r

translation
b

−

=
r

×

tation

2

b × ro
+ translation

()
translation

r right_wheel

rotation
r

b
ig

 =
 + left_wheel

 =

2

hht wheel_ left_wheel−()r

work is done within CAxesClosed.
CDiffBase is simple by comparison.

WHERE ARE THE UNITS?
When commanding your robot base,

specifying position, velocity, and
acceleration with recognizable units is
important. But what units should you
choose? In the interest of saving com-
putation, it’s a good idea to express
these units as integers instead of float-
ing point values. Thus, the units need
to provide reasonable resolution when
expressed as integers. Considering this,
I’ve chosen millimeters for translation
units and milliradians for rotation units.

To perform unit conversion,
CDiffBase overrides Move() and per-
forms conversion before passing the
arguments down to CAxesClosed (see
Listing 4). Performing unit conversion
in this manner is efficient because it
occurs once per Move() command
instead of once per control cycle.

Unit conversion for the differential
base relies on two scaling constants
(translationScale and
rotationScale), which are passed
into the CDiffBase constructor (see
Listing 4). These scaling constants are
specified in units that can be easily
determined through calibration. For
example, translationScale is spec-
ified in ticks per meter. Here, “ticks”
are the units that are passed into
CAxesClosed::Move() after unit
conversion. What are ticks exactly?
For the translation axis, they are units
of distance; for the rotation axis, they
are units of angular displacement.
Calibrating your robot base will reveal
the sizes of these units.

CALIBRATION
Calibration accurately determines

the values of translationScale and
rotationScale. Determining these
constants through calibration is usual-
ly the method that yields the most
accurate robot base.

There are lots of ways to calibrate
your base, but the freewheeling
method is probably the easiest. Run a
program that continuously prints the
positions of the operational space axes
(translation and rotation) by calling
CAxesClosed::GetPosition().
While running this program, record

44 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

the translation value that is being
printed. Roll the robot in a straight
line for 1 m, and record the transla-
tion value again. Subtracting the two
values will yield the number of ticks
per meter of translation, which is
translationScale. Use the same
method to determine
rotationScale, except rotate the
robot one revolution (360°) to deter-
mine the number of rotation ticks per
revolution, which is rotationScale.
You may download an implementa-
tion of the calibration program from
the Circuit Cellar ftp site.

You may be wondering why
ForwardKinematics() and
InverseKinematics() in Listing 4
ignore r and b. Note that r and b only
serve as scaling constants for transla-
tion and rotation, you can move them
out of your kinematics calculations
and into the scaling constants
(translationScale and
rotationScale). Because you deter-
mine your scaling constants through
calibration, the values of r and b do
not need to be explicitly known. That
makes life easier!

AFFORDABLE HUMR
In the previous section, I covered

implementing an operational space
differential robot controller. Although
a differential base is simple, it only
has two degrees-of-freedom. This limi-
tation, for example, makes it impossi-
ble to translate in a particular direc-
tion unless the wheels are oriented in
that direction. In other words, a differen-
tial robot needs to turn or rotate before
it can head in a particular direction.

A robot that is confined to a plane
(e.g., the floor) has three degrees of
freedom at most. These are commonly
represented as two translation degrees
of freedom (x and y) and rotation, as
shown in Figure 3. In the field of
mobile robotics, a robot with three
degrees of freedom in a plane is consid-
ered holonomic. The differential base,
for example, is lacking a degree of free-
dom and is considered nonholonomic.

Why is a holonomic robot useful?
Holonomic robots can accelerate in
any direction at any time, which
makes them highly maneuverable and
surprisingly easy to control. Consider

a simple example of moving to a spe-
cific goal location. A differential robot
must first turn toward the goal before
it moves toward it. A holonomic robot
simply heads straight toward the goal
(no turning required), which is simpler
and typically faster.

There are many different holonomic
robot designs, but probably the sim-
plest consists of independently driven
omnidirectional wheels (see Photo 1).
Omnidirectional wheels, or “omni-
wheels,” have passive rollers evenly
distributed along the outside periphery
of the wheel. The rollers provide the
omniwheel with an extra degree of
freedom that permits the wheel to
move orthogonally (sideways) with
respect to the regular wheel motion.
I’ll refer to this extra degree of freedom
as the minor axis of the omniwheel.
The major axis is the degree of free-
dom regularly associated with wheels.
When a motor is attached to an omni-
wheel, the minor axis remains passive
and the major axis becomes powered.

It is often the case that a robot will
have as many motors as degrees of free-
dom. When the number of motor axes
exceeds the number of degrees of free-
dom, the system is underconstrained.
The Holonomic Underconstrained
Mobile Robot (HUMR) has four omni-
wheels, which is one more than is neces-
sary for holonomic motion (see Photo 1).
The four-wheeled HUMR has the
advantage of increased power and accu-
racy as well as simplified kinematics
and Lego construction.

As with the differential robot base,
the servo space of the HUMR provides
an unintuitive operational space. But,

more importantly, because the base is
underconstrained, it’s possible for the
wheels to fight each other in a sort of
tug-of-war. The operational space con-
troller prevents this while providing
intuitive control.

HUMR CLASS AND KINEMATICS
Figure 3 shows the four wheels and

motors of the HUMR base, which are
numbered zero through three. The
arrows indicate the positive motion
direction of each motor. The inverse
kinematics, which is fairly easy to
derive using vector math, provide the
motion constraints required for our
underconstrained system. Deriving the
forward kinematics may seem tricky
because there are four wheels
(knowns) and three operational axes
(unknowns), but the HUMR’s simple
right-angle geometry makes it possible
to derive these expressions by inspec-
tion. Forward kinematics are as fol-
lows:

Inverse kinematics are as follows:

where r is the wheel radius, and b is
the distance from any wheel to the
center of the robot.

The implementation of HUMR class
CHumrBase is similar to CDiffBase.
CHumrBase, like its sibling, only
requires two scaling constants: one for
the translation axes
(translationScale) and one for the
rotation axis (rotationScale). As
before, you can move the r and b
terms out of the kinematics expres-

wheel r

wheel r

 0 =
 + b rotation

 1 =
x b rotatio

− ×()

− × nn

 2 =
 b rotation

 3 =
x + b rot

()

− ×()

− ×

wheel r

wheel r
aation()

y

y

x
r wheel

y
r wheel

rotatio

 =
 1 wheel 3

 =
 0 + wheel 2

2

2

−()

−()

nn
r wheel wheel wheel

 =
 0 + 1 + 2 + wheel 3− ()

4b

Wheel 0

Wheel 1

Wheel 2

Wheel 3

b

Rotation

y

x

Figure 3—Only three omniwheels are required for
holonomic motion, but four omniwheels (shown here)
provide more power and accuracy. When equipped with
9-V Lego motors and 4-cm (diameter) omniwheels, the
HUMR has a top speed of 50 cm/s and a top accelera-
tion of 200 cm/s2.

www.circuitcellar.com CIRCUIT CELLAR® Issue 169 August 2004 45

Listing 5—The InverseKinematics() routine implements Frisbee mode by rotating the x- and y-
axes. By embedding different mathematical expressions in InverseKinematics(), all sorts of differ-
ent and interesting modes are possible.

void CHumrBase::ForwardKinematics(const int servoVal[], int
operVal[])

{
operVal[X_AXIS] = (servoVal[1] - servoVal[3])>>1;
operVal[Y_AXIS] = (-servoVal[0] + servoVal[2])>>1;
operVal[ROTATE_AXIS] =

(-servoVal[0] - servoVal[1] - servoVal[2] - servoVal[3])>>2;
}
void CHumrBase::InverseKinematics(const int operVal[], int
servoVal[])

{
int cosRotation, sinRotation, rotation;
int diffRotOperVal[2], diffOperVal[2];
if (m_frisbee)
{

rotation = GetPosition(ROTATE_AXIS); // Get rotation angle
cosRotation = CosLut(rotation);
sinRotation = SinLut(rotation);

// Calculate velocity (compute difference)
diffOperVal[X_AXIS] = operVal[X_AXIS] -
m_prevOperVal[X_AXIS];

diffOperVal[Y_AXIS] = operVal[Y_AXIS] -
m_prevOperVal[Y_AXIS];

// Rotate x and y axes and scale down by shifting right by 10
diffRotOperVal[X_AXIS] = (diffOperVal[X_AXIS]*cosRotation +

diffOperVal[Y_AXIS]*sinRotation)>>10;
diffRotOperVal[Y_AXIS] = (-diffOperVal[X_AXIS]*sinRotation +

diffOperVal[Y_AXIS]*cosRotation)>>10;
// Add to new position

m_newOperVal[X_AXIS] += diffRotOperVal[X_AXIS];
m_newOperVal[Y_AXIS] += diffRotOperVal[Y_AXIS];

// Save for next iterration
m_prevOperVal[X_AXIS] = operVal[X_AXIS];
m_prevOperVal[Y_AXIS] = operVal[Y_AXIS];

}
else
{

m_newOperVal[X_AXIS] = operVal[0];
m_newOperVal[X_AXIS] = operVal[1];

}
servoVal[0] = -m_newOperVal[Y_AXIS] - operVal[ROTATE_AXIS];
// Wheel 0

servoVal[1] = m_newOperVal[X_AXIS] - operVal[ROTATE_AXIS];
// Wheel 1

servoVal[2] = m_newOperVal[Y_AXIS] - operVal[ROTATE_AXIS];
// Wheel 2

servoVal[3] = -m_newOperVal[X_AXIS] - operVal[ROTATE_AXIS];
// Wheel 3

}

sions and into the scaling constants to
minimize the computation (see Listing 5).
Furthermore, I recommend that the
scaling constants be determined through
the freewheeling calibration process.

EXPENSIVE FRISBEE
One of the more impressive results

of holonomic motion is the ability to
rotate while translating in a straight
line. I call this Frisbee motion because
it resembles the motion of, well, a
Frisbee. However, if your robot simply

translates along its x-axis while rotat-
ing, for example, it will go in a circle,
not in a straight line. This is because
the x- and y-axes are always pointing
in the same direction with respect to
the robot. When the robot rotates, so
do the axes. In order to move in a
straight line, you need to rotate the
translation axes in the opposite direc-
tion with respect to the robot’s rota-
tion. Rotating the x- and y-axes
entails a simple application of sine
and cosine with respect to the robot’s

46 Issue 169 August 2004 CIRCUIT CELLAR® www.circuitcellar.com

rotation angle:

Implementing this functionality can
be easily accomplished by embedding
these expressions in the
InverseKinematics() function (see
Listing 5). Note that
ForwardKinematics doesn't need to
be changed for now because it doesn't
affect the HUMR’s motion. I’ve intro-
duced a new variable called m_fris-
bee into InverseKinematics,
which, when set, rotates the x- and y-
axes with respect to the rotation angle
and enables Frisbee motion. It
assumes that you have a reasonably
efficient means of obtaining the sine
and cosine of the rotation angle,
which is specified in milliradians. The
CosLut() and SinLut() functions
employ a look-up table of sine and
cosine values scaled (multiplied) by
1,024 to make integer multiplies accu-
rate. Scaling the results back down
(dividing by 1024) is accomplished by
right-shifting the results by 10 bits.
The implementations of SinLut(),
CosLut(), the rest of CHumrBase, and
the video clips of Frisbee motion are
posted on the Circuit Cellar ftp site.

Your implementation of Frisbee
mode allows you to change the rota-
tion angle however you wish without
affecting the direction of motion. Aside
from being cool to look at, Frisbee
mode can be useful when a sensor on
top of the robot needs to pan back and
forth, for example. I’m sure you can
think of other modes that are useful for
whatever you want your robot to accom-
plish. Or, you may want to experiment
with a different operational space.
Implementing these ideas only requires
modifying the kinematics routines.

IMPROVED PERFORMANCE
I’ve covered quite a bit a ground in

this article: PID control, tuning, trajecto-
ry generation, and operational space con-
trol for two different robot bases. I have
implemented a class hierarchy that
makes constructing closed-loop opera-
tional space controllers straightforward
and applicable to practically any robot
base. And I have accomplished this
with software that consumes only a

′ () × () ×
′ −

x rotation rotation

rotatio

 = x + y

y =

cos sin

sin nn rotation() × () × x + cos y

modest amount of computing power.
For your next robot or motion-control
project, keep these ideas and methods
in mind. Your robot will thank you
with greatly improved performance! I

SOURCES
Omnidirectional wheels
Acroname, Inc.
(720) 564-0373
www.acroname.com

Xport 2.0 and Xport Robot Controller
Charmed Labs
(201) 444-7327
www.charmedlabs.com

Mindstorms Robotics Invention
System
Lego Co.
+45 79506070
www.lego.com

Gameboy Advance and Gameboy
Advance SP
Nintendo of America, Inc.
(800) 255-3700
www.nintendo.com

RESOURCE
Vector math, www-2.cs.cmu.edu/
~pprk/physics.html.

Rich LeGrand has 10 years of experi-
ence in robotics and multimedia sys-
tems. When he’s not tuning PID loops
by hand, he works at Charmed Labs,
which provides advanced embedded
technologies for consumer and educa-
tional use. He holds a B.S.E.E. and
B.A.C.S. from Rice University and an
M.S.E.E. from North Carolina State
University. Rich has authored domes-
tic and international patents for holo-
nomic robot control. You can reach
him at rich@charmedlabs.com.

PROJECT FILES
To download the code, go to ftp.circuit
cellar.com/pub/Circuit_Cellar/2004/169.

REFERENCE
[1] O. Khatib, “A Unified Approach to

Motion and Force Control of Robot
Manipulators: The Operational
Space Formulation,” IEEE Journal
Robotics and Automation, RA3,
1987.

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2004/169
http://www-2.cs.cmu.edu/~pprk/physics.html
http://www.acroname.com
http://www.charmedlabs.com
http://www.lego.com
http://www.nintendo.com

