
4. Low-Level Functional Programming

4.1 Introduction

In the previous chapter, we saw how to use various functions over information structures
defined in chapter 2. The emphasis in the previous chapter was to develop high-level
thinking about working with such structures. The functions with which we worked were
assumed to be built into rex. However large a repertoire of functions is provided in a
functional language, there will usually be some things that we’d like to do that can’t be
captured in a manner that is as readable or as efficient as we might like. In the current
chapter, we show how to write custom definitions of functions.

4.2 List-matching

Now we illustrate list decomposition using matching within a definition. Consider the
form

[F | R]

(read F “followed by” R). This form represents a pattern or template that matches all, and
only, non-empty lists. The idea is that identifier F matches the first of the list and
identifier R matches the rest of the list. We can test this by trying a definition:

rex > [F | R] = [1, 2, 3];
1

The 1 (for true) indicates that the definition was successful. We can check that identifiers
F and R are now bound appropriately, F to the first element of the list and R to the rest of
the list:

rex > F;
1

rex > R;
[2, 3]

A definition of the form

identifier = expression;

will always succeed, but it is possible for a definition involving list matching to fail. For
example,

rex > [F | R] = [];
0

98 Low-Level Functional Programming

Here the definition fails because we attempt to match [F | R] against the empty list.
Such a match is impossible, because the empty list has no elements, and therefore no first
element. In a similar way, an attempt to apply functions first or rest to the empty list
results in an error:

rex > first([]);
*** warning: can't select from null list []

rex > rest([]);
*** warning: can't take rest of null list []

Extended Matching

The list-matching notation may be extended to extract an arbitrary number of initial
elements of a list. For example, to extract the first, second, and third elements:

rex > [F, S, T | R] = [1, 4, 9, 16, 25, 36];
1

As before, the 1 indicates the definition succeeded. We can check that the correct
identifications were made:

rex > F;
1

rex > S;
4

rex > T;
9

This time, however, R is bound to the portion of the list after the first three elements:

rex > R;
[16, 25, 36]

When we match using the vertical bar | we can do so only if it is the last punctuation
item in a match template. For example, the following attempted match is syntactically ill-
formed.

[F | R, S, T] = [1, 3, 9, 16];

rex would report this as a syntax error. On the other hand, the bar would not be used if we
wanted to match a list with an exact number of elements:

rex > [F, S, T] = [1, 3, 9];
1

Low-Level Functional Programming 99

We must get the number right however, or the match will fail.

rex > [F, S, T, X] = [1, 3, 9];
0

Also, using an identifier twice with the same left-hand side will fail unless it happens that
both occurrences would get bound to the same value.

rex > [F, F, S] = [1, 3, 9];
0

The above match failed because it is ambiguous whether F is getting bound to 1 or 3.

rex > [F, F, S] = [1, 1, 9];
1

The above match succeeded despite there being two definitions of F, because both
definitions are the same. This style is nonetheless regarded as awkward and should be
avoided.

We mention these points not because they are so essential in what we will be doing, but
because they help further emphasize that = is definition, not assignment. The difference is
admittedly subtle: assignment presupposes a memory location containing a value;
definition merely identifies a value with an identifier, but there is not necessarily any
memory location. So assignment can be treated as definition, if desired, by making sure
the location has a value before any use of its value and by not re-assigning the value once
established.

Matching in Lists of Lists

The idea of binding variables by matching a template to a list extends naturally to lists of
lists. For example, consider the template

[[A, B] | X]

This would match a list of at least one element, the first element of which is a list of
exactly two elements. In other words, the only lists it would fail to match would be the
empty list and a list that did not begin with an element that is a pair. Let’s test this idea
using rex:

rex > [[A, B] | X] = [[1, 2], 3];
1

rex > A;
1

rex > B;
2

rex > X;
[3]

100 Low-Level Functional Programming

rex > [[A, B] | X] = [1, 2, 3];
0

We see that the match failed in the last attempt; the list does not begin with an element
that is a pair.

Exercises

5. •• For all possible pairs of pattern vs. list below, which patterns match which lists,
and what bindings are defined as a result of a successful match? For those pairs that
don't match, indicate why.

patterns lists

[F | R] [1, 2, 3]

[F, S | R] [1, [2, 3]]

[F, S, T] [[1], 2, 3]

[[F], S] [1, 2 | [3]]

[[F, S] | R] [[1, 2], 3]

[F, S, T | R] [1, 2, [3, 4]]

6. •• For the patterns above, give a word description for the lists that they match.

7. ••• Give an algorithm for determining whether a pattern matches a list. It should be
something like the equality checking algorithm.

4.3 Single-List Inductive Definitions

In chapter 2 we mentioned the fundamental list-dichotomy: A list is either:

• empty, i.e. has no elements, or

• non-empty, i.e. has a first element and a rest

A great many, but not all, low-level definitions are structured according to this
dichotomy. In defining a function that takes a list as argument, we:

• Define what the function does on the empty list.

• Define what the function does on a typical non-empty list.

Low-Level Functional Programming 101

Typically in the second case, the non-empty list is expressed in terms of its first and rest:
[F | R]. The definition in the second case would generally use the function's value for
the argument R to define the value for argument the larger argument [F | R]. This type
of definition is called inductive or recursive. The difference between these two terms is
primarily one of viewpoint. In inductive definitions, we think in terms of building up
from definitions on simpler structures to definitions on the more complex ones, while in
recursive definitions, we think in terms of decomposing a complex structure into simpler
ones.

Let’s consider the definition of the function length that returns the length of its list
argument. Using the list-dichotomy, we must say what length does with an empty list.
The obvious answer is to return 0. We express this as a rewrite rule:

length([]) => 0;

It is called a rewrite rule because whenever we see length([]) we can just as well
rewrite it as 0. The symbol

=>

is read "rewrites as". Thanks to the idea of referential transparency, we are evaluating the
expression for a value, not for an effect. This rule is called the basis of the induction,
since it does not convert to an expression involving length.

The other part of the dichotomy is a non-empty list. We express this using the generic
form [F | R]. What is the length of a list of this form. The answer is it is 1 more than the
length of R. So we give a second rule:

length([F | R]) => length(R) + 1;

Again this is a rewrite rule because whenever we see length(L) where L is a non-empty
list, we can effectively replace it with length(R) + 1 where R is the rest of the list.
Because this rule appeals to the definition of length for its final value, it is called the
induction rule rather than the basis.

For example, length([2, 3, 5, 7]) is replaceable with length([3, 5, 7]) + 1. By
continuing this replacement process, using one of the two rules each time, and evaluating
the final result as a sum, we can a number that is the actual length of the list. This result is
called irreducible, because it contains no further function applications that could be
rewritten.

 length([2, 3, 5, 7])
=> (length([3, 5, 7]) + 1)
=> ((length([5, 7]) + 1) + 1)
=> (((length([7]) + 1) + 1) + 1)
=> ((((length([]) + 1) + 1) + 1) + 1)
=> ((((0 + 1) + 1) + 1) + 1)
=> (((1 + 1) + 1) + 1)

102 Low-Level Functional Programming

=> ((2 + 1) + 1)
=> (3 + 1)
=> 4

Here we have assumed that the + operator is grouped from left to right, so we can only
rewrite the + expressions when a numeric value for the left argument is known. In
evaluating the + expressions, we are assuming very simple properties. These could be
expressed more rigorously themselves using rewrite rules.

Sometimes we do not wish to see the rewrite sequence in this much detail. We use the
symbol

==>

to represent a collapsed sequence of intermediate steps. As a relation, ==> represents the
transitive closure of the relation =>, as described earlier. For example, we could outline
the major plateaus in the above derivation as:

 length([2, 3, 5, 7])

==> ((((length([]) + 1) + 1) + 1) + 1)

=> ((((0 + 1) + 1) + 1) + 1)

==> 4

Now let’s try another low-level definition, this time for the function append. Recall that
append takes two arguments, both lists, and produces the result of appending the second
argument to the first. However, in the spirit of functional programming, neither argument
is modified, so the term append is slightly misleading; nothing gets appended to the first
list in place; instead a new list is created. For example,

append([1, 2, 3], [4, 5]) ==> [1, 2, 3, 4, 5]

We are in a section on single-list definitions, yet append has two arguments. What gives?
Regardless of the number of arguments a function has, we should first look for the
possibility of using only one of the list arguments on which to apply the fundamental list
dichotomy. This argument, if it exists, is called the inductive argument. In the case of
append, the first argument rather than the second turns out to be the right choice for the
inductive one. Let us see why.

To append a list M to an empty list gives the list M. This is expressible by the a rule:

append([], M) => M;

To append a list M to non-empty list, one that matches [A | L] say, we observe that the
first element of the result list must be the binding of A. Furthermore the rest of the result
can be obtained by appending M to the shorter list L, which is the rest of the original list.

Low-Level Functional Programming 103

This works out perfectly, in that the parts we get by decomposing the original list are
exactly what we need to construct the new one.

append([A | L], M) => [A | append(L, M)];

We can check this by a specific example: In evaluating

append([1, 2, 3], [4, 5])

we see how the arguments, or actual parameters, of the expression match up to the
formal parameters of the rule:

 actual parameters
 ↓ ↓
append([1, 2, 3], [4, 5])
 ↑ ↑ ↑
 ↓ ↓ ↓
append([A | L], M) => [A | append(L, M)];
 ↑ ↑ ↑

 formal parameters

Formal parameter A matches the first element 1 of list [1, 2, 3]. Formal parameter L
matches the rest of that list, [2, 3]. Formal parameter M matches the entire list [4, 5].
When we rewrite, or replace the expression with the right-hand side of the rule, the
formal parameters carry their values along and the expression that results is constructed
from those values:

[A | append(L, M)]

becomes

[1 | append([2, 3], [4, 5])]

simply by substituting the value of each variable for the value itself. In the computer
science literature, this type of rewriting is sometimes called the copy rule or beta
reduction. Rewriting is certainly more complicated to describe than it is to use. Once we
have worked through a number of examples, its use should come fairly naturally. Note
that the idea of matching formal and actual parameters is not very language specific;
some variation of this idea occurs in most computer languages, although not all languages
support decomposing lists by pattern matching.

Continuing the above example, we are thus left with another expression containing
append. Hence another rewrite is requested, this time with a different set of actual
parameters. The process of rewriting continues until we get to apply the first rule for
append, which leaves us with no further instances of append to be rewritten.

 append([1, 2, 3], [4, 5])
=> [1 | append([2, 3], [4, 5])]
=> [1 | [2 | append([3], [4, 5])]]

104 Low-Level Functional Programming

== [1, 2 | append([3], [4, 5])]
=> [1, 2 | [3 | append([], [4, 5])]]
== [1, 2, 3 | append([], [4, 5])]
=> [1, 2, 3 | [4, 5]]
== [1, 2, 3, 4, 5]

Here the == steps just recall that these are two ways of writing equivalent expressions.
The main difference between this series of rewrites and the earlier length series is that
these construct a list from outside in, whereas length constructs a number.

What would have happened had we chose to use the second argument instead as the
induction variable? The basis would still have been okay:

append(L, []) => L;

However, there is a snag when we get to the induction rule:

append(L, [A | M]) => ??

There is no elegant way to use the constructs we have here to achieve the result. The
single element A does not start the desired resulting list. Being able to recognize the
correct variable for induction is a skill that will develop as we do more exercises.

A confusion often held by newcomers is the difference between the following two
expressions:

append(L, M) vs. [L | M]

The expression on the right produces a new list starting with L as an element of the result
list. This element does not have to be a list, although it could be if the result is going to be
a list of lists. In contrast, the expression on the left always needs a list for L and the
elements of L, not L itself, are elements of the result list. Now let’s see what happens if
we use the right-hand expression in place of append in one of the preceding examples.

rex > [[2, 3, 5, 7] | [11, 13]];
[[2, 3, 5, 7], 11, 13]

This is quite different from what append produces, a list of six elements:

rex > append([2, 3, 5, 7], [11, 13]);
[2, 3, 5, 7, 11, 13]

4.3 Rules Defining Functions

In the previous section, we presented two rules for the function append that creates a new
list having the elements of the second argument appended to the first:

Low-Level Functional Programming 105

append([], M) => M;
append([A | L], M) => [A | append(L, M)];

A question that is proper to ask is in what sense does a set of rules define a function? For
the case of append, we can answer this question using the same reasoning that leads to
the construction of the rules in the first place: append is a function on the set of all lists if
it prescribes a correct rewriting for all pairs of lists. Examination of the rules reveals that
the second argument plays a very minor role: It is never decomposed. The only thing that
is required is that it be a list, in order that the first rule make sense when that argument is
returned as the result (the result is supposed to be a list). So we can focus on the first
argument, the inductive one.

An arbitrary list is either the empty list or a non-empty list. The space of all lists is
exhausted by these two possibilities. The case of the first argument being empty is
handled by the first rule, and the other case, an infinite set of possibilities, is handled by
the second rule. This reasoning leads us to conclude that there will never be a pair of lists
for which no rule is applicable. This is certainly a good start toward defining a function.
Furthermore, for a given pair of lists, only one rule is applicable; there is never ambiguity
as to which rule to choose. So this tells we have at least a partial function.

But there is another issue in establishing that the rules give us a function. What we have
argued above is that there will always be a rule for a given pair of lists. We haven’t
shown that, once we apply the rule, the ensuing series of rewrites will always terminate.
In the case of append, here is the way to show termination: Notice that if the first rule
applies, no expression in need of rewriting is introduced. This is the basis of the
definition. In other words, for a list of length 0, the rewrite series will terminate. Next
consider the case of a non-empty first argument. We see that the length of the argument
of append on the right-hand side is one less than the length on the left-hand side, thanks
to having taken away the first element A of the first list. In other words, every application
of the second rule effectively shrinks the first argument by one, figuratively speaking
(because we are not modifying the actual argument in any way). Thus, no matter what
length we start with in that argument, it will keep shrinking as further rule applications
occur. But when it shrinks to length 0, i.e. the empty list, it can shrink no further. The
first rule then applies and rewriting terminates.

What we have just described is a narrative version of an inductive argument, or proof by
induction. More succinctly, it could be captured as follows:

Claim:
For every finite list L, append(L, M) produces a terminating sequence of
rewrites.

Proof:
(Basis): For L being [], append([], M) generates a terminating
rewrite sequence, since there are no further rewrites according to the first
rule.

106 Low-Level Functional Programming

(Induction Step): Assume that append(L, M) generates a terminating
rewrite sequence. Consider the case of an argument one longer,
append([A | L], M). According to the second rule, the continuation of
the rewriting sequence is based on the sequence for append(L, M). This
sequence terminates by assumption, therefore the sequence for
append([A | L], M) also terminates, it being one step longer.

We will not go through such proofs for most of the functions to be presented. However, it
is important that the reader get comfortable with the logic of the proof, in order to be able
to construct sound sets of rules.

4.4 Lists vs. Numbers

Some of our functions involve lists, some involve only numbers, and some, such as
length, involve combinations of both. A useful viewpoint for reasoning is that natural
number (numbers in the set {0, 1, 2, 3, …}) can be thought of as special cases of lists.
Consider an arbitrary element, say •. Then the number n can be thought of as a list of n of
these elements. For example,

0 is []
1 is [•]
2 is [•, •]
3 is [•, •, •]

…
Representing numbers in this way is sometimes called the 1-adic representation. This is,
no doubt, the representation for numbers used in the stone age (think of each • as a stone).
We are not proposing a return to that age for actual calculation, but we do suggest that
this analogy provides a basis for reasoning about numbers and for analogies between
various functions. For example, if the function append is restricted to lists of stones, then
it becomes the addition function.

A very important theory, known as recursive function theory, starts out by defining
functions on natural numbers in this very way. While we do not intend to make explicit
use of recursive function theory in this book, the ideas are useful as exercises in creating
rule sets, so we pursue it briefly. Recursive function theory typically starts with a
successor function, which in list terms would be defined by one rule:

successor(L) => [• | L];

In other words, successor adds one to its argument. We can then define addition by using
successor and recursion. But rather than showing an argument lists as [A | L], we would
show it as L+1. (Since all elements of the list are the same, the identity of A is
unimportant.) The definition of add would be presented:

Low-Level Functional Programming 107

add(0, N) => N;

add(M+1, N) => add(M, N) + 1;

The M+1 on the left is another form of pattern matching available in rex, and can be
viewed as a direct translation of append specialized to lists of one type of element:

append([], N) => N;

append([• | M], N) => [• | append(M, N)];

On the right-hand side, the +1 indicates application of the successor function.

Reasoning about such definitions typically uses induction, in the same way we reasoned
about append. This style of definition is used to build up a repertoire of functions. For
example, having defined add, we can then define multiply:

multiply(0, N) => 0;

multiply(M+1, N) => add(multiply(M, N), N);

Reasoning that add and multiply are functions for all natural numbers is essentially the
same as reasoning that append terminates.

Defining subtraction in this way is a little tricky. If you don’t believe me, try it before
reading on. We start with a simpler function, predecessor. Informally, the predecessor
of a number is the number minus 1, but since 0 has no predecessor in the natural
numbers, we make its predecessor 0 for sake of convention and completeness. Likewise,
we define subtract, when the first argument is smaller than the second, to be 0. This is
known in the literature as proper subtraction. In the spirit of building up definitions from
nothing but successor, we can’t appeal to a comparison operator yet.

predecessor(0) => 0;

predecessor(M+1) => M;

Now we can define subtract using the second argument as an induction variable:

subtract(M, 0) => M;

subtract(M, N+1) => subtract(predecessor(M), N);

Actually, we could use a different set of rules and bypass predecessor:

subtract(M, 0) => M;

subtract(0, N) => 0;

subtract(M+1, N+1) => subtract(M, N);

108 Low-Level Functional Programming

However, this rule set is trickier since it uses two induction variables simultaneously.
Doing so can be more error-prone unless you have a very clear idea of what you are
doing.

Note also the following point about the second set of subtract rules: This is our first set of
rules where there was overlap between the applicability of the rules. In particular,
subtract(0, 0) could invoke both the second and the first rules. Fortunately in the
present case, the result is the same either way. In order to avoid possible
misinterpretations in the future, and to actually make rule definitions simpler, we adopt
the following convention:

rex rule-ordering convention:

In rex, the rules are tried in top-to-bottom order. The first applicable rule
is used, and subsequent rules, while they might have been applicable on
their own, are not considered if an earlier rule applies.

As a simple example where this makes a difference, consider defining a function
is_zero that tests whether its argument is 0:

is_zero(0) => 1;
is_zero(N+1) => 0;

Under the rule-ordering convention, we could have used:

is_zero(0) => 1;
is_zero(N) => 0;

since the second rule will never be used if the argument is 0, thanks to the rule-ordering
convention. Similarly, define non_zero:

non_zero(0) => 0;
non_zero(N) => 1;

Having defined subtract, we can define less_than_or_equal (for natural numbers):

less_than_or_equal(M, N) => is_zero(subtract(M, N));

We can define equality in many ways, for example using rex’s argument matching
capabilities:

equal(M, M) => 1;
equal(M, N) => 0;

The second rule is valid only by virtue of the rule-ordering convention; two different
variables can be bound to the same value.

Low-Level Functional Programming 109

If this type of matching were not available, we could still construct an equality predicate
in other ways, e.g.

equal(M, N) => non_zero(multiply(less_than_or_equal(M, N),
 less_than_or_equal(N, M));

In other words, two numbers are equal if, and only if, each is less than or equal to the
other.

Convention: Henceforth, we will use the typical symbols for the functions we have
defined, rather than their “spellings”, e.g. + instead of add, * instead of multiply, <=
instead of less_than_or_equal, == instead of equal, etc. Keep in mind that the built-in
- is ordinary signed subtraction, rather than proper subtraction as defined above.

Exercises

1 • Give rules that define the function zero that invariably returns the result 0.
Similarly, show that for any number you can name, e.g. five, one_thousand,
etc., you can define a function that invariably returns that number, without
actually using the number directly in the definition.

2 •• Give rules that define the function power that raises a number to a power, using
multiply and recursion. For example, power(2, 3) would ultimately rewrite to
8.

3 •• Give an inductive argument that shows that the rules given for length establish a
function on the set of lists.

4 ••• Define rules that define the function superpower that bears the same relation to
power as power does to multiply. For example, superpower(2, 3) ==> 16 and
superpower(2, 4) ==>65536.

5 •••• Continuing in the above vein, we could define supersuperpower ,
supersupersuperpower, and so on, ad infinitum. Give rules for a three-argument
function that effectively takes the number of “super”s as a first argument and
applies the corresponding function to the remaining arguments. The function you
have defined is a version of what is commonly known as “Ackermann’s
function”.

4.5 Guarded Rules

One purpose in preferring a sequential list of rules to a single comprehensive rule is
clarity and readability. In some cases, however, clarity is best served by conditioning the

110 Low-Level Functional Programming

applicability of a rule on other than the form of the arguments. The concept of a guard is
useful to provide this additional clarity. A rule is guarded if it has the form

lhs => guard ? body;

format of a guarded rule

Here guard ? body is an expression for the rhs as before. The question-mark separator is
what distinguishes this form. Both guard and body are terms that can ultimately rewrite
to values. The rule as a whole is called a guarded rule. The meaning of a guarded rule is
as follows:

The rule is considered applicable only if the arguments match as before,
and then only if the value of guard ultimately rewrites to 1 (true). In this
case the lhs rewrites to the value of body.

If the condition of applicability does not hold, then the rule is unusable and we must
appeal to later rules to rewrite a given term. Note: the rule ordering convention is still in
effect; a later rule is applied only if all previous rules don’t apply.

An example of guarded rules occurred in our first rex example, the function for testing
whether a number is prime. Here is another example.

Euclid's Algorithm

Euclid's algorithm is an algorithm for finding the greatest common divisor (gcd) of two
natural numbers. The rules are:

gcd(0, Y) => Y;
gcd(X, Y) => X <= Y ? gcd(Y-X, X);
gcd(X, Y) => gcd(Y, X);

Euclid's Algorithm

The second rule is guarded, using the <= (less than or equal) operator of rex. By
convention, the third rule, which contains no guard, is applicable only if the first two
rules are not applicable, i.e. only in the case that X is not 0 and X is greater than Y.

There are ways to speed up the computation, e.g. by using the operator % (remainder or
modulus). This amounts to repeated subtraction, in place of division.

Let us trace the rewrite behavior of these rules on a test case, gcd(18, 24). Since 18
factors into 2*3*3 and 24 factors into 2*2*2*3, we can anticipate the result will be 2*3 =
6.

Low-Level Functional Programming 111

gcd(18, 24) ==>
gcd(6, 18) ==>
gcd(12, 6) ==>
gcd(6, 12) ==>
gcd(6, 6) ==>
gcd(0, 6) ==>
6

Why does Euclid’s algorithm work? The rationale for the algorithm is based on two
observations:

The actual greatest common divisor of the two arguments never changes.

Each time one of the second or third rules is applied, one of the arguments will
soon decrease.

The first fact is due to some reasoning about division: If a number Z evenly divides both
X and Y, and X <= Y, then Z also divides Y - X. So if the first rule becomes applicable, we
see that Y is the greatest common divisor, since it is obviously the largest divisor of both
Y and 0.

The second fact may be seen from the rule structure: If X <= Y, (and X is not 0, otherwise
the first rule would have been used) then Y - X is clearly less than Y. On the other hand, if
X > Y, then, based on the third rule, the second rule will be tried with X and Y reversed.

Because one of the arguments is bound to decrease and stop at 0, we have that the term
will eventually be reduced to a case where the first rule applies, i.e. Euclid’s algorithm
always terminates.

Exercises

1 ••• Continue the development of recursive function theory by defining the following,
using guards where it is helpful:

mod(M, N)

is the remainder after dividing M by N (use the convention that mod(M, 0) is 0. (In
rex, mod(M, N) is available as M % N, also read “M modulo N”, or “M mod N”.)

div(M, N)

is the quotient obtained by dividing M by N (again with div(M, 0) defined to be
0). (In rex, div(M, N) is available as M / N.)

2 ••• Show how Euclid’s algorithm can be “sped up” if mod were available as a
primitive function.

112 Low-Level Functional Programming

4.6 Conditional Expressions

Although not absolutely essential due to the rule notation, for convenience rex allows the
Java language notation for conditional expressions:

C ? A : B

is an expression that has the value A if C rewrites to a number other than 0, otherwise the
value is B. This is an extension of the guard idea, providing an immediate alternative in
case the guard is false, rather than requiring resolution through another rule. Although the
same effect can be achieved with guards and additional rules, the conditional expression
is a self-contained unit. As an example, an alternative set of rules for gcd would be

gcd(0, Y) => Y;
gcd(X, Y) => X <= Y ? gcd(Y-X, X) : gcd(Y, X);

4.7 Equations

As noted in the previous chapter, rex supports the notion of defining functions by
equations as well as rules. By an equation, we mean a single expression that captures all
cases. While it would certainly be adequate to give a single rule instead of an equation,
using an equation has a signal of finality about it: there will be no further rules defining
this function. Also, in terms of the rex implementation we provide, an equation will
execute more efficiently since there will be no pattern-matching superstructure. Finally,
the handling of equations vs. rules is different in the interactive environment provided: If
an equation for a function is re-entered, it will be taken as a re-definition, whereas if a
rule for a function is re-entered, it will be taken as an additional rule, rather than as a
replacement.

Typically, conditional expressions are used to simulate what would have been separate
rules. For example, a single equation defining gcd of the previous section would be:

gcd(X, Y) = X == 0 ? Y : X <= Y ? gcd(Y-X, X) : gcd(Y, X);

4.8 Equational Guards

The rex language allows a guard to consist of an equation that binds a variable to a value
for use in the expression that follows. Such variables are used in the rhs in the same way
any lhs variable would be used. A basic equational guard takes the form:

Var = Expression,

The meaning of this equation is that Var is bound to Expression. This simple form of
equational guard always succeeds. However, equational guards that involve "matching"
might not, as will be explained momentarily.

Low-Level Functional Programming 113

The main use of the simple form of equational guard above would be to give a name to
the value of a complicated expression, for one of the following purposes:

• to avoid multiple evaluations of the expression, even though its value
is used multiple times:

f(X) => Y = sqrt(X), g(Y, Y);

Here sqrt is supposed to be a function that is relatively expensive to
evaluate.

• to document the meaning of the expression by giving the variable a
descriptive name:

f(X, Y) => First_Vowel = find(vowel, X),
 g(First_Vowel, Y);

Here the expression on the rhs of the equation for First_Vowel could
have been substituted directly as the argument of g. However, then the
documentary aspect of the name would be lost.

• to redefine the scope of variable X, which gives an
argument variable a value different from the one it had in the function
call. This can be used to provide "wrappers" for expressions that we
wish to leave intact but for which we don't wish to use the given
argument variables.

f(X, Y) => X = g(X, Y), X*Y;

Here the X used in expression X*Y is not the argument X, but rather the
value of g(X, Y).

Equational guards can involve binding multiple variables in a single equation
through the use of the list notation.

[X, Y, Z] = [1, 2, 3],

is a guard that binds each of X, Y , and Z simultaneously. If the result of an
evaluation is a list, then this type of guard can be used to select elements from the
list, in the manner used in argument pattern matching:

[X, Y, Z] = g(W),

means that g(W) is expected to return a list of three elements, and the variables on
the lhs get bound to these elements. Here is one place an equational guard can

114 Low-Level Functional Programming

fail: If the list returned does not have exactly three elements. In general, a match
must be possible with the lhs and the list returned. Similarly,

[X, Y | Z] = g(W),

matches a list with at least two elements. Variable Z is bound to the list after the
first two elements.

Equational guards may also be cascaded:

lhs1 = Expression1, lhs2 = Expression2, …, lhsN = ExpressionN,

If any of the left-hand sides fails, the guard is considered to have failed, in which case rex
will try the next rule, if there is one. If there are no more rules, then the function returns a
distinguishable failure value. When other functions operate on such values, they typically
return failure values themselves.

Example – Computing mod from first principles

One way to compute the mod or remainder function is as follows:

mod(0, K) => 0;

mod(N+1, K) => mod(N, K)+1 == K ? 0 : mod(N, K) + 1;

Here we define mod by induction on the first variable, basing the value of mod(N+1, K)
on the value of mod(N, K). The unpleasant part of this definition is that potentially the
rhs sub-expression mod(N, K)+1 must be computed twice. A way to avoid this would be
to introduce a variable, say R, to stand for the value of mod(N, K)+1 then use the value of
R a second time if necessary. The following alternate set of rules accomplishes this:

mod(0, K) => 0;

mod(N+1, K) => R = mod(N, K)+1, (R == K ? 0 : R);
 ↑

 equational guard defining R

The use of equational guards provides a style found in mathematically-oriented texts. It is
often convenient to introduce variables to stand for large expressions. So the text would
read:

Let R = … some expression… .

Then later on either the text or another expression can use R to represent the value of that
expression.

A similar style often used in writing is "… R …, where R = … some expression… ".
Both forms are especially convenient when R is referred to more than once. Some

Low-Level Functional Programming 115

programming languages provide a let construct or a where construct to achieve the same
end. The construct letrec ("let recursive") is also used when the variable is defined
recursively in terms of itself.

4.9 More Recursion Examples

As much as possible, we would like to use powerful concepts such as recursion to
simplify our work. When a problem involves structures such as lists and numbers that can
be arbitrarily large, often the only reasonable way to get a handle on the problem is to
deal with simple cases directly, and deal with the general case by breaking it down into
simpler cases that we have assumed can be handled. The tool of recursion can work like
magic in the hands of the knowledgeable. Therefore, the recursion manifesto is

Let recursion do the work for you.

We applied this principle in several previous examples, but it is time now to really
exercise it

Range: Creating a List

The function range synthesizes a list from two numbers, M <= N. Specifically,

range(M, N) yields [M, M+1, …, N].

If M > N, the result is specified to be the empty list. Rules that define range are:

range(M, N) => M > N ? [];

range(M, N) => [M | range(M+1, N)];

Scale: Transforming a List

Suppose we wish to multiply each element in a list of numbers by a constant K, returning
a new list. A function scale is to be devised such that scale(K, L) is this new list. Here
we let recursion work for us, by decomposing into the empty and non-empty list cases
and only coding the scaling of the first element in the latter.

scale(K, []) => [];
scale(K, [A | L]) => [K*A | scale(K, L)];

116 Low-Level Functional Programming

Illustration:

scale(3, [7, 5, 2]) =>
[21 | scale(3, [5, 2])] =>
[21, 15 | scale(3, [2])] =>
[21, 15, 6 | scale(3, [])] =>
[21, 15, 6 | []] =>
[21, 15, 6]

Note: The philosophy of "functional programming" (which is what we do
in rex) is that we never modify lists in place. We only create new lists,
possibly out of existing lists. But the original list remains intact as long as
needed.

We mention the above philosophy explicitly, as it is quite possibly foreign, depending on
the manner to which one is exposed to programming.

The Map Functions

In the previous chapter, we showed an alternate definition of scale, which used map.
But how would map be defined from first principles? It is essentially the same pattern as
scale, except that the first argument is a function, not a number:

map(F, []) => [];

map(F, [A | X]) => [F(A) | map(F, X)];

For mapping over two lists simultaneously the rules are:

map(G, [], _) => [];

map(G, _, []) => [];

map(G, [A | X], [B | Y]) => [G(A, B) | map(G, X, Y)];

mapping a function across a pair of lists

The presence of two basis cases allows us to deal with the case where the lists are not the
same length. As soon as one list is reduced to [], the recursion will stop, so the length of
the result will be that of the shorter of the two argument lists.

Reducing a List

Quite often we have need to compute the result of a binary (i.e. two-argument) operator
being applied to "reduce" a list to a single item. An example would be to "add up" the
elements of a list of numbers. The rules specialized to the add operator might be:

add_up([]) => 0;

Low-Level Functional Programming 117

add_up([A | X]) => A + add_up(X);

The same technique could be used for multiplying the elements of a list, or to applying
any binary function H to a list in the same pattern. We do need to specify a base value for
the case of the empty list. The general form of the rules for reducing a list using operator
H are:

reduce(_, Base, []) => Base;

reduce(H, Base, [A | X]) => H(A, reduce(H, Base, X));

reducing a list by a function H, together with a base value

This set of rules "biases" the reduction to the right, i.e. the result of

reduce(H, Base, [X0, X1, …, XN-1])

will be that of

H(X0, H(X1, …, H(XN-1, Base) …))

Horner's Rule

Consider the requirement of evaluating polynomials

a
0
*x

n
 + a

1
*x

n-1
 + … + a

n-1
*x

1
 + a

n
*x

0

where we are given a list with low-order coefficient first [a
n
, a

n-1
, …, a

1
, a

0
] and a value x.

A method that is commonly used to reduce the number of multiplications is to evaluate
the polynomial using the following scheme, known as Horner’s Rule:

(…((a
0
*x + a

1
)*x + … + a

n-1
)*x + a

n

This has the computational advantage of not computing the large powers separately.
Instead they are folded into the multiply-add’s that have to be done anyway. This elegant
scheme is concisely represented by the following rex recursion:

horner(X, []) => 0;

horner(X, [A | L]) => A + X * horner(X, L);

118 Low-Level Functional Programming

Principle of Radix Representation

This is actually an application of Horner’s rule. Here we assume that a list represents a
radix numeral for a number, least-significant digit first. We wish to construct rules for a
function value that computes the number. The radix r representation of a number is a
sequence of digits

d
n-1

 d
n-2

 … d
2
 d

1
 d

0

where each di is in a digit in the set {0, 1, …, r-1}. The number represented by the
sequence is the value of the expression

d
 n-1

*r
n-1

 + d
 n-2

*r
n-2

 + … + d
2
*r

2
 + d

1
*r

1
 + d

0
*r

0

For example, if r = 2, we have the binary representation, where each d
i is either 0 or 1. A

numeral such as

1 1 0 1

represents the number designated by the decimal numeral 13, since

1*2
3
 + 1*2

2
 + 0*2

1
 + 1*2

0
 == 13

and

1*10
1
 + 3*10

0
 == 13

It is important to notice that the expression for the value can also be computed another
way, in a nested fashion using Horner's Rule:

((… ((0 + d
n-1

)*r + d
n-2

)*r + … + d
2
)*r + d

1
)*r + d

0

The function value will accept a list of digits [d
0
, d1

, d
2
, …, d

n-2
, dn-1

] and return the
value. It will use the Horner’s rule version of the expression. The idea is that we can
compute values of a sequence by multiplying by r the value of all but the first element of
the sequence (treated as a numeral with one fewer digit) then adding the remaining digit.
In other words, notice that the sub-expression of the above

(… ((0 + d
n-1

)*r + d
n-2

)*r + … + d
2
)*r + d

1

looks a lot like the original expression. The only difference is that the d subscripts have
been "shifted" by one position:

Low-Level Functional Programming 119

((… ((0 + dn-1)*r + dn-2)*r + … + d2)*r + d1)*r + d0
 ↑ ↑ ↑ ↑
 ↓ ↓ ↓ ↓
 ((… ((0 + dn-1)*r + … + d3)*r + d2)*r + d1

 That is,

value([d
0
, d1

, d
2
, …, d

n-2
, dn-1

]) ==

d
0 + r * value([d

1
, d

2
, …, d

 n-2
, d n-1

])

In order to set things up to apply recursion, we only need to identify the sequence
[Digit | Digits] with [d

0
, d1

, d
2
, …, d

n-2
, dn-1

] to convert this equation into a rex
rule, adding a new variable Radix for the radix:

value([Digit | Digits], Radix) =>

Digit + Radix * value(Digits, Radix);

value([], Radix) => 0;

Radix Interpretation of a list of digits, Least-significant first

Here we have added a basis rule for the empty sequence.

Let us check this with the binary numeral 1 1 0 1, which we said has a value of 13. The
list representation, least-significant digit first, will be [1, 0, 1, 1]. By the rules:

 value([1, 0, 1, 1], 2)
=> 1 + 2 * value([0, 1, 1], 2)
=> 1 + 2 * (0 + 2 * value([1, 1], 2))
=> 1 + 2 * (0 + 2 * (1 + 2 * value([1], 2)))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 2*value([], 2))))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 2*0)))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 0)))
=> 1 + 2 * (0 + 2 * (1 + 2 * 1))
=> 1 + 2 * (0 + 2 * (1 + 2))
=> 1 + 2 * (0 + 2 * 3)
=> 1 + 2 * (0 + 6)
=> 1 + 12
=> 13

Now consider the inverse function for radix conversion: Given a number, produce a list
of its digits in a given radix notation. For now, we will develop the list least-significant
digit first. We can either apply reverse to the result, or use a later technique to get the
digits in most-significant digit first order. We can find the least-significant digit by using
the integer remainder function mod: N % M is the remainder that occurs when N is divided
by M using integer division /. We can find the remaining digits by applying the same
process to the quotient of the number and the radix. We are letting recursion do the work

120 Low-Level Functional Programming

for us. We use an auxiliary function digits1 so that our function digits handles the case
0 in such a way that the result is [0] rather than an empty list. The rules are thus:

digits(0, Radix) => [0];
digits(N, Radix) => digits1(N, Radix);

digits1(0, Radix) => [];
digits1(N, Radix) => [(N % Radix) | digits1(N / Radix, Radix)];

Forming the digit list of a natural numbering a given radix

The "Radix" Principle

Although most of the computation with which we will be concerned is "digital" in nature,
we use the term "radix principle" to connote algorithmic techniques that rely specifically
on the data being representable by a series of digits, such as in radix representation. Some
algorithms rely on this fact for efficiency, while others do not. The radix principle makes
it possible to do arithmetic with reasonable efficiency. If, for example, all arithmetic were
done using tally representation, not much useful computation would get done. We already
saw how much space saving was afforded by using radix notation instead of tallies. Now
consider the time saved in doing arithmetic with a radix representation instead of tallies.
The addition of two arbitrarily-long binary numerals, represented as lists, least-
significant digit first, can be expressed using the following rules:

add_bin(X, Y) => add_bin(X, Y, 0);

add_bin([], X, Carry) => add_digit(X, Carry);
add_bin(X, [], Carry) => add_digit(X, Carry);

add_bin([A | X], [B | Y], C) =>
 Sum_Digit = (A+B+C) % 2,
 Carry = (A+B+C) / 2,
 [Sum_Digit | add_bin(X, Y, Carry)];

add_digit([], 0) => [];
add_digit([], 1) => [1];
add_digit([A | X], C) =>
 Sum_Digit = (A+C) % 2,
 Carry = (A+C) / 2,
 [Sum_Digit | add_digit(X, Carry)];

Adding two arbitrarily-long binary numerals, least-significant digit first.

The core of these rules is the function add_bin of three arguments, two sequences and a
carry bit. If one of the sequences is empty, then add_digit takes over to finish off the
addition. Otherwise there is a rule for each combination of first digits in each sequence
and for the carry. These rules produce a digit of the resulting sequence, followed by a
recursive call to add_bin with a new carry value.

Low-Level Functional Programming 121

Notice that we could, if desired, avoid using the % and / functions by enumerating the
eight different possibilities of digits for A, B, and C.

Examples of other techniques that we will study that make use of, or rely on, the radix
principle are:

Fast multiplication by the "Russian peasants' principle"

radix sort, described in Complexity of Computing

multiplexors, described in Computing Logically

barrel shifters (described in Finite-State Computing)

Fast Fourier Transform

The radix principle represents an idea that should not be overlooked when developing
efficient algorithms. Here we will show the Russian peasants' principle. Suppose we wish
to raise a number to an integer power N. The simple way to do this is to multiply the
number by itself N times. This thus requires N multiplications. A more clever way to
achieve the same end is to repeatedly square the base number, and selectively multiply
some of the results to achieve a final product. Repeatedly squaring the original number
gives us powers of two of that number. That is:

N, N2, (N2)2, ((N2)2)2, …

is the same as

N1, N2, N4, N8, …

To achieve an arbitrary power of N, say Nk, we can represent k in binary. Then we select
the powers of N to powers of 2 according to the bits in the binary representation that are
1. For example, if k were 19, its binary representation would be 10011. The

corresponding powers of N are then N16, N2, N1. When we multiply these together, we

get the desired product N16+2+1 = N19.

Fortunately, we do not have to put these powers into a list. We can simply multiply in the
ones we need as we decompose k into binary. The Russian peasants' approach, expressed
in rex, would be:

power(X, 0) => 1;

power(X, Y) => even(Y) ? power(X*X, Y/2);

power(X, Y) => X * power(X*X, Y/2);

122 Low-Level Functional Programming

where function even tests whether its argument is even or odd. The binary decomposition
of the second argument is taking place by dividing it by 2 on each recursion step.

A further example of the radix principle occurs after the following brief presentation of
sorting techniques.

Insertion Sorting a List

Arranging a list so that the elements appear in increasing order is known as "sorting" the
list. As explained above, in functional programming, the original list is not disturbed.
Instead a new list is created that has the same elements in the appropriate order. There are
dozens of ways to do it. Here are a few:

Function insertion_sort sorts a list by repeatedly inserting an element where it
belongs:

To sort an empty list, return the empty list:

insertion_sort([]) => [];

To sort a non-empty list, insertion_sort all but the first element (using recursion), then
insert the first element into its proper place:

insertion_sort([F | R]) => insert(F, insertion_sort(R));

Overall, recursion does most of the work in insertion_sort. However, we still need to
define insert.

Inserting an element into its proper place in an empty list just gives the list with one
element:

insert(A, []) => [A];

To insert an element into a non-empty list, compare the element with the first element of
that list. The resulting list starts with one or the other, and recursion takes care of
inserting the other element in the remaining list:

insert(A, [B | X]) => // note: [B | X] is assumed to be ordered
 A < B ?
 [A, B | X]
 : [B | insert(A, X)];

This is a fine example of letting recursion do the work for you.

Low-Level Functional Programming 123

Selection Sorting a List

An example of a different sort is selection_sortwhich sorts a list by repeatedly
selecting the minimum of the unsorted remaining elements and putting it next.

To sort an empty list, return the empty list

selection_sort([]) => [];

To sort a non-empty list, an equational guard comes in handy. First get a list with the
minimum as the first element, and the rest of the elements as the rest of that list. Call this
list [M | R]. Return the minimum M followed by the result of sorting R, the rest of that
list (letting recursion do that work):

selection_sort(L) =>
 [M | R] = select_min(L),
 [M | selection_sort(R)];

Function select_min is designed to work only on non-empty lists L It brings the
minimum of the list to the first position.

The minimum of a list of one element is at the first

select_min([A]) => [A];

For a list with at least two elements, retain the first element and apply select_min to the
remaining elements, then return a new list with the retained element and the first element
of the result properly ordered:

select_min([A | L]) =>
 [B | R] = select_min(L),
 (A < B ? [A, B | R] : [B, A | R]);

Merge Sorting a List

Merge sorting is another way to sort. We will show later that it has substantially fewer
rewrite steps than either of the sorts introduced prior. By "merging", we mean operation
of creating, from two sequences already in order, a longer sequence containing the
elements of both sequences. This can be done easily by examining only the first elements
of residual unmerged sequences and choosing the smaller one for output, until both
sequences have been decimated.

124 Low-Level Functional Programming

Our implementation of function merge_sort works in the following way:

To sort:

A non-empty list to be sorted is made into a list of 1-element lists. These lists are
merged together a pair at a time using merge_pairs. This gives us lists of length
at most 2. Then the process is repeated, merging pairs of those lists to get half as
many lists that are twice as long. This is done in successive stages until only one
list is left. That list is the sorted list.

To merge two lists:

If the either list to be merged is empty, return the other list.

Otherwise, compare the first elements of each list. Return a new list starting with
the smaller element and followed by the result of merging the remaining
elements.

The merge_sort function, expressed in rex, is given below:

First the initial list is transformed to a list of 1-element lists then those lists are merged
repeatedly.

merge_sort(List) = repeat_merge(map((X) => [X], List));

Function repeat_merge merges pairs in a list of lists until there is only one list left.

repeat_merge([A]) => A; // only one list left

repeat_merge(Lists) => // more than one list left
 repeat_merge(merge_pairs(Lists));

Function merge_pairs merges pairs of lists in a list until none is left. It is similar to a
map application, except that the function being mapped (merge) is called on successive
pairs from a single list rather than on pairs from two different lists.

merge_pairs([]) => []; // no more lists

merge_pairs([A]) => [A]; // only one list

merge_pairs([A, B | L]) => [merge(A, B) | merge_pairs(L)];

Function merge creates a single ordered list from two ordered lists.

merge(L, []) => L;

merge([], M) => M;

merge([A | L], [B | M]) =>

Low-Level Functional Programming 125

 A <= B ? [A | merge(L, [B | M])] : [B | merge([A | L], M)];

Below is a coarse trace of merge_sort in operation:

merge_sort([5, 1, 2, 7, 0, 4, 3, 6]) ==>

repeat_merge([[5], [1], [2], [7], [0], [4], [3], [6]]) ==>

repeat_merge(merge_pairs([[5], [1], [2], [7], [0], [4], [3], [6]
]))

repeat_merge([[1, 5], [2, 7], [0, 4], [3, 6]]) ==>

repeat_merge(merge_pairs([[1, 5], [2, 7], [0, 4], [3, 6]])) ==>

repeat_merge([[1, 2, 5, 7], [0, 3, 4, 6]]) ==>

repeat_merge(merge_pairs([[1, 2, 5, 7], [0, 3, 4, 6]])) ==>

repeat_merge([[0, 1, 2, 3, 4, 5, 6, 7]]) ==>

[0, 1, 2, 3, 4, 5, 6, 7]

Radix Sorting a List

We conclude the set of sorting examples with a method based on the radix principle. For
this method, we assume that the numbers are non-negative integers. Sorting is based on
comparing bits of the numbers, from lowest to highest. As splitting and regrouping is
done for each bit, the numbers remain sorted on lower-order bits. Sorting is complete
after the numbers are regrouped on the highest order bit.

// To sort, we sort based on the number of bits,
// from lowest order to highest

radix_sort(L) = radix_sort(0, numBits(L)-1, L);

// Sort on the Ith bit, then on the remaining bits

radix_sort(I, N, L) = I > N ? L : radix_sort(I+1, N, split(I,
L));

// split the list into two based on the Ith bit,
// then append the results

split(I, L) = append(drop((X)=>bit(I, X), L),
 keep((X)=>bit(I, X), L));

// bit(I, X) gives the I-th bit of X

bit(I, X) = I == 0 ? X%2 : bit(I-1, X/2);

126 Low-Level Functional Programming

// find the maximum number of bits across all numeral in list

numBits(L) = ceilLog2(reduce(max, -Infinity, L));

// find the number of bits required to represent a numeral

ceilLog2(N) = N == 0 ? 0 : 1 + ceilLog2(N/2);

Further discussion of sorting methods appears in the chapter on Computational
Complexity.

Exercises

Wherever possible, adhere to the recursion manifesto in the following:

1 • Give a set of rules for a function that computes the list of squares of each of a
list of numbers. (This could be done with map, but do it from scratch instead.)

2 •• Give a set of rules for computing the sum of a list of numbers; for computing
the product of a list of numbers. (This could be done with reduce, but do it
from scratch instead.)

3 •• Using your function days_of_month constructed in an earlier exercise, give
rules for the function total_days that takes as an argument a list of months and
returns the sum of the days in those months.

4 •• Give a set of rules for computing the average of a list of numbers (use 0 for the
average of an empty list).

5 •• Indicate two different ways to compute the sum of the squares of a list of
numbers.

6 •• Give rules that define the function flip, that operates on lists, and exchanges
successive pairs of elements. If there is an odd number of elements, the last
element is left as is. For example:

flip([1, 2, 3, 4, 5, 6, 7]) ==> [2, 1, 4, 3, 6, 5, 7]

Suggestion: Use a rule that matches on the first two elements, rather than just
one:

flip([A, B | L]) => … ;

7 ••• Give rules for the function at_least that tells whether a list has at least a
certain number of elements. For example:

Low-Level Functional Programming 127

at_least(3, [1, 2, 3]) ==> 1

at_least(3, [1, 2]) ==> 0

Avoid counting all of the elements of the list. This is unnecessarily inefficient
for large lists.

8 ••• Like the previous problem, except at_most.

9 •• The function select has the property of selecting the Ith element of a list, I >=
0, or returning the value of a special parameter Other if there is no such element
(the list is not long enough). That is,

select(I, [X0, X1, …, XN-1], Other) ==> XI if I < N

select(I, [X0, X1, …, XN-1], Other) ==> Other if I >= N

Give a set of rules for select.

10 •• The function find_index has the property of computing the index of the first
occurrence of a given element within a list. If there is no such occurrence, -1 is
returned. For example,

find_index('d', ['a', 'b', 'c', 'd', 'e']) ==> 3
find_index('a', ['a', 'b', 'c', 'd', 'e'] ==> 0
find_index('g', ['a', 'b', 'c', 'd', 'e']) ==> -1

Give a complete set of rules for find_index.

11 ••• Give rules for a function remove_duplicates that removes all duplicates in a
list. For example

remove_duplicates([1, 2, 1, 3, 1, 2, 3]) ==> [1, 2, 3]

12 •• Give rules for a function that gives the value of a list representing the 2-adic
representation of a number, least-significant digit first, using the digits 1 and 2.

13 ••• Give rules for a function that gives the list representation of a number in 2-adic
form, least-significant digit first.

14 ••• Give rules for a function that produces the list of prime factors of a natural
number. For example

factors(72) ==> [2, 2, 2, 3, 3]

15 •• Using functions above, give rules for a function that produces the unique prime
factors of a natural number. For example

128 Low-Level Functional Programming

unique_factors(72) ==> [2, 3]

16 •• Give rules for the function subst that makes substitutions in a list. Specifically,
subst(A, L, R) returns a new list that is like list L except that whenever A
would have occurred as a member of L, R occurs instead.

17 •• By adding an extra argument, and assuming integer functions mod and div,
generalize the function add_bin to a function that adds in an arbitrary radix.

18 ••• Devise a function that will multiply two numbers represented as a list of bits,
least-significant-bit first. Notice that this function has some advantage over the
standard multiplication function found in most programming languages, namely
that it will work for arbitrarily-large numbers.

19 ••• Sometimes we use numeral systems of mixed radix. For example, in referring to
time within a given month, we could use expressions of the form D:H:M:S for
days, hours, minutes, and seconds. H ranges from 0 to 24, M from 0 to 59, and S
from 0 to 59. To compute the number of seconds from the start of the day
corresponding to a given time, we'd compute:

S + 60*(M + 60*(H+24*D)).

Generalize this mixed radix computation by giving rules for a function value
that takes as arguments two lists, one giving the ranges and another giving the
ordinal numbers within these ranges. For example, in the current case we would
call

value([S, M, H, D], [1, 60, 60, 24])

20 ••• Devise a function that will divide one number represented in binary by another,
yielding a quotient and a remainder. This function should return the pair of two
items as a list. Do the division digit-by-digit, don’t convert to another form first.

21 •• The function keep takes two arguments: a predicate and a list: keep(P, L) is
the list of those items in L such that P is true for the item. For example,

keep(odd, [1,3,2,4,6,7]) ==> [1,3,7]

Provide rex rule definitions for keep.

22 •• The function drop is like function keep above, except that the items for which P
is not true are kept. For example,

drop(odd, [1,3,2,4,6,7]) ==> [2,4,6]

Provide rex rule definitions for drop.

Low-Level Functional Programming 129

23 •• The function select takes two arguments: a list of 0's and 1's and another list,
usually of the same length. select(S, L) is the list of those items in L for
which the corresponding element of S is 1. For example,

select([1,0,0,1,1,0], [1,3,2,4,6,7]) ==> [1,4,6]

Provide rex definitions for select.

24 •• Iterated function systems are used for producing so-called "fractal" images.
These entail applying a function repeatedly to an initial seed argument. Let

FN(X)

denote

F(F(F…(F(X))…))

 N applications of F

including the definition:

F0(X) = X.

Give rewrite rules for the function iterate informally defined by:

iterate(N, F, X) ==> FN(X)

25 ••• Restate the definition of Ackermann's function using iterate.

26 ••• By indefinite iteration we mean iteration that stops when some condition is
true, rather than by iterating a pre-determined number of times. The condition
for stopping is best expressed as a predicate, say P. Give the rewrite rules for a
function

iterate(P, F, X)

defined to compute

Fn(X)

where n is the least value of N such that P(FN(X)) == 1.

27 ••• Give the rules for a function that transposes a matrix represented as a list of
lists. Your function can assume that each "row" of the matrix has the same
number of elements without checking. You might, however, wish to construct a

130 Low-Level Functional Programming

separate function that checks the integrity of the matrix. Check your definition
carefully and show that the types match up.

28 ••• Referring to the previous problem, if you understand matrix addition and
multiplication, construct functions that carry out these operations.

29 •••• If you understand matrix inversion, construct a function that carries out this
operation.

30 •• Show how to use enumeration to define the function radix without using the %
and / functions.

4.10 Accumulator-Argument Definitions

Consider the problem of specifying a function that can reverse a list, for example:

reverse([1, 2, 3]) ==> [3, 2, 1]

The newcomer will typically try to approach this problem inductively by creating
something like:

reverse([]) => []; // not recommended

reverse([A | L]) => append(reverse(L), [A]);

While this pair of rules does achieve its purpose, it is clumsier than necessary when it
comes to execution by rewriting. This clumsiness translates into taking much longer in

execution. This particular rule set requires a number of rewrites proportional to n2/ 2 to
reverse a list of length n, whereas it is possible to do it in rewrites proportional to only n.
Here’s an illustration for a list of length 4:

 reverse([1, 2, 3, 4])
=> append(reverse([2, 3, 4]), [1])
=> append(append(reverse([3, 4], [2]), [1])
=> append(append(append(reverse([4]), [3]), [2]), [1])
=> append(append(append(append(reverse([]), [4]), [3]), [2]), [1])
=> append(append(append(append([], [4]), [3]), [2]), [1])
=> append(append(append([4], [3]), [2]), [1])
=> append(append([4 | append([], [3])], [2]), [1])
=> append(append([4 | [3]], [2]), [1])
=> append(append([4, 3], [2]), [1])
=> append([4 | append([3], [2])], [1])
=> append([4, 3 | append([], [2])], [1])
=> append([4, 3 | [2]], [1])
=> append([4, 3, 2], [1])
=> [4 | append([3, 2], [1])]
=> [4, 3 | append([2], [1])]
=> [4, 3, 2 | append([], [1])]
=> [4, 3, 2 | [1]]

Low-Level Functional Programming 131

=> [4, 3, 2, 1]

This clumsiness can be avoided by using the technique of an accumulator. An
accumulator is an “extra” argument that serves to accumulate the result. In the case of
reverse, what is accumulated is a list that ends up being the answer. For the reverse
function, the reversal of the list is accomplished by moving the elements from one list to
another. They are thus accumulated in an order that is the reverse of the order on the
original list. We use a two-argument function reverse, then define a one-argument
version in terms of it. In the first rule, when the original list is empty, we return the
accumulated last:

reverse([], R) => R;
 ↑ ↑

 accumulator argument the accumulator is returned

In the second rule, when the list is non-empty, we continue with the rest of the list and
accumulate the first of the list on an already-started list:

reverse([A | L], R) => reverse(L, [A | R]);
 ↑ ↑

 accumulator argument the accumulator accumulates

Let us verify that this results in far fewer rewriting steps for the previous list example:

 reverse([1, 2, 3, 4], [])
=> reverse([2, 3, 4], [1])
=> reverse([3, 4], [2, 1])
=> reverse([4], [3, 2, 1])
=> reverse([], [4, 3, 2, 1])
=> [4, 3, 2, 1]

In general, using the non-accumulator definition will require a number of steps that is
about one-half the square of the number of steps in the accumulator definition. Thus
using an accumulator provides a significant saving in computation time. We shall see
how to perform such an analysis in more detail in the chapter on Complexity.

4.11 Interface vs. auxiliary functions

In order to make a one-argument reverse function, we may define it in terms of the two-
argument version presented in the previous section. The function in terms of this one by
specifying an additional argument:

reverse(L) = reverse(L, []);

We can give a description of what the two-argument reverse does: It appends the second
list to the reverse of the first. This jibes with the rule above: appending [] to the reverse

132 Low-Level Functional Programming

of the first list is exactly the reverse of the first list, since appending [] to anything
gives that thing.

To simply reverse a list, the one-argument reverse function is what we should provide
to the user. Thus it is called an interface function. The two-argument reverse is called the
auxiliary or “helper” function. This is not to say that a user would never have need for the
auxiliary itself, but this would only happen if she wanted to do a combination of reversal
and appending, which seems to be a less frequent need.

In many cases, we can build reversal into our function definitions rather than call upon
reverse after the fact. For example, it was natural to produce the digits of the radix
representation of a number least-significant digit first. If we wanted them most-
significant first instead, we could either call reverse on the result, or we could just design
the function to handle it directly using an accumulator argument. Here’s how it would
look for the radix representation. Note that we use an interface function for two purposes:
to handle the special case of argument 0, and to call the auxiliary function with [] as the
accumulator value.

digits(0, Radix) => [0];
digits(N, Radix) => digits1(N, Radix, []);

digits1(0, Radix, Tail) => Tail;
digits1(N, Radix, Tail) =>
 digits1(N / Radix, Radix, [N % Radix | Tail]);

Function digits gives the digits of the first argument represented in the radix of the
second, most-significant digit first.

Notice that the third argument of digits1 is an accumulator. As we divide the original
number successively by Radix, we are determining digits of higher powers of the radix,
that get tacked on to the left-end of the list. When the number is finally decimated
(reduced to 0), in the basis for digits1, the accumulated list is returned.

4.12 Tail Recursion

The type of recursion displayed by reverse using an accumulator, where there are no
further operations to be performed on the rewritten result, is called tail-recursion. Tail-
recursive rules have the desirable property that they reduce storage overhead resulting
from nested function calls.

Below we show the distinction using nrev to denote the “naive” first attempt at
constructing the reverse function vs. rev2 to show the version with an accumulator
argument. In rev2, there is nothing else to be done when the right-hand side returns its
result. This is tail-recursion.

Low-Level Functional Programming 133

nrev([]) => [];
nrev([A | L]) => append(nrev(L), [A]);
 ↑
 due to this call, this rule is not tail-recursive

reverse(L) = rev2(L, []);
rev2([], M) => M;
rev2([A | L], M) => rev2(L, [A | M]);
 ↑
 this rule is tail-recursive

comparative forms of list reversal, non-tail-recursive vs. tail-recursive

While tail-recursive rules are desirable for efficiency, they can be less readable unless
one is on the lookout for them. Therefore it is sometimes a good idea to have a non-tail-
recursive reference version of a function on hand if a tail-recursive version is being used.

Consider trying to give a tail-recursive formulation for factorial:

factorial(0) => 1;

factorial(N) => N * factorial(N-1);

As with the naive reverse example, there is a tendency to build-up unfinished work, in
this case multiplies, outside the principal expression being rewritten:

factorial(4) ==> 4*factorial(3) ==> 4*3*factorial(2) ==> …

The unresolved multiplications represent work to which we will have to return when we
finally get to use the first rule. How would we express this function using tail-recursion?
As it turns out, we cannot do so with only one argument: We need to add an accumulator
argument to carry the accumulated product and the original argument value as it
diminishes. This can be accomplished by using an auxiliary function of two arguments
and defining the interface function in terms of it:

factorial(N) = factorial(N, 1);

factorial(0, M) => M;

factorial(N, M) => factorial(N-1, N*M);

Here we have “overloaded” the name factorial to use it for two distinct functions, one
with one argument and the other with two arguments. Now consider evaluating
factorial(4):

factorial(4) ==>
factorial(4, 1) ==> factorial(3, 4*1) ==>
factorial(3, 4) ==> factorial(2, 3*4) ==>
factorial(2, 12) ==> factorial(1, 2*12) ==>
factorial(1, 24) ==> factorial(0, 1*24) ==>

134 Low-Level Functional Programming

factorial(0, 24) ==> 24

While the tail-recursive factorial has a cleaner evaluation sequence, its rules are more
complicated due to the introduction of a second function. These rules don’t appear to be
as natural as the original ones.

Exercises

1 ••• Construct an alternate set of rules for reduce that biases the reduction to the left,
i.e.

reduce(H, Base, [X0, X1, …, XN-1]) ==>
H(…H(H(Base, X0), X1), …, XN-1)

This function is often differentiated from the original one by calling this one
foldl (fold-left) and the other foldr (fold-right).

2 •• The function mappend combines map and append in the following way. Suppose f
is a function of one argument that returns a list for arguments drawn from a list L.
Then mappend(f, L) is the list of the values of f(A), for A in L , appended
together.

For example, if f(1) ==> [10, 11], f(2) ==> [12, 13], and f(3) ==> [14,
15], then

mappend(f, [1, 2, 3]) ==> [10, 11, 12, 13, 14, 15]

This is in contrast with map:

map(f, [1, 2, 3]) ==> [[10, 11], [12, 13], [14, 15]]

Give rules that define mappend.

3 •• Give another set of rules for the function length that computes the length of a
list. This time, use an accumulator argument so that the rules are tail-recursive.

4 ••• Using an accumulator argument, but not using explicit list reversal, give rules for
a function that converts from binary to a natural number when the binary is
represented as a list most significant digit first.

5 ••• Give rules for the function qsort (abbreviation for "Quicksort") that sorts a list
by the following recursive method:

If the list has one or no element, the result is just the list itself.

If the list has more than one element, use the first element to split the list
into two: one list of elements less than the first element, and a list of the

Low-Level Functional Programming 135

remaining elements. qsort each of those lists and append the results
together so that the ordering is correct.

Once you have your function working, replace the use of append with an
appropriate accumulator argument.

4.13 Using Lists to Implement Sets

It is common to use lists in the computer to represent sets. In order to represent a set, we
disregard order of the elements. We must also ensure that there are no duplicate elements.
The empty list [] is naturally used to represent the empty set. To add a new member to a
set, we only need use the list constructor [|]. However, we must be sure that the member
is not already present. The function member is such that member(A, S) ==> 1 if A is in
the set and 0 otherwise.

member(_, []) => 0; // since the empty set can have no member

member(A, [A | S]) => 1; // A is the first member in the list

member(A, [_ | S]) => member(A, S);

// A is not the first member, but could come later

To add a member known not to be in the set:

add_new_member(A, S) => [A | S];

To add a member in general, we use a guarded rule:

add_member(A, S) => member(A, S) ? S; // already a member, no change

add_member(A, S) => add_new_member(A, S);

To form the union of two sets, we can use a process similar to append. However, we
must take care not to duplicate any elements. We assume that there are no duplicates in
either argument set.

union([], T) => T;

union([A | S], T) => add_member(A, union(S, T));

Power Set Example

The power set of a set S is the set of all of subsets of S. Suppose we wished to give rules
for computing the power set (as a list) from a given set (list). For example,

subsets([a, b, c]) ==>

136 Low-Level Functional Programming

 [[], [a], [a, b], [a, c], [a, b, c], [b], [b, c], [c]]

The type of power, by the way, is A* → A**, since it takes a list of arbitrary things and
returns a list of lists of those things.

Below we have worked through the reasoning of this problem. Thinking inductively …

Basis: subsets([]) is [[]] since the empty set has only one subset: itself. This
gives the following rule:

subsets([]) => [[]];

Induction: How can we get subsets([A | L]) from subsets(L)?

For one thing, subsets(L) is contained in subsets([A | L]), i.e. subsets([A | L])
will be something appended to subsets(L):

subsets([A | L]) => append(subsets(L), ???);

What is missing? subsets(L) are those subsets of [A | L] that don't contain A. We
need the ones that do contain A. But these are just like subsets(L) except that A has
been added to each set.

So for ??? above we can use

add_to_each(A, subsets(L))

Now we have to define add_to_each. We can give rules for it alone, or we can recognize
that add_to_each is just a "map" application:

add_to_each(_, []) => [];

add_to_each(A, [E | S]) => [[A | E] | add_to_each(A, S)];

subsets([]) => [[]];

subsets([A | L]) =>
append(subsets(L), add_to_each(A, subsets(L)));

The first alternative eliminates the function add_to_each by using an anonymous
function in conjunction with map. Noting that

add_to_each(A, L) == map((S) => [A | S], L);

we can replace the add_to_each expression with the map expression in the second rule
for subsets.

Low-Level Functional Programming 137

A second alternative is to replace the multiple uses of subsets(L) with an equational
guard, giving us a new second rule:

subsets([A | L]) =>
 SoL = subsets(L),
 append(SoL, map((X) => [A | X], SoL));

Finally, we can get rid of the call to append by using a version of map called map_tail
that has an accumulator argument:

subsets([]) => [[]];

subsets([A | L]) =>
 SoL = subsets(L),
 map_tail((X) => [A | X], SoL, SoL);

map_tail(F, [], Acc) => Acc;

map_tail(F, [A | X], Acc) => map_tail(F, X, [F(A) | Acc]);

Exercises

1 • Trace through the series of rewrites for
union([1, 2, 3, 4], [2, 4, 5, 6]).

2 •• Give a set of rules for finding the intersection of two sets.

3 •• The difference of two sets, difference(S, T), is defined to be the elements that
are in S but that are not in T. Give a set of rules for the function difference.

4 •• Give a set of rules for testing two sets for equality, recalling that the elements
need not be listed in the same order. One possibility is to use the difference
function defined above. What other ways are there?

5 •• Define rules for a function includes so that includes(S, T) ==> 1 if set S
includes set T and includes(S, T) ==> 0 otherwise. [Hint: Use the function
difference.]

6 ••• Show that definitions for set operations can be simplified if we assume that the
elements of each list always occur in a specific order and we can test that order
between any two elements.

7 •••• Earlier we derived a way to compute the set of all pairs of elements of two sets
represented as lists. Extend this idea to a function that computes the set of all n-
tuples from a list of n sets. Calling this function tuples, we would have

138 Low-Level Functional Programming

tuples([[1, 2], [3, 4, 5], [6, 7]]) ==>

[[1, 3, 6], [1, 3, 7], [1, 4, 6], [1, 4, 7], [1, 5, 6],
 [1, 5, 7], [2, 3, 6], [2, 3, 7], [2, 4, 6], [2, 4, 7],
 [2, 5, 6], [2, 5, 7]]

Note that:

tuples([]) ==> [[]]

since there is exactly one tuple of no elements, the empty tuple. Also,

tuples([[]]) ==> []

since there are no tuples that contain an element of the empty set.

4.14 Searching Trees

Consider the problem of determining whether an element satisfying a given property
occurs in a tree. The property could entail specifying the exact identity or it could specify
some characteristic of the element. Both of these cases are subsumed by specifying a
predicate P that is satisfied exactly by the elements of interest.

This type of problem arises routinely in computer science. For example, if the tree is a
directory structure, we might want to search for a specific file or sub-directory name, or
for a file with specific ownership or permission properties, or with a last-write date
before a certain date.

Let us assume that our trees are specified as lists, with the root as the first element and its
major sub-trees as the remaining elements. For example, the following tree would be
specified as the list

[1, [2, [4], [5], [6]], [3, [7, [9]], [8]]]

1

2

4 5 6

3

7

9

8

Figure 34: A tree for searching

Low-Level Functional Programming 139

The following simple recursive algorithm searches a tree for a node with property P:

To find a node with property P in a tree:

• If the root has property P, then return 1 (for success).

• Search the sub-trees of the root until one returns 1.

• If no sub-tree has returned success, then return 0 (for failure).

Let’s cast these ideas as rex rules:

find_df(P, [Root | Subtrees]) => P(Root) ? 1;

find_df(P, [Root | Subtrees]) => find_in_subtrees(P, Subtrees);

find_in_subtrees(P, []) => 0;

find_in_subtrees(P, [Tree | Trees]) =>
 find_df(P, Tree) ?
 1
 : find_in_subtrees(P, Trees);

Depth-first search of a tree for a node with property P.

Here find_in_subtrees iterates over the sub-trees performing a search on each until
either there is success or until there are no more trees.

This is an example of mutual recursion. There are two functions, find and
find_in_subtrees and each calls the other. Each function has a different set of
responsibilities: find checks the root of its tree, while find_in_subtrees checks each
sub-tree. The latter is essentially an iterative process. Both functions are tail-recursive.

Often mutual recursion can be replaced with use of one or more higher-order functions.
For example, the following definition using the function some is equivalent, but more
succinct:

find_df(P, [Root | Subtrees]) => P(Root) ? 1;

find_df(P, [Root | Subtrees]) => some((T)=>find_df(P, T), Subtrees);

The type of search exhibited above is called depth-first search. If there are several nodes
in the tree satisfying the property, the first one is detected is the one that is encountered
on a trajectory that plunges downward before it traverses laterally. The pattern of depth-
first search in this case is shown below:

140 Low-Level Functional Programming

1

2

4 5 6

3

7

9

8

done

Figure 35: Depth-first search of a tree

A depth-first search establishes an ordering of the nodes, the order in which P is applied
to test the node in the search. In this example, the ordering is [1, 2, 4, 5, 6, 3, 7, 9, 8].
This ordering is known as the depth-first ordering.

A complementary style of search is known as breadth-first search. Here the nodes are
checked in order of increasing distance from the root. In order to accomplish this kind of
search, we need to simulate a structure called a queue, which holds subtrees in the order
the nodes are encountered until they can be revisited later. The algorithm is then as
follows:

To find a node with property P in a tree, breadth-first:

• Start with the tree as the only element in the queue.

• Repeat the following until success, or until queue is empty:

• Consider the first tree in the queue. If the root of the tree
satisfies P, then return success.

• Add each of the sub-trees to the rear of the queue.

• (Queue is empty). Return failure.

Let’s make this algorithm more precise by presenting it in rex. Here we are using the
same tree representation as before: The tree is represented as a list, with the first element
of the list being the root and the rest of the list being the sub-trees.

Low-Level Functional Programming 141

find_bf(P, Tree) => find_in_queue(P, [Tree]);

find_in_queue(P, []) => 0;

find_in_queue (P, [[Root | Subtrees] | Trees]) =>
 P(Root) ?
 1
 : find_in_queue(P, append(Trees, Subtrees));

Breadth-first search of a tree for a node with property P.

The following is a simulation of this algorithm, using the previous example tree. Suppose
we are searching for a node equal to 7. Since the queue is a sequence of trees, we show
that sequence at each stage. The initial queue is a sequence of one tree, the original tree:

1

2

4 5 6

3

7

9

8

The root 1 is not equal to 7. The queue becomes the sequence of two trees:

2

4 5 6

3

7

9

8

The first tree in the queue is the one with root 2, which is not equal to 7, so its sub-trees
are appended to the end of the queue, resulting in:

4 5 63

7

9

8

The first tree in the queue is now the one with root 3, which is not equal to 7. So its sub-
trees are added to the end of the queue, resulting in the queue:

142 Low-Level Functional Programming

4 5 6 7

9

8

The next three trees to be examined have roots not equal to 7 and the sub-trees are empty,
so the queue becomes, in three steps:

7

9

8

At this point, the root of the first sub-tree is equal to 7, so we stop with success.

As with depth-first search, breadth-first search also induces an ordering of the nodes,
called the breadth-first ordering. This ordering is exactly what we would see if we read
off the tree level by level, left-to-right. In the present example, this ordering is: [1, 2, 3, 4,
5, 6, 7, 8, 9].

Exercises

1 •• Consider the following tree. What are the depth-first and breadth-first
numberings?

1

2

4

5

6

3 7

98 10

11

12

13

2 •• In the preceding tree, suppose P(n) is the property “n is a prime number greater
than 5”. What node would be found in a depth-first search? in a breadth-first
search?

3 ••• Modify the depth-first search algorithm so that, rather than merely returning
success, the algorithm returns a list representing the path from the root to the node
found. For example, if we were searching the tree above for node 10, the list
returned would be [1, 6, 7, 10].

Low-Level Functional Programming 143

4 ••• Repeat the preceding problem for the breadth-first search algorithm.

5 ••• A tree address is a sequence of numbers indicating a path from the root of the tree
to one of its nodes:

The root of the tree has address [].

If the node occurs in the ith subtree, the tree address of the node is i
followed by the tree address of the node relative to the subtree.

We’ll use the convention of numbering the subtrees starting at 0. For example, in
the diagram above, the tree address of node 10 is

[1, 0, 2]

since the node occurs as root of subtree 2 of subtree 0 of subtree 1 of the overall
tree.

Modify the depth-first search algorithm so that it returns the tree address of the
node it finds, if any.

6 ••• Repeat the preceding problem for the breadth-first search algorithm.

7 ••• Define in rex a function that will return the node in a tree given its tree address. It
is possible that there is no node corresponding to a given address. Handle this
possibility by returning a list of the node in the case the node is found, and the
empty list in case of failure.

4.15 Searching Graphs

Searching a directed graph depth-first is similar to searching a tree, except that there are
additional complications arising from the possibility the graph is not necessarily a tree.
These are:

A given node may be the target of more than one other node (this is sometimes
called “fan-in”). We do not want to search from this node more than once. Thus
we need some way of remembering that we’ve seen it before.

A node may be in a cycle. Even though the node might be a target of just one
node, unless we remember whether we’ve seen the node before, we could cycle
forever and the search would not terminate.

The following graph is obtained by a slight modification of the previous tree. We see that
fan-in occurs at nodes 5 and 9. A cycle occurs among nodes 1, 3, and 8, and also node 5
by itself.

144 Low-Level Functional Programming

1

2

5 6

3

7

9

8

We see that both non-tree phenomena can be handled by a common technique: refuse to
search from a node from that we’ve already searched.

For the present, we will modify the search algorithms to keep a list of nodes that have
been encountered. Loosely speaking, we check that list before searching the node a
second time. There are other ways of doing this that do not involve scanning the list, but
we will save them for an appropriate time later.

Another issue to be dealt with is that a general graph does not admit the representation we
have been using for trees. Thus we have to use a different representation for general
graphs. The one we will use now, for sake of concreteness, was introduced in Information
Structures:

A graph is a list. Each element is a list consisting of the name of a node
followed by the targets of that node.

The list representation for the preceding graph would thus be:

[[1, 2, 3],
 [2, 5, 6],
 [3, 7, 8],
 [5, 5],
 [6, 9],
 [7, 9],
 [8, 1],
 [9]]

Despite this assumption, we shall try to cast the search algorithms to be relatively free of
the assumption itself. We will do this by creating a function

get_targets(Node, Graph)

that, given a node and the graph, will return the list (possibly empty) of targets of the
node. Only this function needs to know how the graph is represented. So if we change the
representation, this is all we will need to change, not the search algorithm itself. The
algorithm consists of the following rules:

Low-Level Functional Programming 145

Consider defining a depth-first search. The first rule is an interface function:
find_dfg(P, Node, Graph) tries to find a node satisfying P in the graph, that is
reachable from node Node.

find_dfg(P, Node, Graph) => find_dfg(P, [Node], Graph, []);

The interface function calls the auxiliary function, with the set of “seen” nodes empty. If
the set of nodes remaining to be searched is empty, then failure is reported.

find_dfg(P, [], Graph, Seen) => 0;

If there is at least one remaining node and the first node satisfies P, then success is
reported.

find_dfg(P, [Node | Nodes], Graph, Seen) => P(Node) ? "1";

If the first node does not satisfy P, then we get the targets of the node. From those targets,
we remove any that have been seen already. We add the remainder to the front of the list
of nodes and continue the search, with the first node now noted as having been seen.

find_dfg(P, [Node | Nodes], Graph, Seen) =>
 Targets = get_targets(Node, Graph),
 New = difference(Targets, Seen),
 find_dfg(P, append(New, Nodes), Graph, [Node | Seen]);

For the particular graph representation described, function get_targets can be
expressed using the built-in rex function assoc. Recall that this function searches a list of
lists for a designated first component. If it finds one, in returns the list having that
component. Otherwise it returns the empty list.

get_targets(Node, Graph) =>
 Found = assoc(Node, Graph),
 Found == [] ? [] : rest(Found);

A simple version of difference is as follows:

difference([], B) => [];

difference([A | As], B) =>
 member(A, B) ?
 difference(As, B)
 : [A | difference(As, B)];

For breadth-first search of a graph, we only need modify the find rule by changing the
order of arguments to append:

find_bfg(P, [], Graph, Seen) => 0;

find_bfg(P, [Node | Nodes], Graph, Seen) => P(Node) ? "1";

find_bfg(P, [Node | Nodes], Graph, Seen) =>

146 Low-Level Functional Programming

 Targets = get_targets(Node, Graph),
 New = difference(Targets, Seen),
 find_bfg(P, append(Nodes, New), Graph, [Node | Seen]);

The effect is to put new targets behind the current queue of targets.

Breadth-first searching a graph finds the node nearest to the starting node, in terms of the
number of arrows that need traversing. A variant of it is used in shortest-path or least-cost
path problems. We shall discuss this further in a later section. The concepts of breadth-
first numbering and depth-first numbering apply to graphs as well as trees, except that a
specific starting node must be specified. Also, the numbering depends on the order in
which the targets of each node are listed.

Exercises

1 •• Consider the following graph. What are valid depth-first and breadth-first
numberings relative to node 1 as a starting node?

1

2 4

3 7

5

6

2 •• In the preceding graph, suppose that P(n) is the property “n is a prime number
greater than 3”. What node would be found in a breadth-first search?

3 ••• Modify the depth-first search algorithm so that, rather than merely returning
success, the algorithm returns a list representing the path from the root to the node
found. For example, if we were searching the graph above for node 6, the list
returned might be [1, 4, 7, 5, 6].

4 ••• Repeat the preceding problem for the breadth-first search algorithm.

5 ••• A third form of search is known as iterative deepening. As with breadth-first
search, it finds nodes in order of increasing distance from the root, but it does not
require storage for a queue. It is effectively a series of depth-first searches with
increasing depth bounds. Construct a function for performing this form of search.

6 •••• Consider the following modification of breadth-first search: The arcs on a
directed graph each have a positive numeric cost (representing, say, distance or
travel time) associated with them. Devise an algorithm that, given a node, called
the source node, computes the least-cost path between this node and all nodes.
The cost of a path is defined to be the sum of the costs on the arcs in the path.

Low-Level Functional Programming 147

1

2 4

3 7

5

6

0.1 0.2

0.3

0.1

0.3 0.10.1

0.20.2

The graph in this case can be represented as follows:

[[1, [0.1, 2], [0.2, 5], [0.3, 4]],
 [2, [0.1, 4]],
 [3, [0.2, 7]],
 [4, [0.3, 7]],
 [5, [0.1, 6]],
 [6, [0.2, 7]],
 [7, [0.1, 5]]]

The result of the algorithm would be a list of [Cost, Node] pairs. For source node 1 this
would be:

[[0, 1], [0.1, 2], [0.2, 4], [0.2, 5], [0.3, 6], [0.5, 7],
[Infinity, 3]]

4.16 Argument Evaluation Disciplines

It is often the case that there is more than one sub-expression to which rules can be
applied to a term. For example, consider a rule set for add:

add(0, M) => M;
add(N+1, M) => add(N, M)+1;

Suppose we want to evaluate the term

add(0, add(0, 5))

Here we could apply the rule for add(0, M) to the outer term to get

add(0, 5)

or to the inner term add(0, 5), to get the same thing. However, we will not always
rewrite to the same thing immediately. To see this, consider a term of the form

add(N+1, add(K+1, M))

148 Low-Level Functional Programming

Applying a rule to the outer term gives us

add(N, add(K+1, M)) + 1

while applying to the inner term gives

add(N+1, add(K, M) + 1)

These two are obviously different, although by another rule application, we could convert
both of them to

add(N, add(K, M) + 1) +1

Applicative Order

Most programming languages adopt a specific discipline about where a rule will be
applied when there is a choice. The most common discipline is known as

applicative-order argument evaluation:

Give priority to applying a rule to an argument of a term before applying a
rule to the entire term.

Example: In f(g(0), h(1)), apply a rule for g or h before applying any
rule for f.

Even this is not without ambiguity, however, since there could be several arguments to
which rules apply. By leftmost applicative-order, we give priority to the leftmost
argument term first, and similarly for rightmost applicative-order.

Examples

In add(N+1, add(K+1, M)), we have an argument add(K+1, M) to which a rule is
applicable. Moreover, this is the leftmost such argument, so the rewritten term under
leftmost applicative order is add(N+1, add(K, M)+1).

In add(N+1, add(K+1, add(M+1, 2))), under leftmost applicative order, a rule is
applicable to the second argument, add(K+1, add(M+1, 2)). However, this argument
also has an argument to which a rule is applicable, so we must give priority to that
argument rather than the outer argument. Thus, the rewritten term would be
add(N+1, add(K+1, add(M, 2)+1)).

Low-Level Functional Programming 149

Normal Order

Another evaluation-order discipline with important uses is known as

normal order argument evaluation:

Give priority of applying a rule to the entire term over applying a rule to
an argument of the term.

Example: In f(g(0), h(1)), apply a rule for f before applying any rule
for g or h.

Examples

Under normal order we would have the following series of rewrites:

add(N+1, add(K+1, add(M+1, 2))) ==>
add(N, add(K+1, add(M+1, 2)))+1 ==>
add(N, add(K, add(M+1, 2))+1)+1 ==>
add(N, add(K, add(M, 2)+1)+1)+1

Contrast this with applicative order, where the rewrite series would be:

add(N+1, add(K+1, add(M+1, 2))) ==>
add(N+1, add(K+1, add(M, 2)+1)) ==>
add(N+1, add(K, add(M, 2)+1)+1) ==>
add(N, add(K, add(M, 2)+1)+1)+1

The end results are the same, but the intermediate details differ.

Even though applicative order is the most common, normal order has the advantage of
terminating in some cases where applicative order does not. As an example, consider the
following rules:

if(1, A, B) => A;
if(0, A, B) => B;

foo(N) => foo(N+1);

Consider the term

if(0, foo(0), 1)

Applicative order would require that foo(0) be evaluated before using the definition of
if. However, foo(0) will never converge. Therefore applicative order will never use the
definition of if and the entire computation diverges. On the other hand, with normal
order, the second rule for if will be used immediately and there will be no call for the
evaluation of foo(0).

150 Low-Level Functional Programming

It can be shown that normal order is strictly more general, in the sense that there will
never be a case where applicative order gives an answer but normal order fails to give
one. Unfortunately, applicative order is the norm in most programming languages, not
normal order. One might remember this by the following quip:

Normal order isn't.

The reason that normal order is not "normal" has to do with normal order being more
complicated to implement, not that it is undesirable for mathematical reasons.

Normal Order in rex and Delayed Evaluation

As with most languages, the rex evaluator uses applicative order for all functions, except
for a few "special forms" such as the conditional form __ ? __ : __ , logical
conjunction &&, and logical disjunction ||, that evaluate arguments left to right as they
need them.

It is possible to achieve a custom normal order effect through what we will call the defer
operator. Any expression, including an argument to a function, can be "wrapped" as the
argument to an operator $ (read "defer"). The expression is not evaluated until it is
absolutely necessary. Thus, if we have an actual argument wrapped in $:

h($f(X, Y), Z)

this argument will effectively be treated as if a normal-order argument, while others will
be treated as applicative order. Only when, if ever, it becomes necessary for h to know
the value of f(X, Y) will the latter be evaluated. For example, in a conditional
expression

p(X) ? $f(X, Y) : g(Y, Z)

even if p(X) evaluates to 1, we do not need to know the value of f(X, Y). The value of
this expression is just $f(X, Y). If, on the other hand, we used f(X, Y) in a numeric
expression, such as

Z + $f(X, Y)

it becomes necessary to know what the value of $f(X, Y) is. At this point the expression
would be evaluated.

One of the key uses of $ in rex will be explained in the section Infinite Lists.

Low-Level Functional Programming 151

Using Function Arguments to Achieve Delay

A traditional device for achieving the effect of delaying the evaluation of an argument
expression (i.e. the defer operator, as discussed with normal order evaluation) is to embed
the expression in question into the body of an additional function with no arguments.
Then, when we want to evaluate this expression, we apply the function (to no arguments).
For example, suppose that the expression we want to delay is

X + g(X, Y)

To pass this expression unevaluated, we actually pass the 0-argument function

() => X + g(X, Y)

Suppose that this function is bound to a variable D. Then when we want the evaluation of
the original expression to take place, we would compute

D()

(D applied to no arguments). This scheme differs slightly from the defer scheme in rex. In
the scheme being discussed, the program must know to expect the 0-argument function
and arrange for its application (to no arguments). Thus a function cannot be written that
will take either a delayed argument or an ordinary argument, unless some sort of tag is
also passed along to indicate which.

4.17 Infinite Lists (Advanced)

This topic describes a programming paradigm that is available in very few languages (rex
is one, of course!). It can be "engineered" in others, but sometimes with great difficulty.
However, due to the substantial power that this approach provides, it will likely be in
many high-level languages at some point in the future (how distant we hesitate to
speculate).

The rewriting approach provides an ideal way to describe and implement an unusual
feature that is available in some languages: the ability to manipulate lists as if they were
infinite. This requires delaying the computation of the tail of the list, as in [A | $ L],
until the tail is needed. Otherwise an attempt would be made to evaluate the tail, resulting
in divergence.

The List of All Natural Numbers

The simplest non-trivial example of an infinite list is the list of all natural numbers,
conceptually shown as

[0, 1, 2, 3, …]

152 Low-Level Functional Programming

We want from to be a function that, with argument N, will generate the infinite list of
numbers from N on. The list above is the special case from(0). The definition of from
must use a normal-order list constructor. As discussed earlier, this can be achieved by the
delay wrapper $, as in:

from(N) => [N | $ from(N+1)];

The idea here is that the recursive call to from(N+1) is not evaluated until needed. So if
we are showing the result of from(0), we would do these evaluations as it comes time to
print each successive element. Let us check this by giving a few rewrites of from(0):

from(0) ==>
[0 | $ from(1)] ==>
[0 | [1 | $ from(2)]] ==>
[0 | [1 | [2 | $ from(3)]]] ==>
[0 | [1 | [2 | [3 | $ from(4)]]]]

which is the same as

[0, 1, 2, 3 | $ from(4)]

When applying a rule for a function that has such a list as an argument, the usual rules
apply: a formal argument [A | L] matches the actual argument so that A is the first
element of the infinite list and L is the rest of the infinite list. For example, define
functions first and rest by

first([A | L]) => A;

rest([A | L]) => L;

Then rest would force the evaluation of the delayed expression as necessary:

rest(from(0)) ==> rest([0 | $ from(1)]) ==> $ from(1)

If the result of rest were used, e.g. in evaluating

5 + first(rest(from(0)))

then $from(1) would be further expanded to get [1 | $ from(2)] and first would
extract the 1, rewriting to 5 +1, then to 6.

Using this idea, we can construct functions that have infinite lists as arguments and
results. For example, the function partial_sums produces a list of the sum of the first, first
two, first three, and so on, elements of its argument:

partial_sums([1, 3, 5, 7, …]) ==>
 [1, 4, 9, 16, …]

The rules are, using an auxiliary function partial_sums2:

Low-Level Functional Programming 153

partial_sums(X) => partial_sums2(0, X); // 0 is initial accumulator

partial_sums2(Acc, []) => Acc;

partial_sums2(Acc, [A | X]) => [(Acc + A) | $ partial_sums2(Acc+A, X)];

Unzipping an Infinite List

The following function "unzips" a finite or infinite list into two lists.

unzip(X) = [evens(X), evens(rest(X))];

evens([]) => [];
evens([A]) => [A];
evens([A, _ | X]) => [A |$ evens(X)];

Unzipping a list

Pipe Composition

A very attractive aspect of functions on infinite lists is that they can be composed as with
pipe composition discussed earlier. An example of pipe composition for infinite lists
occurs in the next example, and is previewed here.

3 [3, 5, 7, 9, ...] [3, 5, 7, 11, 13 ...]
odds sift

Figure 36: Piping an infinite stream through a function

This type of composition gives infinite lists value for certain computing applications,
such as digital signal processing, where the application is typically structured as a set of
interconnected stream-processing functions: integrators, filters, scalars, and the like.

Prime Number Sieve

The function primes below produces the infinite list of prime numbers beginning with 3.
It does this using the technique of "sieving". Consider the infinite list of odd numbers:

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, …

From this list, drop all those, other than the first (i.e. 3), that are multiples of the first:

3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, …

Now do the same for the next number that is left (5), i.e. drop all multiples of it:

154 Low-Level Functional Programming

 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, …

Continue this way, dropping multiples of 7, then 11, … The numbers that survive the
drops are the primes. At every major step, the first number survives, so this insures that
every prime will eventually be produced.

The program is:

primes() = sift(odds(3));

odds(N) = [N | $ odds(N+2)];

sift([A | X]) => [A | $ drop((X) => divides(A, X), sift(X))];

Function primes generates the infinite list of primes.

To gain maximum utility from this paradigm, it is helpful to be able to compose programs
with loops, as will be discussed in the next section.

Functional Programs with Loops

Another technique that can be used to generate infinite lists is to have "loops" in the
defining equations. For example, the following equation:

Ones = [1 |$ Ones];

defines Ones to be the infinite list [1, 1, 1, 1, …]. The figure below shows how this
works, by piping the output back into the | (followed-by) function.

|

1

[1, 1, 1, ...]

Figure 37: A simple functional program with a loop.

Here | represents the "followed-by" function used to construct lists.

Example - Another way to get the partial sums of an infinite sequence X is to use:

Psums = map(+, X, [0 | $ Psums]);

Here + is applied to two sequences, so this is the map form of +, rather than the simple
arithmetic form. The definition of Psums has a "loop" in the sense that the definition

Low-Level Functional Programming 155

itself uses the quantity Psums. The two programs with loops for Ones and Psums can be
shown as follows:

|

0

+

[1, 2, 3, 4, ...]

[1, 3, 6, 10, ...]

Figure 38 A functional program with a loop showing result for an example input.

Here + represents map(+, . , .)

Here is an example of how this works in rex:

rex > X = from(1);
1

rex > X;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, …

rex > Psums = map(+, X, [0 | $ Psums]);
1

rex > Psums;
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, …

Fibonacci sequence using a recursive group

The examples above both defined fixed infinite sequences using loops. If we want to
define functions using loops, we need something like an equational guard, yet slightly
different. Consider the following attempt to define the function fib that generates the
Fibonacci sequence:

fib() = Result = [1, 1 | $ map(+, Result, rest(Result))],
 Result;

This definition first defines the quantity represented by variable Result using an
equational guard, then gives that value as the result of the function. Syntactically this
definition is well-formed. However, the value of Result used on the right-hand side of

156 Low-Level Functional Programming

the equation is not the same as the one on the left; the value is, by definition, the value of
Result in the ambient environment (it may or may not be defined). What we want is an
environment where both uses of Result mean the same thing. We had this in the global
environment in earlier examples. But how do we get it inside the function fib? The
answer is that we need a special construct called a recursive group that creates a
recursive environment. In rex this is shown by giving a series of equations inside braces
{…}. Each variable defined in that environment has the same meaning on the left- and
right-hand sides of the equations. The last thing inside the braces is an expression, the
value of which is the value of the group. The correct version of fib() is as follows:

fib() = { Result = [1, 1 | $ map(+, Result, rest(Result))];
 Result};

Here the first equation defines the variable Result to be a list starting with [1, 1, …]. The
rest of the list is the pairwise sum of the list itself with the rest of the Result , [1, …].
Thus the first element in this sum is 2, the next element is therefore 1+2 ==> 3, the next
2+3 ==> 5, and so on. A rex dialog show this:

rex > fib();
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, …

|

1

[1, 1, 2, 3, 5, 8, 13, . . .]

|

1

+

Result

X

Figure 39: A functional program generating the Fibonacci sequence.

The use of rest in the program was eliminated by using
the fact that rest([A | X]) == X

A definition that conforms directly to the diagram, using an additional variable X, is:

Low-Level Functional Programming 157

fib() = { Result = [1 | $ X];
 X = [1 | $ map(+,Result, X)];
 Result};

Simulating Differential Equations

Differential equations are equations that are to be solved for functions, rather than
numbers, as unknowns. These equations are constructed using differential, as well as
algebraic, operators. A typical type of differential equation involves real-valued functions
of one variable. Often that variable is identified as a time parameter. We can simulate
such equations by using a discrete approximation to time. In this case, a function of time
can be represented by the sequence of values sampled at discrete time instants. With this
in mind, it is possible to use our infinite lists as these sequences, i.e. to represent real-
valued functions of time.

As an example, the derivative operator can be simulated by taking differences of adjacent
argument values. The definition is:

deriv([A, B | X]) = [(B - A) | $ deriv([B | X])];

As it turns out, however, we do not use this operator directly in the solution method to be
presented.

The usual algebraic operators +, -, *, etc. have to be mapped as pairwise operators on
infinite lists. Thus to add the values of two "functions" F and G represented as sequences,
we would use map(+, F, G).

First-Order Equation

Suppose that we wish to solve a first-order (meaning that the highest-order derivative is
1) linear homogenous (meaning that the rhs is 0) equation:

dX
dt + a*X(t) = 0

subject to an initial value X(0) = X0. A solution entails finding a function X that satisfies
this equation. We will represent the function X by a sequence. The sequence corresponds
to the values of the true function X at points 0, 0 + dt, 0 + 2dt, …, treating dt as if it were
an actual interval. This interval is known as the “step size”. It will become implicit in our
solution method. Solving the equation for dX:

dX = -a*X(t)*dt

But also

158 Low-Level Functional Programming

dX = X(t+dt) - X(t)

Combining these two and solving for X(t+dt):

X(t+dt) = X(t) - a*X(t)*dt

Taking dt to be 1, we have

X(t+1) = X(t) - a*X(t)

Now we have the approximation X(t+1) expressed in terms of X(t). Combining that with
the known initial value X0, we can write in rex:

X = [X0 |$ map(-, X, scale(a, X))];

(Note that this equation has a “loop”.) As before, we are using the map version of
operator - that works on two sequences pairwise. For a given values of X0 and a, the
sequence X is thus determined. For example, the following figure shows the points in
sequence X when X0== 1 and a == -0.01.

1

2.8

0 100

Graph of the solution to a first-order differential equation.

Analytically, we know that the solution to the equation is X(t) = e0.01t, which jibes with
the numerical solution obtained; at t = 100, we have X(100) == 2.70481, which is
approximately equal to e == 2.71828.

The solution method represented above is effectively what is called Euler’s method. It is
not the most accurate method, but it is believed that the same solution technique using
infinite lists can also be applied to more refined methods, such as the Runge-Kutta
method.

Second-Order Equation

To show that the method presented above is general, we apply it to a second-order
equation, of general form:

Low-Level Functional Programming 159

d2X
dt2 + a*

dX
dt + b*X(t) = 0

Where initial values are given for both X and
dX
dt . It is common to introduce a second

variable Y to represent
dX
dt , transforming the original single equation to a system of

equations:

dY
dt + a*Y(t)+ b*X(t) = 0

Y(t) =
dX
dt

As before, we treat dt as if it were a discrete interval. As before, we solve for dX and dY,
and equate these to X(t+1) - X(t) and Y(t+1) - Y(t) respectively. This gives:

X(t+1) = X(t) + Y(t)*dt

Y(t+1) = (1 - a)*Y(t) - b*X(t)

Translating into rex, using infinite lists:

X = [X0 | $ map(+, X, Y)];

Y = [Y0 | $ map(-, scale((1-a), Y), scale(b, X))];

Here when a scalar is multiplied by a sequence, the result is that of multiplying each
element of the sequence by the scalar. The diagram below shows the first 100 values of X
when a == 0.1, b == 0.075, X0 == 1, and Y0 == 0.

1

-1

0
0 100

Graph of the solution to a second-order differential equation.

160 Low-Level Functional Programming

Exercises

1 • Trace the first few rewrites of partial_sums(from(0)) to verify that the partial
sums of the integers are [0, 1, 3, 6, 10, 15, …]

2 • Give rewrite rules for a function odds such that

odds(1) ==> [1, 3, 5, 7, 9, …]

3 •• Certain sets of rules on lists also make sense on infinite lists. An example is map,
as introduced earlier. For example,

map(square, odds(1)) == [1, 9, 25, 49, 81, …]

Review the previous examples we have presented to determine which do and
which don't make sense for infinite lists. Indicate where $ needs to be introduced
to make the definitions effective.

4 •• Give rules for a function that takes a function, say f, as an argument, and produces
the infinite sequence of values

[f(0), f(1), f(2), f(3), …]

5 ••• Give rules for a function that take a function, say f, and an argument to f, say x, as
arguments, and produces the sequence of values

[f0(x), f1(x), f2(x), f3(x), …]

where fi(x) means f(f(…f(x)…)) (i times).

6 •• Suppose we use infinite lists to represent the coefficients of Taylor's series. That

is, a
0 +a

1
x +a

2
x2 + a

3
x3 + … is represented by the infinite list [a

0
, a

1
, a

2
, a

3
, …].

Present rex functions that add two series and that multiply them by a constant.

7 ••• Continuing the above representation of series, construct a rex function that
multiplies two series. The corresponding operation on infinite lists is called the
convolution of the lists.

8 •••• Continuing the above thread, construct a rex function that derives the
coefficients of

1
1 - s

where s is a series.

Low-Level Functional Programming 161

9 •••• Derive rex functions that generate the series of coefficients for your favorite
analytic functions (exp, sin, cos, sinh, etc.).

10 ••• ["Hamming's problem"] Develop a function that generates, in order, the infinite

list of numbers of the form 2
i
3

j
5

k
, where i, j, and k are natural numbers, i.e.

[2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, …]

11 •••• Referring to the earlier problem regarding transposing a matrix, construct a
function that will transpose an infinite matrix, represented as an infinite list of
infinite lists. For example, if the function's argument is:

[[0, 1, 3, 6, 10, …], [2, 4, 7, 11, …], [5, 8, 12, …],
 [9, 13, …], [14, …], …]

the transpose is

[[0, 2, 5, 9, 14, …], [1, 4, 8, 13, …], [3, 7, 12, …],
 [6, 11, …], [10, …], …]

12 ••• Referring to the previous problem, construct a function that will linearize an
infinite matrix by "zig-zagging" through it. For example, zig-zagging through
the first matrix above would give us:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …]

13 ••• Construct a function that is the inverse of the zig-zag function in the previous
problem.

14 ••• Define a version of 'pairs' that will work in the case that either or both argument
lists are infinite, e.g.

pairs(from(0), from(0)) ==>

[[0, 0], [1, 0], [0, 1], [2, 0], [0, 2], [1, 1], [0, 3], …
]

Thus, such a definition demonstrates the mathematical result that the Cartesian
product of a countable set is countable.

15 ••• Derive solutions for cases in which the right-hand side of the above equations
are replaced by “forcing functions” of t, which in turn are represented as
sequences.

16 ••• Derive solutions for cases in which the coefficients of the equation are functions
of t rather than constants..

162 Low-Level Functional Programming

17 •••• Explore the adaptation of more refined solution methods, such as Runge-Kutta
(if you know this method) to the above approach.

4.18 Perspective: Drawbacks of Functional Programming

Functional programming is important for a number of reasons:

• It is one of the fundamental models of computability.

• It provides succinct and elegant means of manipulating potentially very large
information structures without deleterious side-effects on data used by some
models.

• Consequently, it is a useful model for parallel computation, which can be
prone to anomalous behavior if side-effects are not managed carefully.

Functional programming can also fit well with other models, such as object-oriented and
logic programming, as will be seen. Despite these desirable traits, we hesitate to
recommend it as the only model one consider for software development. Instead we
would prefer to see its use where it fits best.

An example of where functional seems less than ideal is computations that need to
repeatedly re-assign to large arrays destructively. Here "need" is used subjectively; there
is no widely-accepted theoretical definition of what it means to require destructive
modification. Intuitively however, the following sort of computation is a canonical
example: Consider the problem of maintaining a histogram of a set of integer data. In
other words, we have an incoming stream of integers in some range, say 0 to N-1, in no
particular order. We want to know: for each integer in the range, how many times does it
appear in the stream. The natural way to solve this problem is to use linear addressing:
for each data item in the stream, use the item to index an array of counts, adding 1 each
time that integer is encountered. This method is straightforward to implement using
destructive assignment to the array elements. However, a functional computation on
arrays would create a new array for every element in the stream, which will obviously be
costly in comparison to using destructive modification. Some functional programming
languages are able to get around this problem by using clever compilation techniques that
only apparently create a new array at each step but that actually re-use the same array at
each step. However, it does not appear that such techniques generalize to all possible
problems.

A place where functional programming seems to yield to object-oriented programming
techniques is in programming with structures that seem to inherently require modification
because there is only one of them. An example is in graphical user interface
programming. Here there is only one of each widget showing on the screen, which
contains the state of that widget. It does not make sense to speak of creating a new widget
each time a modification of the state is made.

Low-Level Functional Programming 163

4.19 Chapter Review

Define the following concepts or terms:

accumulator argument
append
applicative order
auxiliary function
beta reduction
breadth-first search
copy rule
delayed evaluation
depth-first search
equational guard
Euclid's algorithm
Euler's method
Horner's rule

insertion sorting
interface function
guarded rule
inductive definition
radix representation
merge sorting
mutual recursion
normal order
radix principle
recursion
selection sorting
sieve
tail recursion

4.20 Further Reading

L.C. Paulson, ML for the working programmer, Cambridge University Press, Cambridge,
MA, 1991.

Simon Thompson, Haskell - The craft of functional programming, Addison-Wesley,
Reading, MA,1999.

