
5. Implementing Information Structures

5.1 Introduction

This chapter discusses some of the key principles for constructing information structures,
such as lists and trees, and discusses primitive implementation in Java as an example.
Such structures provide a foundation for the understanding of algorithm design
considerations that play a central role in computer science, some of which will be
presented in later chapters.

We have already discussed arrays extensively. Arrays are one of the key components of
structural computing. The other components are records (as they are called in Pascal) or
structs (as they are called in C). In Java, the class concept is used as an extension of this
notion, in the sense that a class provides methods for accessing the data as well as a way
to represent the data internally. Classes, coupled with arrays, are the key building blocks
for constructing a wide variety of "data structures". Further discussion of the object
concept and its uses appears in the following chapter.

5.2 Linked Lists

Linked lists are one of the key structuring devices in computer software. Generally
speaking, lists are used to build sequences of data items incrementally, especially when
we have no advanced notion of how large the sequence will ultimately be. Instead of
having to estimate an appropriate initial size, and possible make wholesale adjustments
during population of an array, lists allocate item by item, using only as much storage as is
needed to hold the items plus a per-item overhead. We describe how linked lists provide a
way of implementing the list abstraction found in rex, as well as implementing other list
abstractions.

As an example of where linked lists are useful, consider implementing a text editor
application. Suppose that the text is organized as a series of paragraphs. The editor
provides a way of cutting a paragraph from one part of the document and pasting it in
another. In order to make this operation fast, we would avoid storing the paragraphs as a
linear array, since this cutting and pasting would entail shifting the elements of the array
each time we perform an operation. Instead we would have each paragraph remember the
paragraph after it by a reference to that paragraph. This kind of use of references is seen
whenever we read a newspaper. The blocks of text for an article (which don't coincide
with paragraphs necessarily) are scattered on different pages. At the end of a block is a
"reference" message "continued on page ...". In a computer, references are not simply
pieces of text. Instead they are implemented as memory references or pointers to the next
block. Thus the process of finding the target of a reference is very fast, as it can exploit
the linear addressing principle.

The process of going from a reference to its target is called dereferencing.

166 Implementing Information Structures

We could effect the cut and paste operation simply by changing references rather than
doing a physical cut and paste. Note that some newspapers also provide reverse
references "continued from page ...". These would be called "doubly-linked lists" and are
mentioned further in the exercises.

1

2

3

4

5

1

2

3

4

5

Figure 40: Exchanging paragraphs 2 and 4 by changing references

The key idea of linked lists is to provide a flexible way of connecting units of information
together even though they reside in non-contiguous units in computer memory. This is
accomplished by constructing a list out of objects, often called cells, where each cell
contains both a data item and a reference to the next cell in the list. In the final cell of the
list, the reference is a special null reference that indicates there are no further cells. The
null reference cannot be dereferenced. In Java, attempting to dereference a null
reference will result in a run-time error. In some languages, attempting to do so may
produce an unpredictable result. Thus one should always make sure, one way or another,
that a reference is not null before dereferencing it.

The same test for a null reference, which tells whether we are at the end of
the list, is also the one that tells whether we have the ability to dereference
the reference, that is, whether there is any target.

The figure below shows how a linked-list cell is viewed. The Java code for declaring this
type of cell might be:

Implementing Information Structures 167

class Cell
{
Item data;
Cell next;
}

Here Item refers to the type of the data item itself. This can be either a basic type or a
defined type. The field next is the reference to the next cell. The reason it is not
necessary to make any special mention that next is a reference is that it is implicit: In
Java, all variables representing objects are implicitly references. Because the type of
object being defined is named cell and cell is mentioned in the definition, this can also be
viewed as recursive type definition:

Cell_reference = Item x Cell_reference | null

data
field

next
field

Cell

Cell

reference

Figure 41: List cell structure

The figure below shows how we depict the case where the value of next is the null
reference. This form is used because the next field doesn't point to anything.

Figure 42: Representing the case of the last element,
i.e. the next reference does not point to anything

The following is an example of a linked list with data elements a, b, c, d.

a db c

Figure 43: A linked list of four elements

Of course, such structures have already been mentioned in Chapter 2. It is also possible
for the elements in the list to be references to the actual data elements. This is especially
useful in the case that the elements are of non-uniform size, as we might have with a list
of strings.

168 Implementing Information Structures

We distinguish between two varieties of lists, but many variations in between are also
possible:

Closed lists:
A closed list is a linked list, the cells of which are not normally
shared by other lists.

Open lists:
An open list is a linked list in which the cells are shareable by
other open lists.

5.3 Open Lists

In an open list, sharing is encouraged, to economize on storage space and to reduce
overhead from copying. However, open lists complicate matters of reclaiming unused
storage, since we cannot simply delete a cell just because we are done with it in one: such
a cell might also be one or more other lists. Java takes care of such reclamation
automatically by computing whether each cell is accessible or not when storage becomes
in short supply. Cells that are no longer accessible are recycled (deallocated and made
available for other uses).

Part of the reason we emphasize open lists here is that they correspond in a natural way to
the implementation of lists in rex and related languages. In simplest terms, a list can be
viewed as a reference to a cell. The empty list is identified with the null reference. For
this reason, we could simply rename the Cell class previously presented to be a list class.
The distinction between list and cell in this simple implementation is purely one of
viewpoint. In more complex closed-list implementations to be described later, it will be
important to distinguish between lists and cells.

class List
{
Item First; // data in the first cell
List Rest; // reference to next cell and rest of the list
}

To make this more convincing, we show how to implement the rex functions cons,
first, and rest.

Function cons constructs a new list from an existing list and a new first element. Were it
to be defined anew in rex, the definition would be:

cons(E, L) = [E | L];

With the definition of List used previously, this function would be defined by including it
as a "static method" within the class definition, since Java does not have functions as

Implementing Information Structures 169

such. A static method is one that applies to all objects in the class in general, rather than a
particular object.

class List
{
Item First;
List Rest;

// return a new list (reference to cell) created from an existing
// list (referenced by Rest) and a data item

static List cons(Item First, List Rest)
 {
 List result = new List;
 result.First = First;
 result.Rest = Rest;
 return result;
 }

}

A more elegant way to accomplish this same effect is to introduce a constructor for a List
that takes the First and Rest values as arguments. A constructor is called in the context of
a new operator, which creates a new List. Adding the constructor, we could rewrite cons:

class List
{
Item First;
List Rest;

// construct a List from First and Rest

List(Item First, List Rest)
 {
 this.First = First;
 this.Rest = Rest;
 }

// return a new list (reference to a cell) created from an item
// First and an existing list Rest

static List cons(Item First, List Rest)
 {
 return new List(First, Rest);
 }
}

The functions first and rest would be defined in rex as follows:

first([E | L]) = E; // return the first element in a list

rest([E | L]) = L; // return the list of all but the first

We now add corresponding functions to the Java implementation:

170 Implementing Information Structures

class List
{
Item First;
List Rest;

// construct a List from First and Rest

List(Item First, List Rest)
 {
 this.First = First;
 this.Rest = Rest;
 }

// return a new list (reference to a cell) created from an item
// First and an existing list Rest

static List cons(Item First, List Rest)
 {
 return new List(First, Rest);
 }

// return the first element of a non-empty list

static Item first(List L)
 {
 return L.First;
 }

// return all but the first element of a non-empty list

static List rest(List L)
 {
 return L.Rest;
 }

// return indication of whether list is empty

static boolean isEmpty(List L)
 {
 return L == null;
 }

static boolean nonEmpty(List L)
 {
 return L != null;
 }
}

We took the liberty of also adding the functions isEmpty and nonEmpty to the set of
functions being developed, as they will be useful in the following discussion.

Implementing Information Structures 171

Now let's use these definitions by presenting the implementation of some typical rex
functions. Consider the definition of function length that, as we recall, returns the length
of its list argument. The rex definition is:

length([]) => 0;

length([F | R]) => length(R) + 1;

The translation into Java, which could go inside the class definition above, is:

static int length(List L)
 {
 if(isEmpty(L)) return 0;

 return length(rest(L)) + 1;
 }

Notice that each rex rule corresponds to a section of Java code. First we check whether
the first rule applies by seeing if the list is empty. If it is not empty, we apply the function
recursively and add 1.

As an alternate to implementation of the length function, we could use an iterative, non-
recursive, solution:

static int length(List L)
 {
 int result = 0;

 while(nonEmpty(L))
 {
 L = rest(L); // "peel" the first element from the list
 result++; // record that element in the length
 }

 return result;
 }

Although this version is non-recursive, it is perhaps more difficult to understand at a
glance, as it introduces another variable to worry about. Depending on the compiler,
however, this might well be the preferred way of doing things.

Note that the length function should not, and does not, modify its argument list. It
merely changes the value of the local variable L which is a reference to a cell.

Now let's try another example, the function append. First in rex:

append([], M) => M;

append([A | L], M) => [A | append(L, M)];

then in Java:

172 Implementing Information Structures

static List append(List L, List M)
 {
 if(isEmpty(L)) return M;

 return cons(first(L), append(rest(L), M));
 }

Notice that the pattern is very similar to the recursive implementation of length. In the
case of append however, there is no clear and clean way in which the function could be
implemented iteratively rather than recursively.

Finally, let's look at a function which was implemented with an accumulator argument
earlier: reverse. In rex we employed an auxiliary function with two arguments, one of
which was the accumulator.

reverse(L) = reverse(L, []);

reverse([], R) => R;

reverse([A | L], R) => reverse(L, [A | R]);

A literal translation into Java would be to have two functions corresponding to the two
rex functions:

static List reverse(List L)
 {
 return reverse(L, null);
 }

static List reverse(List L, List R)
 {
 if(isEmpty(L)) return R;

 return reverse(rest(L), cons(first(L), R));
 }

In the case of reverse, we can get rid of the need for the auxiliary function by using
iteration. An alternate Java definition is:

static List reverse(List L)
 {
 List result = null;
 while(nonEmpty(L))
 {
 result = cons(first(L), result);
 L = rest(L);
 }
 return result;
 }

Implementing Information Structures 173

This version is probably the preferred one, despite it being slightly removed from the
original rex definition, since it does not introduce the complication of an auxiliary
function.

Exercises

(You may wish to develop rex versions of these solutions first, then translate them to
Java.)

1 •• Construct a Java function which will test whether an element occurs in an
argument list.

2 •• Construct a Java function which will add an element onto the end of a list,
returning a totally new list (leaving the original intact).

3 •• Construct a Java function which will produce as an open list the digits of an
argument number in a given radix.

4 •• Construct a Java function which will produce a number given the list of digits in a
given radix as an argument.

5 ••• Construct a Java function which will produce a sorted list of the elements from its
argument list.

6 ••• Construct a Java function which will produce the list of all subsets of an argument
list viewed as a set.

7 ••• Construct a Java function which will return, from a sorted list, a sorted list of the
same elements with no duplicates.

5.4 Closed Lists

Some of the techniques for open lists can be used to implement closed lists. Recall that
while open lists generally encouraging tail-sharing, closed lists provide a way to prevent.
While open lists provide a nice mathematical programming style, dealing with closed
lists, e.g. using destructive modification, should also be part of our repertoire. In some
cases we use closed lists to save space. Rather than create a new list: we modify the
elements or references directly in place. Closed lists can also save time: To append one
list to another, we can get by just by modifying references rather than recreating the first
list as function append does. Because modifying lists is more error prone than creating
new ones, we must be more careful if we decide to do any form of sharing. Usually it is
best to avoid sharing whenever lists are being modified destructively.

174 Implementing Information Structures

In a sense, a closed list can be implemented by putting a wrapper around an open list for
which no sharing is to take place. In the absence of sharing, it makes sense to do things
which we wouldn't wish to do with open lists, such as keep track of the last cell in the list
and modify it destructively.

The usual way to provide a wrapper is through a list header, a particular object which
identifies the list and through which initial accesses are made. Auxiliary information,
such as the length of the list, can also be maintained in the header.

With open lists, we may or may not have a header. Our initial primitive exposition was
without, and corresponds to implementations in rex and related languages.

The figure below shows a closed list, where auxiliary information, namely a reference to
the last cell in the list, is maintained. A type definition for the header might be:

class closedList
{
Cell head;
Cell tail;
}

where Cell is as previously declared.

a b ctop

Figure 44: Example of a closed list with 3 elements: a, b, c.

Common uses of closed lists are data containers which maintain objects in a certain order
and allow addition or removal only according to a pre-specified discipline:

stack - data are removed in the opposite order of insertion

queue - data are removed in the same order of insertion

We will say more about such containers in later chapters. The figures below depict these
uses for linked lists. We leave it to the reader to provide code for the appropriate data
operations for these abstractions.

a b ctop

Figure 45: A stack implemented as a closed list.
The header contains a reference to the top cell.

Implementing Information Structures 175

a b ctop

Figure 46: A queue implemented as a closed list.
The oldest cell is removed first.

Insertions take place after the youngest cell.

A more complete presentation of a closed list implementation will come once we have
introduced object-oriented concepts in Object-Oriented Computing. For now, we will be
content with a simple example of what can be done.

Appending Closed Lists

We will use the form of closed list described earlier, with a header that points to both the
first and last element in the list. If the list is empty, we will assume that both of these
references are null. Before writing any code, it is helpful to draw of picture of what is to
happen. Then a series of statements can be constructed to carry out the plan. Finally,
special cases, such as empty lists, must be dealt with to make sure the code works for
them.

db c

ge f

Figure 47: Two closed lists before appending

176 Implementing Information Structures

db c

ge f

Figure 48: Closed list after appending second to first.
The second list is no longer shown as a separate entity,

as it would not be advisable to use it once its cells are implicitly shared.

Assume the following structural definition for the types closedList and cell:

class closedList
{
Cell head;
Cell tail;
}

class Cell
{
Item data;
Cell next;
}

In order to effect the appending of list M to list L, we need to do the following:

L.tail.next = M.head; // connect the tail of L to the head of M

L.tail = M.tail; // install the tail of M as the new tail of L

We also have to deal with the null cases. If L is empty, then L.tail is null, so we
certainly don't want to dereference it. However, in this case we need to set L.head to
M.head. On the other hand, if M is empty, then M.head is null, so setting L.tail.next to
M.head does no harm. But in this case, M.tail will also be null. We want to leave
L.tail as it was, pointing to the tail of L. So the final code, packaged as a procedure
which modifies L, is:

void append(closedList L, closedList M)
{
if(L.tail == null)
 L.head = M.head; // L is null, make L's head be M's
else
 L.tail.next = M.head; // L is not null, connect L to M

if(M.head != null)
 L.tail = M.tail; // M is not null, make L's tail be M's
}

Implementing Information Structures 177

Exercises

1 •• Construct a procedure find which takes a closed list and an argument of type
Item and returns a reference to the first occurrence of a cell containing that
element, or null if the element does not occur.

2 ••• Construct a procedure reverse which reverses a closed list in place. Be sure to
handle the empty list case.

3 ••• Construct a procedure insert which destructively inserts an item into a closed
list given a reference to the cell before which it is to be inserted. Assume that if
this reference is null, the intention is to insert it at the end of the list.

4 ••• Construct a procedure delete which destructively removes an item in a closed
list given a reference to the cell to be deleted.

5 ••• A doubly-linked list (DLL) is a form of closed list in which each cell has two
references, pointing to both the next cell in the list and the previous cell in the
list (the latter reference is 0 if there is no previous cell).

Figure 49: A doubly-linked list of four elements

Give a Java definition for a) the cell of a DLL, and b) a DLL. (Take into
account the possibility of a DLL with no elements.)

Develop a set of procedures that do each of the following:

6 •• Find an item in a DLL based on its value. The result is a reference to the cell, or
0 if no such value was found.

7 •• Delete the cell pointed to by a given reference.

8 •• Insert a new cell with a given value following the cell identified by a reference.

9 •• Insert a new cell with a given value before the cell identified by a reference.

10 •• Concatenate two DLL's to form a new DLL.

11 •• Create a DLL with the same values as are contained in an open list.

a b c d

178 Implementing Information Structures

12 •• Create an open list with the same values as are in a DLL.

13 ••• Think of some applications where a DLL is a more appropriate structure than an
ordinary linked list.

14 ••• A ring is like a doubly-linked list in which the first and last elements are linked
together, as suggested below. This type of structure is used, for example, in
some text editors where searches for the next occurrence of a specified string
wrap around from the end of the text to the beginning.

Figure 50: A ring of four elements

Repeat the previous two exercises substituting "ring" for DLL.

15 ••• A labeled binary tree (LBT) is structure constructed from nodes similar to
those in a doubly-linked list, but the references have an entirely different use.
An LBT is a branching version of an open list. Each cell has a data item (called
the "label") and two references which themselves represent LBT's.

a

b

c

d

e

f

g

h

Figure 51: A labeled binary tree

a b c d

Implementing Information Structures 179

16 ••• Develop a set of abstractions similar to the abstractions cons, first, rest, null,
etc. for open lists.

17 ••• A traversal of an LBT is defined to be a linear list, the elements of which are in
one-to-one correspondence with the nodes of the LBT. There are several
standard types of traversals, enumerated below. Develop functions which
produce each form of traversal from an LBT.

In each of the following cases, the traversal of an empty tree (represented by a
null reference) is the empty list.

In an in-order traversal, the elements are ordered so that the root element is
between an in-order traversal of the left sub-tree and the right sub-tree. An in-
order traversal for the tree in the diagram is:

(a b c d e f g h)

since c is the root element, (a b) is an in-order traversal of the left sub-tree of the
root, and (d e f g h) is an in-order traversal of the right sub-tree of the root.
(These facts are established by applying the definition recursively.)

In a pre-order traversal, the elements are ordered so that the root element is
first, followed by a pre-order traversal of the left sub-tree, then a pre-order
traversal of the right sub-tree. For the example above, a pre-order traversal is

(c b a g e d f h)

In a post-order traversal, the elements are ordered so that the root is last, and is
preceded by a post-order traversal of the left sub-tree, then a post-order traversal
of the right sub-tree. For the example above, a post-order traversal is

(a b d f e h g c)

18 •••• In a level-order or breadth-first traversal, the elements are ordered so that the
root is first, the roots of the two sub-trees are next, then the roots of their sub-
trees, left-to-right, etc. For the example above, the level-order traversal is

(a b g a e h d f)

Develop a function that produces the level-order traversal of a LBT.

19 ••••• Show that the information in a traversal by itself is insufficient to re-establish the
LBT from which it came. Is it possible to use two different traversals to re-
establish the LBT? If not, demonstrate. If so, which pairs of traversals work?
For those pairs, develop a function that constructs the tree given the traversals.

180 Implementing Information Structures

 20 ••• Develop a formula for the number of null references in an LBT as a function of
the number of nodes N. Prove your formula by induction.

5.5 Hashing

The principle of hashing combines arrays and lists to achieve an astounding effect:
efficient time access to a large volume of data based on key words, numbers, or phrases
stored in the data. We present here just one of many variations on the concept. The lists
appear to be somewhat closed, but are essentially simple open lists with headers.
Typically all addition can take place at the front end. As such, the lists are functioning as
write-only stacks, the latter being discussed in more generality in the next chapter.

The problem addressed by hashing is to access "records", e.g. structs, according to some
"key" value. The keys could be large numbers or strings for example. If a large number of
such records are stored in an array, it can take considerable time to search the array to
find the one corresponding to a given key. On the other extreme, we could use linear
addressing to access an array by using the key as an index. However, for many such
indices there will typically be no record, so much memory space could be wasted with
unused locations. It would not be feasible to create such an array for more than a few
hundred million keys given current computer technology.

Figure 52: Array of 13 buckets, each a linked list, used for hashing.
The numbers in the buckets represent key values.

bucket
indices

2

0 5 10

3654

248 10

60

18

47

2 4 8 11

bucket
contents

31

56

Implementing Information Structures 181

Hashing "folds" the indexing array so that the same location is used for multiple records.
These records are linked together in a list. The records corresponding to any one location
are called a "bucket". The bucket is searched linearly. The trick to fast access is to keep
the buckets small. This can be done by keeping the index array nominally large and
having a way of distributing the records more-or-less "randomly" into the buckets. Based
on only the key, we have to know how to find the bucket, both to insert the record in the
bucket in the first place and to find out if a record with a given key is in the bucket. The
overall structure, as illustrated in the figure, is typically called a hash table.

For the example above, we simply took the key value modulo the table size, 13, and used
the result as an index. Thus the bucket for key 18 is 18 % 13 ==> 5, while the bucket for
key 47 is 47 % 13 ==> 8. Typically such a simple bucket computation will not assure
very random distributions. So rather than taking the raw key value mod the table size, we
agree in advance on a function

h: key_values → integers

and use

h(k) % table_size

as our index of the bucket for key k. This kind of function is called a hash function. By
careful choice of h, we can get very random distributions and handle arbitrarily large key
values. We can even use strings or other structures as key values, by considering those
structures to be numerals in a certain radix.

Example Hash Function

The following hash function, hash_pdg (for "pretty darn good") works effectively on
strings, producing an unsigned long. Before using the resulting value to index the hash
table, the value produced by the function is taken modulo the table size. This insures that
indices are within range. The function works by using the integer values of successive
characters in the string. An accumulator h is initialized to 0. Each character is added to h
multiplied by a constant to obtain a new value of h. The multiplier has been chosen to
randomize the result as much as possible.

unsigned long hash_pdg(char str[])
{
int multiplier = 131;
unsigned long h = 0;
int N = str.length();
for(int i = 0; i < N; i++)
 {
 h = h*multiplier + str[i];
 }
return h;
}

The origin of the function is G. H. Gonnet and R. Baeza-Yates, 1991.

182 Implementing Information Structures

5.6 Principle of Virtual Contiguity

We conclude this chapter with a reference-based structure quite different from linked
lists. This is an array-like structure for simulating large arrays from smaller ones. The key
idea here is to approach the performance availed by the linear addressing principle,
without the need for having a single contiguous array.

This principle is used in the structure of so-called virtual memory computers, which are
now commonplace. We explained above how we need to have data stored in contiguous
memory locations if we are to exploit the linear addressing principle. This requirement
can present a problem when very large arrays are involved: it could happen that, at the
time a request for a large array is made, the memory has become temporarily
"fragmented". That is, there is enough total memory available in terms of the number of
storage locations, but no contiguous block that is large enough to hold an array of desired
size. The principle of virtual contiguity can be used to "piece together" smaller blocks,
with a slight penalty in access time.

Suppose we need to allocate an array requiring 106 bytes of memory but there is no block

available of that amount. Suppose that there are 100 blocks of 104 bytes each available in
various blocks. The principle of virtual contiguity allows us to piece these blocks together

to give us our 106 blocks. This piecing is done by adding a second level of indexing, as
implemented by an index array 100 addresses in length. Call the virtual array A and the
index array T (for "table"). The values T[0] T[99] hold the base addresses of our 100

blocks of 104 bytes each. Thus, to access A[i], we first compute i / 100 (using integer
division) to find out which block to use, then use i % 100 to access within this block. In
equations:

&A[i] ≡ T[i / 100] + i % 100

where &A[i] means the address of A[i] in memory.

Implementing Information Structures 183

A

B

D

C

A

B

C

D

Figure 53: Virtual contiguity:
left: array as perceived by program;

right: array as implemented in linear address-space memory

Virtual Memory

In a true virtual memory system, an additional twist is used along with the
principle of virtual contiguity: a table entry T[i] can contain either a
memory address or a disk address (as determined by an additional bit in
each word). The block being referenced need not be in memory at the time
the reference is attempted; instead it is on disk and is brought in on
demand. This allows us to "time-share" a relatively small amount of main
memory by swapping blocks to and from the disk, giving the illusion of a
very large amount of memory. The cost paid for this is a slightly slower
overall access time, plus a large penalty if the desired block has to be
brought in from disk.

In a virtual memory system, blocks are referred to as pages and the array T is called a
page table. Systems are designed so that they try to keep the most-likely-to-be referenced
pages in memory whenever possible. The workability of such schemes relies on what is
called the principle of locality: programs tend to refer to the same pages over and over
again in a nominal time interval. Obviously a virtual memory system does not strictly
follow the linear addressing principle of uniform access time when a page is not present
on disk. Nonetheless, most people design algorithms as if the linear addressing principle
still held, relying on the principle of locality to make linear addressing a good

184 Implementing Information Structures

approximation. Fortunately for the applications programmer, the mechanisms
implementing virtual memory are carried out transparently by the system.

Exercises

1. •• Write a program which will do a fast spelling check by using a dictionary
stored as a hash table. Populate the table from a dictionary file, such as
/usr/dict/words which is available in most UNIX systems. Compare the
speed of your program to one that searches the dictionary sequentially.

2. •• Implement a system of arrays that uses the principle of virtual contiguity.

5.7 Chapter Review

Define the following terms:

append
bucket
cell
class
closed list
dereferencing
doubly-linked
hash function
hashing
header
labeled binary tree
level-order

linear addressing principle
linked list
null reference
open list
page
pre-order traversal
post-order traversal
queue
recursive type
ring
virtual memory

5.8 Further Reading

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2nd ed.,
Addison-Wesley, 1991. [Concise reference on a wide range of algorithmic techniques,
with code. Moderate to Difficult]

