
7. Object-Oriented Programming

7.1 Introduction

This chapter describes object-oriented computing and its use in data abstraction,
particularly as it is understood in the Java language, including various forms of
inheritance.

The late 1980's saw a major paradigm shift in the computing industry toward "object-
oriented programming". The reason behind the surge in popularity of this paradigm is its
relevance to organizing the design and construction of large software systems, its ability
to support user-defined data abstractions, and the ability to provide a facility for reuse of
program code. These are aside from the fact that many of the entities that have to be dealt
with in a computer system are naturally modeled as "objects". Ubiquitous examples of
objects are the images and windows that appear on the screen of a typical personal
computer or workstation environment. These have the characteristics that they
(i) maintain their own state information; (ii) can be created dynamically by the program;
(iii) need to interact with other objects as a manner of course.

The paradigm shift is suggested by comparing the two cases in the following figures. In
the first figure, we have the conventional view of data processing:

Figure 78: Conventional (pre-object-oriented) paradigm

Data structures are considered to be separate from the procedures. This introduces
management problems of how to ensure that the data are operated on only by appropriate
procedures, and indeed, problems of how to define what appropriate means for particular
data. In the second figure, many of the procedures have been folded inside the data, the
result being called "objects".

data structuresprocedures

unlimited
access

228 Object-Oriented Programming

Figure 79: Object-oriented paradigm

Thus each object can be accessed only through its accompanying procedures (called
methods). Sometimes the access is referred to as "sending a message" and "receiving a
reply" rather than calling a procedure, and sometimes it is implemented quite differently.

Figure 80: State transition in a graphical object
as the result of sending it a resize message

In any case, an enforced connection between procedures and data solves the issue of what
procedures are appropriate to what data and the issue of controlling access to the data.
Languages differ on how much can be object-oriented vs. conventional: In Smalltalk,
"everything is an object", whereas in Java and C++, primitive data types such as integers
are not.

7.2 Classes

The concept of object relates to both data abstraction and to procedural abstraction. An
object is a data abstraction in that it contains data elements that retain their values or state
between references to the object. An object is a procedural abstraction, in that the
principal means of getting information from it, or of changing its state, is through the
invocation of procedures. Rather than attempting to access an object through arbitrary
procedures, however, the procedures that access the object are associated directly with

methods

procedures objects

messages

Object-Oriented Programming 229

the object, or more precisely, with a natural grouping of the objects known as their class.
In many languages, the syntactic declaration of a class is the central focus of object
definition. The class provides the specification of how objects behave and the language
permits arbitrarily-many objects to be created from the class mold.

Figure 81: Class vs. Object

7.3 Attributes

Some of the types of information kept in objects may be thought of as attributes of the
object. Each attribute typically has a value from a set associated with the attribute.
Examples of attributes and possible value sets include:

size {small, medium, large,}
shape {polygonal, elliptical,}
color {red, blue, green,}
border {none, thin, thick,}
fill {vertical, horizontal, diagonal, brick,}

Objects are the principal vehicles for providing data abstractions in Java: Each object can
contain data values, such as those of attributes, that define its state. An object may also
provide access to those values and the provide ability to change them. These things are
preferably done by the methods associated with the object, rather than through direct
access to the state values themselves, although Java does not prevent the latter type of
access. By accessing attribute values only through methods, the representation of the state
of the object can be changed while leaving the procedural interface intact. There are
numerous benefits of providing a methods-only barrier between the object and its users or
clients:

• Principle of Modularity ("separation of concerns"): This principle asserts
that it is easier to develop complex programs if we have techniques for
separating the functionality into pieces of more primitive functionality.
Objects provide one way of achieving this separation.

"Class"

defines the general form of
an object of the class

"Objects" of the class are
derived from the class
definition,customized with
their own parameter settings

230 Object-Oriented Programming

• Evolutionary Development: The process of developing a program might
begin with simple implementations of objects for testing purposes, then
evolve to more efficient or robust implementations concurrently with testing
and further development.

• Flexibility in Data Representations: An object might admit several different
data representations, which could change in the interest of efficiency while the
program is running. The object notion provides a uniform means of providing
access to such changing objects.

If, on the other hand, the client were permitted direct access to the attributes of an object
without using methods, the representation could never be changed without invalidating
the code that accessed those attributes.

The simplest type of method for setting the value of an attribute is called a setter, while
the simplest type for getting the value of an attribute is called a getter. For example, if we
had some kind of shape class, with fill represented by an int, we would expect to see
within our class declaration method headers as follows:

setFill(int Fill)

int getFill()

7.4 Object Allocation

Objects in Java are always dynamically allocated (created). It is also possible for the
object to reallocate dynamically memory used for its own variables. The origin of the
term "class" is to think of a collection of objects with related behaviors as a class, a
mathematical notion similar to a set, of those objects. Rather than defining the behavior
for each object individually, a class definition gives the behaviors that will be possessed
by all objects in the class. The objects themselves are sometimes called members of the
class, again alluding to the set-like qualities of a class. It is also sometimes said that a
particular object is an instance of the class.

Using Java as an example language, these are the aspects of objects, as defined by a
common class declaration, that will be of interest:

Name Each class has a name, a Java identifier. The name effectively
becomes a type name, so is usable anywhere a type would be
usable.

Constructor The constructor identifies the parameters and code for initializing
an object. Syntactically it looks like a procedure and uses the name
of the class as the constructor name. The constructor is called when
an object is created dynamically or automatically. The constructor

Object-Oriented Programming 231

does not return a value in its syntactic structure. A constructor is
always called by using the Java new operator. The result of this
operator is a reference to the object of the class thus created.

Methods Methods are like procedures that provide the interface between the
object and the program using the object. As with ordinary
procedures, each method has an explicit return type, or specifies
the return type void.

Variables Each time an object is created as a "member" of a class, the system
allocates a separate set of variables internal to it. These are
accessible to each of the methods associated with the object
without explicit declaration inside the method. That is, the
variables local to the object appear as if global to the methods,
without necessitating re-declaration.

The reason for the emphasis above is that use of objects can provide a convenience when
the number of variables would otherwise become too large to be treated as procedure
parameters and use of global variables might be a temptation.

7.5 Static vs. Instance Variables

An exception to having a separate copy of a variable for each object occurs with the
concept of static variable. When a variable in a class is declared static, there is only
one copy shared by all objects in the class. For example, a static variable could keep a
count of the number of objects allocated in the class, if that were desired. For that matter,
a static variable could maintain a list of references to all objects created within the class.

When it is necessary to distinguish a variable from a static variable, the term instance
variable is often used, in accordance with the variable being associated with a particular
object instance. Sometimes static variables are called class variables.

Similarly, a static method is one that does not depend on instance variables, and thus
not on the state of the object. A static method may depend on static variables, however.
Static methods are thus analogous to procedures, or possibly functions, in ordinary
languages.

A final note on classes concerns a thread in algorithm development. It has become
common to present algorithms using abstract data types (ADTs), which are viewed as
mathematical structures accompanied by procedures and functions for dealing expressly
with these structures. For example, a typical ADT might be a set, accompanied by
functions for constructing sets, testing membership, forming unions, etc. Such structures
are characterized by the behavioral interaction of these functions, rather than by the
internal representation used to implement the structure.

232 Object-Oriented Programming

Classes seem to be a very appropriate tool for defining ADTs and
enforcing the disciplined use of their functions and procedures.

7.6 Example – A Stack Class

We now illustrate these points on a specific ADT or class, a class Stack. A stack is
simply an ordered sequence of items with a particular discipline for accessing the items:

The order in which items in a stack are removed is the reverse from the order in
which they were entered.

This is sometimes called the LIFO (last-in, first-out) property.

Regardless of how the stack is implemented, into the stack is not part of the discipline.
The Stack class will be specified in Java:

class Stack
{

// all variables, constructors, and methods
// used for a Stack are declared here

}

We postulate methods push, pop, and empty for putting items into the stack, removing
them, and for testing whether the stack is empty. Let's suppose that the items are integers,
for concreteness.

class Stack
{
void push(int x)
 {
 // defines how to push x
 }

int pop()
 {
 // defines how to return top of the stack
 return value returned;
 }

boolean isEmpty()
 {
 // defines how to determine emptiness
 return;
 }
}

Object-Oriented Programming 233

Method push does not return any value, hence the void. Method pop does not take any
argument. Method empty returns a boolean (true or false) value indicating emptiness:

Java allows inclusion of a static method called main with each class. For one class, this
will serve as the main program that is called at the outset of execution. For any class, the
main method may be used as a test program, which is what we will do here.

class Stack
{
// other methods defined here

public static void main(String arg[])
 {
 int limit = new Integer(arg[0]).intValue();
 Stack s = new Stack(limit);
 for(int i = 0; i < limit; i++)
 {
 s.push(i);
 }
 while(!s.isEmpty())
 {
 System.out.println(s.pop());
 }
 }
}

The keyword static defines main as a static method. The keyword public means that it
can be called externally. The argument type String [] designates an array of strings
indicating what is typed on the command line; each string separated by space will be a
separate element of the array. The line

 int limit = new Integer(arg[0]).intValue();

converts the first command-line argument to an int and assigns it to the variable limit.
The line

 Stack s = new Stack(limit);

uses the Stack constructor, which we have not yet defined, to create the stack. Our first
approach will be to use an array for the stack, and the argument to the constructor will
say how large to make that array, at least initially.

A second use of limit in the test program is to provide a number of times that information
is pushed onto the stack. We see this number being used to control the first for loop. The
actual pushing is done with

 s.push(i);

Here s is the focal stack object, push is the method being called, and i is the actual
argument.

234 Object-Oriented Programming

The while loop is used to pop the elements from the stack as long as the stack is not
empty. Since by definition of the stack discipline items are popped in reverse order from
the order in which they are pushed, the output of this program, if called with a command-
line argument of 5, should be

4
3
2
1
0

indicating the five argument values 0 through 4 that are pushed in the for loop.

7.7 Stack Implementation

Now we devote our attention to implementing the stack. Having decided to use an array
to hold the integers, we will need some way of indicating how many integers are on the
stack at a given time. This will be done with a variable number. The value of number-1
then gives the index within the array of the last item pushed on the stack. Likewise, the
value of number indicates the first available position onto which the next integer will be
pushed, if one is indeed pushed before the next pop. The figure below shows the general
idea.

Figure 82: Array implementation of a stack

Here is how our Stack class definition now looks, after defining the variables array and
number and adding the constructor Stack:

Address of
stack base

number of
elements on

the stack

limit

Object-Oriented Programming 235

class Stack
{
int number; // number of items in stack
int array[]; // stack contents

Stack(int limit)
 {
 array = new int[limit]; // create array
 number = 0; // stack contains no items yet
 }
....
}

Note that the new operator is used to create an array inside the constructor. The array as
declared is only a type declaration; there is no actual space allocated to it until the new
operator is used. Although an array is technically not an object, arrays have a behavior
that is very much object-like. If the new were not used, then any attempt to use the array
would result in a terminal execution error.

Now we can fill in the methods push, pop, and empty:

void push(int x)
 {
 array[number++] = x; // put element at position number
 } // and increment

int pop()
 {
 return array[--number]; // decrement number and take element
 }

boolean isEmpty()
 {
 return number == 0; // see if number is 0
 }

Note that number++ means that we increment number after using the value, and --
number means that we decrement number before using the value. These are the correct
actions, in view of our explanation above.

We can now test the complete program by

java -cs Stack 5

The argument -cs means to compile the source first. A command line is treated as a
sequence of strings. The string "5", the first after the name of class whose main is to be
invoked, is the first command-line argument, which becomes arg[0] of the program.

236 Object-Oriented Programming

7.8 Improved Stack Implementation

This first sketch of a Stack class leaves something to be desired. For one thing, if we try
to push more items onto the stack than limit specified, there will be a run-time error, or
stack overflow. It is an annoyance for a program to have to be aware of such a limit. So
our first enhancement might be to allow the stack array to grow if more space is needed.

A program should not abort an application due to having allocated a fixed
array size. The program should make provisions for extending arrays and
other structures as needed, unless absolutely no memory is left.

In other words, programs that preset the size of internal arrays arbitrarily are less robust
than ones that are able to expand those arrays. In terms of object-oriented programming,
each object should manage its own storage requirements to preclude premature failure
due to lack of space.

To design our class with a growing array, we will add a new method ensure that ensures
there is enough space before insertion into the array is attempted. If there is not enough
space, then ensure will replace the array with a larger one.

Figure 83: Full stack before extension

address of
stack base

number of
elements on

the stack

limit

Object-Oriented Programming 237

Figure 84: Stack after extension

The incremental size will be controlled by a variable increment in the object. For
convenience, we will initialize the increment to be the same as the initial limit. Note that
we also must keep track of what the current limit is, which adds another variable. We will
call this variable limit. The value of the variable limit in each object will be
distinguished from the constructor argument of the same name by qualifying it with this,
which is a Java keyword meaning the current object.

class Stack
{
int number; // number of items in the stack
int limit; // limit on number of items in the stack
int increment; // incremental number to be added
int array[]; // stack contents

Stack(int limit)
 {
 this.limit = limit; // set instance variable to argument value
 increment = limit; // use increment for limit
 array = new int[limit]; // create array
 number = 0; // stack contains no items initially
 }

void ensure() // make sure push is possible
 {
 if(number >= limit)
 {
 int newArray[] = new int[limit+increment]; // create new array
 for(int i = 0; i < limit; i++)
 {
 newArray[i] = array[i]; // copy elements in stack
 }
 array = newArray; // replace array with new one
 limit += increment; // augment the limit
 }
 }

new
address of
stack base

number of
elements on

the stack

new limit

238 Object-Oriented Programming

void push(int x)
 {
 ensure();
 array[number++] = x; // put element at position number, increment
 }
.... // other methods remain unchanged
}

Exercises

1 • Add to the code a method that returns the number of items currently on the stack.

2 • Add to the stack class a second constructor of two arguments, one giving the
initial stack size and one giving the increment.

3 •• Suppose we wished for the stack to reduce the size of the allocated array
whenever number is less than limit - increment. Modify the code accordingly.

4 ••• Change the policy for incrementing stack size to one that increases the size by a
factor, such as 1.5, rather than simply adding an increment. Do you see any
advantages or disadvantages of this method vs. the fixed increment method?

5 ••• For the methods presented here, there is no requirement that the items in a stack
be in a contiguous array. Instead a linked list could be used. Although a linked list
will require extra space for pointers, the amount of space allocated is exactly
proportional to the number of items on the stack. Implement a stack based on
linked lists.

6 •••• Along the lines of the preceding linked list idea, but rather than linking individual
items, link together chunks of items. Each chunk is an array. Thus the overhead
for the links themselves can be made as small as we wish by making the chunks
large enough. This stack gives the incremental allocation of our example, but does
not require copying the array on each extension. As such, it is superior, although
its implementation is more complicated. Implement such a stack.

Figure 85: A stack using chunked array allocation

Current
chunk

Current
top of
stack

Absolute top
location of
current array

next
chunk

previous
chunk

'chunk' struct

next
chunk

previous
chunk

'chunk' struct

next
chunk

previous
chunk

'chunk' struct

elements
"on" the
stack

Object-Oriented Programming 239

7.9 Classes of Data Containers

A stack is just one form of data container, which in turn is just one form of ADT.
Different types of container can be created depending on the discipline of access we wish
to have. The stack, for example, exhibits a last-in, first-out (LIFO) discipline. Items are
extracted in the reverse order of their entry. In other words, extraction from a stack is
"youngest out first". A different discipline with a different set of uses is a queue.
Extraction from a queue is "oldest out first", or first-in, first-out (FIFO). A queue's
operations are often called enqueue (for inserting) and dequeue for extraction. Yet
another discipline uses an ordering relation among the data values themselves: "minimum
out first". Such a discipline is called a priority queue. The figure below illustrates some
of these disciplines. A discipline, not shown, which combines both and stack and queue
capabilities is a deque, for "double-ended queue". The operations might be called
enqueue_top, enqueue_bottom, dequeue_top, and dequeue_bottom.

one

four

insert remove

"Pile"
No particular order

two

three

one

four

two

three

one

Figure 86: A container with no particular discipline

push

Stack
Last-in, First-out (LIFO)

"Youngest out first"

four

two

three

one
four

two

three

one

four

two

three

one

pop

Order- reversing
property

In and out on same ends,
access from the "top"

Figure 87: A container with a stack discipline

240 Object-Oriented Programming

enqueue

Queue
First-in, First-out (FIFO)

"Oldest out first"

four

two

three

one

dequeue

Order-preserving
property

four

two

three

one

four

two

three

one

In and out on
opposite ends

Figure 88: A container with a queue discipline

insert

Priority Queue
"Minimum out first"

four

two

three

one

delete_min
four

two

three

one
four

two

three

one

Shown is minimum with
respect to alphabetic

ordering

Figure 89: A container with a priority queue discipline

7.10 Implementing a Queue as a Circular Array

Consider implementing a queue data abstraction using an array. The straightforward
means of doing this is to use two indices, one indicating the oldest item in the array, the
other indicating the youngest. Enqueues are made near the youngest, while dequeues are
done near the oldest. The following diagram shows a typical queue state:

Object-Oriented Programming 241

oldest youngest

d e f g h i j

Figure 90: Queue implemented with an array, before enqueuing k

If the next operation is enqueue(k), then the resulting queue will be:

Figure 91: Queue implemented with an array, after enqueuing k

From this state, if the next operation is dequeue(), then d would be dequeued and the
resulting state would be:

Figure 92: Queue implemented with an array, after dequeuing d

Of course, the value being dequeued need not actually be obliterated. It is the pair of
indices that tell us which values in the queue are valid, not the values in the cells
themselves. Things get more interesting as additional items are enqueued, until youngest
points to the top end of the array. Note that there still may be available space in the
queue, namely that below oldest. It is desirable to use that space, by "wrapping around"
the pointer to the other end of the queue. Therefore, after having enqueued l, m, n, o, and
p, the queue would appear as:

oldest youngest

d e f g h i j k

oldest youngest

e f g h i j kd

242 Object-Oriented Programming

oldestyoungest

e f g h i j k l mn o p

Figure 93: Queue implemented with an array, after wrap-around

When the index values meet, as they have here, we need to allocate more space. The
simplest way to do this is to allocate a new array and copy the current valid values into it.
From the previous figure, attempting to enqueue q now would cause an overflow
condition to result. Assuming we can double the space allocated were the same as that in
the original queue, we would then have the following, or one of its many equivalents:

youngest

n o p q

oldest

e f g h i j k l m

Figure 94: Queue implemented with an array, after space extension

How do we detect when additional allocation is necessary? It is tempting to try to use the
relationship between the values of the two indices to do this. However, this may be
clumsy to manage (why?). A simpler technique is to just maintain a count of the number
in the queue at any given time and compare it with the total space available. Maintaining
the number might have other uses as well, such as providing that information to the
clients of the queue through an appropriate call.

Exercises

1 ••• Construct a class definition and implementation for a queue of items. Use the
stack class example developed here as a model. Use circular arrays as the
implementation, so that it is not necessary to extend the storage in the stack unless
all space is used up. Be very careful about copying the queue contents when the
queue is extended.

2 ••• Construct a class definition and implementation for a deque (double-ended queue,
in which enqueuing and dequeuing can take place at either end). This should
observe the same storage economies defined for the queue in the previous
exercise.

Object-Oriented Programming 243

7.11 Code Normalization and Class Hierarchies

"Normalization" is the term (borrowed from database theory) used to describe an on-
going effort, during code development, of concentrating the specification of functionality
in as few places as possible,. It has also come to be called “factoring”.

Reasons to "normalize" code:

Intellectual economy: We would prefer to gain an understanding of as
much functionality as possible through as little code reading as possible.

Maintainability/evolvability: Most programs are not written then left
alone. Programs that get used tend to evolve as their users desire new
features. This is often done by building on existing code. The fewer places
within the code one has to visit to make a given conceptual change, the
better.

An example of normalization we all hopefully use is through the procedure concept.
Rather than supporting several segments of code performing similar tasks, we try to
generalize the task, package it as a procedure, and replace the would-be separate code
segments by procedure calls with appropriate parameters.

Other forms of normalization are:

Using identifiers to represent key constants.

The class concept, as used in object-oriented programming, which
encourages procedural normalization by encapsulating procedures for
specific abstract data types along with the specifications of those data
types.

As we have seen, classes can be built up out of the raw materials of a programming
language. However, an important leveraging technique is to build classes out of other
classes as well. In other words, an object X can employ other objects Y, Z, ... to achieve
X's functionality. The programmer or class designer has a number of means for doing
this:

• Variables in a class definition can be objects of other classes. We say that the
outer object is composed of, or aggregated from, the inner objects.

• A class definition can be directly based on the definition of another class (which
could be based on yet another class, etc.). This is known as inheritance, since the
functionality of one class can be used by the other without a redefinition of this
functionality.

244 Object-Oriented Programming

As an example of composing an object of one class from an object of another, recall the
stack example. The stack was built using an array. One of the functionalities provided for
the array was extendability, the ability to make the array larger when more space is
needed. But this kind of capability might be needed for many different types of container
built from arrays. Furthermore, since the array extension aspect is the trickiest part of the
code, it would be helpful to isolate it into functionality associated with the array, and not
have to deal with it in classes built using the array. Thus we might construct a class
Array that gives us the array access capability with extension and use this class in
building other classes such as stacks, queues, etc. so that we don’t have to reimplement
this functionality in each class.

class Array
{
int increment; // incremental number to be added
int array[]; // actual array contents

Array(int limit) // constructor
 {
 increment = limit; // use increment for limit
 array = new int[limit]; // create actual array
 }

void ensure(int desiredSize) // make sure size is at least desiredSize
 {
 if(desiredSize > array.length)
 {
 int newArray[] = new int[desiredSize]; // create new array
 for(int i = 0; i < array.length; i++)
 {
 newArray[i] = array[i]; // copy elements
 }
 array = newArray; // replace array with new one
 }
 }
}

class Stack // Stack built using class Array
{
int number; // number of items in the stack
int increment; // incremental number to be added
Array a; // stack contents

Stack(int limit)
 {
 a = new Array(limit); // create array for stack
 increment = limit; // use increment for limit
 number = 0; // stack contains no items initially
 }

Object-Oriented Programming 245

void ensure() // make sure push is possible
 {
 if(number >= a.array.length)
 {
 a.ensure(a.array.length + increment);
 }
 }

void push(int x)
 {
 ensure();
 a.array[number++] = x; // put element at position number, increment
 }

int pop()
 {
 return a.array[--number]; // decrement number and take element
 }
.... // other methods remain unchanged
}

Within class Stack, a reference to an object of class Array is allocated, here identified by
a. Notice how the use of the Array class to implement the Stack class results in a net
simplification of the latter. By moving the array extension code to the underlying Array
class, there is less confusion in the Stack class itself. Thus using two classes rather than
one results in a separation of concerns, which may make debugging easier.

7.12 Inheritance

A concept linked to that of class, and sometimes thought to be required in object-oriented
programming, is that of inheritance. This can be viewed as a form of normalization. The
motivation for inheritance is that different classes of data abstractions can have functions
that are both similar among classes and ones that are different among classes. Inheritance
attempts to normalize class definitions by providing a way to merge similar functions
across classes.

Inheritance entails defining a "parent class" that contains common
methods and one or more child classes, each potentially with their separate
functions, but which also inherit functions from the parent class.

With the inheritance mechanism, we do not have to recode common functions in each
child class; instead we put them in the parent class.

The following diagram suggests inheritance among classes. At the programmer's option,
the sets of methods associated with the child classes either augment or over-ride the
methods in the parent class. This diagram is expressed in a standard known as UML
(Unified Modeling Language).

246 Object-Oriented Programming

Figure 95: Inheritance among classes

This concept can be extended to any number of children of the same parent. Moreover, it
can be extended to a class hierarchy, in which the children have children, etc. The
terminology base class is also used for parent class and derived class for the children
classes. It is also said that the derived class extends the base class (note that this is a
different idea from extending an array).

Possible Advantages of Inheritance:

• Code for a given method in a base class is implemented once, but the method may
be used in all derived classes.

• A method declared in a base class can be "customized" for a derived class by
over-riding it with a different method.

• A method that accepts an object of the base class as an argument will also accept
objects of the derived classes.

As an example, let's derive a new class IndexableStack from class Stack. The idea of
the new class is that we can index the elements on the stack. However, indexing takes
place from the top element downward, so it is not the same as ordinary array index. In
other words, if s is an IndexableStack, s.fromTop(0) represents the top element,
s.fromTop(1) represents the element next to the top, and so on.

The following Java code demonstrates this derived class. Note that the keyword extends
indicates that this class is being derived from another.

class IndexableStack extends Stack

child class 2

parent class

child class 1 child class 3

Object-Oriented Programming 247

{
IndexableStack(int limit)
 {
 super(limit);
 }

int fromTop(int index)
 {
 return a.array[number-1-index];
 }

int size()
 {
 return number;
 }
}

Note the use of the keyword super in the constructor. This keyword refers to the object
in the base class Stack that underlies the IndexableStack. The use of the keyword with
an argument means that the constructor of the base class is called with this argument. In
other words, whenever we create an IndexableStack, we are creating a Stack with the
same value of argument limit.

Note the use of the identifiers a and number in the method fromTop. These identifiers are
not declared in IndexableStack. Instead, they represent the identifiers of the same name
in the underlying class Stack. Every variable in the underlying base class can be used in
a similar fashion in the derived class.

Next consider the idea of over-riding. A very useful example of over-riding occurs in the
class Applet, from which user applets are derived. An applet was intended to be an
application program callable within special contexts, such as web pages. However,
applets can also be run in a free-standing fashion. A major advantage of the class Applet
is that there are pre-implemented methods for handling mouse events (down, up, and
drag) and keyboard events. By creating a class derived from class Applet, the
programmer can over-ride the event-handling methods to be ones of her own choosing,
without getting involved in the low-level details of event handling. This makes the
creation of interactive applets relatively simple.

The following example illustrates handling of mouse events by over-riding methods
mouseDown, mouseDrag, etc. which are defined in class Applet. The reader will note the
absence of a main program control thread. Instead actions in this program are driven by
mouse events. Each time an event occurs, one of the methods is called and some
commands are executed.

Another example of over-riding that exists in this program is in the update and paint
methods. The standard applet protocol is that the program does not update the screen
directly; instead, the program calls repaint(), which will call update(g), where g is the
applet’s graphics. An examination of the code reveals that update is never called
explicitly. Instead this is done in the underlying Applet code. The reason that update
calls paint rather than doing the painting directly is that the applet also makes implicit

248 Object-Oriented Programming

calls to paint in the case the screen needs repainting due to being covered then re-
exposed, such as due to user actions involving moving the window on the screen.

// file: miniMouse.java
// As mouse events occur, the event and its coordinates
// appear on the screen.

// This applet also prescribes a model for the use of double-buffering
// to avoid flicker: drawing occurs in an image buffer, which is then
// painted onto the screen as needed. This also simplifies drawing,
// since each event creates a blank slate and then draws onto it.

import java.applet.*; // applet class
import java.awt.*; // Abstract Window Toolkit

public class miniMouse extends Applet
 {
 Image image; // Image to be drawn on screen by paint method
 Graphics graphics; // Graphics part of image, acts as buffer

 // Initialize the applet.

 public void init()
 {
 makeImageBuffer();
 }

 // mouseDown is called when the mouse button is depressed.

 public boolean mouseDown(Event e, int x, int y)
 {
 return show("mouseDown", x, y);
 }

 // mouseDrag is called when the mouse is dragged.

 public boolean mouseDrag(Event e, int x, int y)
 {
 return show("mouseDrag", x, y);
 }

 // mouseUp is called when the mouse button is released.

 public boolean mouseUp(Event v, int x, int y)
 {
 return show("mouseUp", x, y);
 }

Object-Oriented Programming 249

 // mouseMove is called when the mouse moves without being dragged

 public boolean mouseMove(Event v, int x, int y)
 {
 return show("mouseMove", x, y);
 }

 // show paints the mouse coordinates into the graphics buffer

 boolean show(String message, int x, int y)
 {
 clear();
 graphics.setColor(Color.black);
 graphics.drawString(message +

" at (" + x + ", " + y + ")", 50, 100);
 repaint();
 return true;
 }

 // update is implicitly called when repaint() is called
 // g will be bound to the Graphics object in the Applet,
 // not the one in the image. paint will draw the image into g.

 public void update(Graphics g)
 {
 paint(g);
 }

 // paint(Graphics) is called by update(g) and whenever
 // the screen needs painting (such as when it is newly exposed)

 public void paint(Graphics g)
 {
 g.drawImage(image, 0, 0, null);
 }

 // clear clears the image

 void clear()
 {
 graphics.clearRect(0, 0, size().width, size().height);
 }

 // Make image buffer based on size of the applet.

 void makeImageBuffer()
 {
 image = createImage(size().width, size().height);
 graphics = image.getGraphics();
 }
 }

250 Object-Oriented Programming

Drawbacks of Inheritance

While inheritance can be a wonderful time-saving tool, we offer these cautions:

Possible drawbacks of inheritance:

• Once an inheritance hierarchy is built, functionality in base classes cannot
be changed unless the impact of this change on derived classes is clearly
understood and managed.

• The user of a derived class may have to refer to the base class (and its base
class, etc., if any) to understand the full functionality of the class.

There is a fine art in developing the inheritance hierarchy for a large library; each level in
the hierarchy should represent carefully-chosen abstractions.

7.12 Inheritance vs. Composition

Inheritance is just one of two major ways to build hierarchies of classes. The second way,
which is called composition, is for the new class to make use of one or more objects of
other classes. Although these two ways appear similar, they are actually distinct. For
example, whereas inheritance adds a new layer of functionality to that of an existing
class, composition uses functionality of embedded objects but does not necessarily
provide similar functionality to the outside world. The following diagram is meant to
suggest this distinction.

Figure 96: Inheritance vs. Composition

With composition, if the outer classs wishes to provide functionality of inner clases to its
clients, it must explicitly provide methods for that purpose. For example, an alternate way
to have built the Stack class above would be to have Stack inherit from Array, rather
than be composed of an Array. In this case, methods such as extend that are available in
Array would automatically be available in Stack as well. Whether or not this is desirable

base functionality

added

total
functionality

overall

class 1 functionality

class 2 functionality

Inheritance Composition

Object-Oriented Programming 251

would depend on the client expectations for Stack and other considerations. An
advantage is that there is less code for the extension; a disadvantage is that it exposes
array-like functionality in the Stack definition, upon which the client may come to rely.

Composition should also not be confused with function composition, despite there being
a similarity. Yet another construction similar to composition is called aggregation. The
technical distinction is that with composition the component objects are not free-standing
but are instead a part of the composing object, whereas with aggregation, the components
exist independently from the aggregating object. This means that a single object may be
aggregated in more than one object, much like structure sharing discussed in Chapter 2.

Exercises

1 ••• Using inheritance from class Array, construct a class BiasedArray that behaves
like an Array except that the lower limit is an arbitrary integer (rather than just 0)
called the bias. In this class, an indexing method, say elementAt, must be used in
lieu of the usual [...] notation so that the bias is taken into account on access.

2 ••• Code a class Queue using class Array in two different ways, one using
composition and the other using inheritance. Use the circular array technique
described earlier.

3 ••• Code a class Deque using class Array.

4 ••• Using aggregation, construct a class Varray for virtually concatenating arrays,
using the Principle of Virtual Contiguity described in Implementing Information
Structures. One of the constructors for this class should take two arguments of
class Array that we have already presented and provide a method elementAt for
indexing. This indexing should translate into indexing for an appropriate one of
the arrays being concatenated. Also provide constructors that take one array and
one virtual array and a constructor that takes two virtual arrays. Provide as much
of the functionality of the class array as seems sensible. The following diagram
suggests how varrays work:

252 Object-Oriented Programming

Figure 97: Aggregated objects in a class of virtual arrays

5 •••• Arrays can be constructed of any dimension. Create a class definition that takes
the number of dimensions as an argument to a constructor. Use a single-
dimension array of indices to access arrays so constructed.

7.13 The is-a Concept and Sub-Classing

When a class is constructed as a derived class using inheritance, the derived class
inherits, by default, the characteristics of the underlying base class. Unless the essential
characteristics are redefined, in a sense every derived class object is a base class object,
since it has the capabilities of the base class object but possibly more. For example, an
IndexableStack is a Stack, according to our definition. This is in the same sense that
additional capabilities are possessed by people and things. For example, if the base class
is person and the derived class is student, then a student has the characteristics of a
person and possibly more. Another way of saying this is that class student is a sub-class
of class person. Every student is a person but not necessarily conversely.

It is common to find class hierarchies in which branching according to characteristics
occurs. The programmer should design such hierarchies to best reflect the enterprise
underlying the application. For example, if we are developing a computer window
system, then there might be a base class window with sub-classes such as:

11

5

16

8

24

Varray

Varray

Array

Array

Array

Object-Oriented Programming 253

text_window

graphics_window

window_with_vertical_scrollbar

window_with_horizontal_and_vertical_scrollbars

text_window_with_vertical_scrollbar

graphics_window_with_horizontal_and_vertical_scrollbars

and so on. It is the job of the designer to organize these into a meaningful hierarchy for
use by the client and also to do it in such a way that as much code functionality as
possible is shared through inheritance.

7.14 Using Inheritance for Interface Abstraction

The type of inheritance discussed could be called implementation inheritance, since the
objects of the base class are being used as a means of implementing objects of the derived
class. Another type of inheritance is called interface inheritance. In this form, the
specification of the interface methods is what is being inherited. As before, each object in
the derived class still is an object in the base class, so that a method parameter could
specify an object of base type and any of the derived types could be passed as a special
case.

In Java, there is a special class-like construct used to achieve interface inheritance: The
base class is called an interface rather than a class. As an example, consider the two
container classes Stack vs. Queue. Both of these have certain characteristics in common:
They both have methods for putting data in, removing data, and checking for emptiness.
In certain domains, such as search algorithms, a stack or a queue could be used, with
attendant effects on the resulting search order.

We could consider both Stack and Queue to be instances of a common interface, say
Pile. We'd have to use the same names for addition and removal of data in both classes.
So rather than use push and enqueue, we might simply use add, and rather than use pop
and dequeue, we might use remove. Our interface declaration might then be:

interface Pile
{
void add(int x);

int remove();

boolean isEmpty();
}

254 Object-Oriented Programming

Note that the interface declaration only declares the types of the methods. The definition
of the methods themselves are in the classes that implement the interface. Each such class
must define all of the methods in the interface. However, a class may define other
methods as well. Each class will define its own constructor, since when we actually
create a Pile, we must be specific about how it is implemented.

The following shows how class Stack might be declared to implement interface Pile:

class Stack implements Pile // Stack built using class Array
{
int number; // number of items in the stack
int increment; // incremental number to be added
Array a; // stack contents

Stack(int limit)
 {
 a = new Array(limit); // create array for stack
 increment = limit; // use increment for limit
 number = 0; // stack contains no items initially
 }

void ensure() // make sure add is possible
 {
 if(number >= a.array.length)
 {
 a.ensure(a.array.length + increment);
 }
 }

public void add(int x)
 {
 ensure();
 a.array[number++] = x; // put element at position number and increment
 }

public int remove()
 {
 return a.array[--number]; // decrement number and take element
 }

public boolean isEmpty()
 {
 return number == 0; // see if number is 0
 }
}

Note the public modifiers before the methods that are declared in the interface. Since
those methods are by default public, these modifiers are required in the implementing
class. Similarly we might have an implementation of class Queue:

Object-Oriented Programming 255

class Queue implements Pile // Queue built using class Array
{
int number; // number of items in the Queue
int increment; // incremental number to be added
int oldest; // index of first element to be removed
int newest; // index of last element added
Array a; // Queue contents

Queue(int limit)
 {
 a = new Array(limit); // create array for Queue
 increment = limit; // use increment for limit
 number = 0; // Queue contains no items initially
 oldest = 0;
 newest = -1;
 }
... definition of methods add, remove, empty ...

}

Now let's give a sample method that uses a Pile as a parameter. We do this in the context
of a test program for this class. We are going to test both Stack and Queue:

class TestPile
{
public static void main(String arg[])
 {
 int limit = new Integer(arg[0]).intValue();
 int cycles = new Integer(arg[1]).intValue();

 testPile(new Stack(limit), cycles);
 testPile(new Queue(limit), cycles);
 }

static void testPile(Pile p, int cycles)
 {
 for(int i = 0; i < cycles; i++)
 {
 p.add(i);
 }
 while(!p.isEmpty())
 {
 System.out.println(p.remove());
 }
 }
}

The important thing to note here is the type of the first parameter Pile to testPile.
Since both Stack and Queue are special cases of pile, we can use either type as a
parameter to testPile, as shown in main above.

256 Object-Oriented Programming

7.15 Abstract Classes

An idea similar to implementation of an interface is that of an abstract base class. In Java
terminology, a base class is abstract if it is intended to tie together similar derived
classes, but there is to be no direct creation of objects of the base class itself. Unlike an
interface, objects can actually exist in the abstract class. There might be methods and
constructors defined in the abstract class as well. However, similar to an interface, those
objects are never created by calling their constructors directly. Instead, their constructors
are called in the constructors of classes derived from the abstract class.

Abstract classes can also contain abstract method declarations. These methods are
similar to the declarations in an interface; they do not specify an implementation; instead
this is done in the derived classes.

An interesting example of abstract classes is in a shape-drawing program. There are
typically several different types of shapes that can be drawn with the mouse, for example:

Box
Oval
Line

Each of these is an object of a different class. Each has a different way of drawing itself.
At the same time, there are certain things we wish to do with shapes that do not need to
differentiate between these individual classes. For example, each shape has some
reference position that defines a relative offset from a corner of the screen. We would
expect to find a move method that changes this reference position, and that method will be
the same for all shapes.

Our inheritance diagram would appear as in Figure 98, with Shape being the abstract
class. Shape would have an abstract method draw, which would be defined specially by
each shape class, and a concrete method move that changes its reference coordinates.

Object-Oriented Programming 257

Figure 98: Implementing shapes with inheritance

abstract class Shape
 {
 int x, y; // coordinates

 Shape(int x, int y) // constructor
 {
 this.x = x;
 this.y = y;
 }

 void move(int x, int y) // concrete method
 {
 this.x = x;
 this.y = y;
 }

 abstract void draw(int x, int y); // defined in derived classes
 }

class Box extends Shape
 {
 Box(int x, int y,) // Box constructor
 {
 super(x, y); // call base constructor
 }

 void draw(int x, int y) // draw method for Box
 {

....
 }
 }

258 Object-Oriented Programming

class Oval extends Shape
 {
 Oval(int x, int y,) // Oval constructor
 {
 super(x, y); // call base constructor
 }

 void draw(int x, int y) // draw method for Oval
 {

....
 }
 }
....

As in the case of interfaces, where both Stack and Queue could be used for a Pile, here
both Box and Oval can be used for a Shape. If we have a variable of type Shape, we can
call its draw method without knowing what kind of shape it is:

Box box = new Box(....);
Oval oval = new Oval(....);

Shape shape;

shape = box;
shape.draw(....);

shape = oval;
shape.draw(....);

Exactly the same statement may be used to draw either kind of object.

An interesting further step would be to add a class Group as a sub-class of Shape, with
the idea being that a Group could hold a list of shapes that can be moved as a unit.

Another example of a class hierarchy with some abstract classes occurs in the Java
Abstract Window Toolkit (awt). We show only a portion of this hierarchy, to give the
reader a feel for why it is structured as it is. The classes in this hierarchy that we'll
mention are:

Component: An abstract class that contains screen graphics and methods to paint
the graphics as well as to handle mouse events that occur within.

Specific sub-classes of Component that do not contain other components include:

TextComponent, which has sub-classes
TextField
TextArea.

Label
Scrollbar
Button

Object-Oriented Programming 259

List (a type of menu)

Container: An abstract sub-class of Component containing zero or more
components. Two specific sub-classes of Container are:

Window, a bordered object that has sub-classes
Frame, which is a Window with certain added features
Dialog

Panel, which has a sub-class Applet. A panel has methods for catching
mouse events that occur within it.

7.16 The Object Class

In Java, there is a single master class from which all classes inherit. This class is called
Object. If we view the inheritance hierarchy as a tree, then Object is the root of the
tree.

One approach to creating container classes for different classes of objects is to make the
contained type be of class Object. Since each class is derived from class Object, each
object of any class is a member of class Object. There are two problems with this
approach:

1. Not everything to be contained is an object. For example, if we wanted to
make a stack of int, this type is not an object.

2. Different types of objects can be stored in the same container. This might lead
to confusion or errors. The code for accessing objects in the container may get
more complicated by the fact that the class of the object will need to be
checked dynamically.

Problem 1 can be addressed by wrapper classes, to be discussed subsequently. In order to
implement checking called for in problem 2, we can make use of the built-in Java
operator instanceof. An expression involving the latter has the following form:

Object-Reference instanceof Class-Name

As an example, we could have constructed our class Stack using Object rather than int
as the contained type. Then the value returned by the pop method would be Object. In
order to test whether the object popped is of a class C, we would have code such as:

260 Object-Oriented Programming

Stack s = new Stack();
....

Object ob = s.pop();

if(ob instanceOf C)
 { }

7.17 Wrapper Classes

In Java, primitive data items such as int and float are not objects. However, it is
frequently desired to treat them as such. For example, as discussed above, rather than
create a different stack class for each different type of datum that we may wish to put in
stacks, we could create a single class of type Object. The Java language libraries provide
classes that serve the purposes of making objects out of primitive objects. But if they
didn't, we could still define them ourselves. Frequently used wrapper classes, and the
type of data each contains, are:

Wrapper class Wrapped Type
Integer int
Long long
Float float
Double double
Char char
Boolean boolean

Each wrapper object contains a single object of the wrapped type. Also, these objects are
immutable, meaning that their values cannot be changed once created.

Methods of the wrapper classes provide ways to extract the wrapped data, and also to
construct objects from other types, such as from Strings. Consult the reference manual
for details. The first four of the wrappers mentioned above extend an abstract class called
Number. By using Number as a type, one can extract information using methods such as
floatValue, without requiring knowledge of whether the actual number is an Integer,
Long, Float, or Double.

Object ob = s.pop();

if(ob instanceOf Number)
 {
 float v = ((Number)ob).floatValue();

 }

Object-Oriented Programming 261

7.18 Copying Objects

What does it mean to copy an object? Suppose, for example, an object is a list of lists.
Does copying this object mean copying the entire list but allowing the elements to be
shared among both copies, or does it mean that the elements are copied too?

By shallow copying, we mean copying only the references to the elements of the list. A
consequence of shallow copying is that the lists cells themselves are shared between the
original and the copy. This might lead to unintended side-effects, since a change made in
the copy can now change the original. By deep copying, we mean copying all of the
elements in the list and, if those elements are lists, copying them, and so on. If the list
elements are each deep copied recursively, then there is no connection between the copy
and the original, other than they have the same shape and atomic values. Obviously we
can have types of copying between totally shallow and totally deep copying. For
example, we could copy the list elements, but shallow copy them. If those elements are
only atoms there would be no sharing. If they are pointers to objects, there still would be
some sharing.

Below we illustrate shallow vs. deep copying of an object that references an array. For
example, this could be the implementation of a stack as discussed earlier.

Figure 99: Shallow vs. deep copying

7.19 Equality for Objects

Similar to the copying issue, there is the issue of how objects are compared for equality.
We could just compare references to the objects, which would mean that two objects are
equal only when they are in exactly the same storage location. This is not a very robust

original

copy

a b c d e f g

original

copy

a b c d e f g

a b c d e f g

DEEP COPYSHALLOW COPY

262 Object-Oriented Programming

form of comparison, and is generally meaningful only if an object with a given structure
is stored in one unique place, or if we are trying to determine literal identity of objects
rather than structural equality. Alternatively, we could compare them more deeply,
component-by-component. In this case, there is the issue of how those components are
compared, e.g. by reference or more deeply, and so on. It is important to be aware of
what equality methods are really doing. The same is true for inequality methods.

7.20 Principle of Interning

For certain cases of read-only objects, such as a set of strings, it is sometimes useful to
guarantee that there is at most one copy of any object value. Not only does this save
space, it allows objects to be compared for equality just by comparing references to them
and not delving into their internal structure. This generally improves speed if there are
many comparisons to be done. The principle of interning, then, is: prior to creating a
new (read-only) object, check to see if there is already an object with the same value. If
there is, return a reference to the pre-existing object. If not, then create a new object and
return a reference to it. The principle of interning is built into languages like Lisp and
Prolog: every time a string is read, it is "interned", i.e. the procedure mentioned above is
done.

Figure 100: Illustrating use of interning for pointers to read-only strings

A special case of interning can be useful in Java: If we store references to the objects in
an array, and refer to the objects by the array index, generally a relatively small index, we
can use the switch statement to dispatch on the value of an object. Let us call this special
case small-integer interning.

red

red

blue

orange

green

green

red

blue

orange

green

without interning with interning

Object-Oriented Programming 263

Figure 101: Illustration of small-integer interning

With either ordinary or small-integer interning, a table or list of some kind must be
maintained to keep track of the objects that have been allocated. This allows us to search
through the set of previously-interned items when a request is made to intern a new item.
The use of an array rather than a list for the table, in the case of small-integer interning,
allows us to quickly get to the contents of the actual object when necessary.

Exercise

•• 1 Determine whether any standard Java class provides interning. If so, explain how
this feature could be used.

7.21 Linked-Lists in Object-Oriented Form

To close this section, we revisit the linked-list implementation discussed in chapter 5. In
that implementation, all list manipulation was done with static methods. In our current
implementation we will replace many of these with regular methods. For example, if L is
a list, we will use

L.first()

to get its first element rather than

first(L)

One reason this is attractive in Java programming is that to use the static method outside
of the list class itself, we would have to qualify the method name with the class name, as
in:

List.first(L)

whereas with the form L.first() we would not, since the class is implied from the type
of L itself.

red

blue

orange

green

with small-integer
interning

0

1

2

3

0

1

2
3
.
.
.

0

1

264 Object-Oriented Programming

In presenting our list class, we will use Object as the type of a member of list. This is
similar in philosophy to some standard Java classes, such as Vector. The implication of
this choice is that lists may be highly heterogeneous due to the polymorphic nature of the
Object class. For example, some of the elements of a list may be lists themselves, and
some of those lists can have lists as elements, and so on. This gives an easy way to
achieve the list functionality of a language such as rex, which was heavily exercised in
the early chapters.

Due to the attendant polymorphism of this approach, we call our list class Polylist.
Another purpose of doing so is that the class List is commonly imported into
applications employing the Java awt (abstract window toolkit) and we wish to avoid
conflict with that name.

We can also introduce input and output methods that are capable of casting Polylists to
Strings in the form of S expressions. This is very convenient for building software
prototypes where we wish to concentrate on the inner structure rather than the format of
data. We can change the input and output syntax to a different form if desired, without
disturbing the essence of the application program.

public class Polylist
 {
 // nil is the empty-list constant

 public static final Polylist nil = new Polylist();

 private polycell ptr;

 // The constructors are not intended for general use;
 // cons is preferred instead.

 // construct empty Polylist

 Polylist()
 {
 ptr = null;
 }

 // construct non-empty Polylist

 Polylist(Object First, Polylist Rest)
 {
 ptr = new polycell(First, Rest);
 }

 // isEmpty() tells whether the Polylist is empty.

 public boolean isEmpty()
 {
 return ptr == null;
 }

Object-Oriented Programming 265

 // nonEmpty() tells whether the Polylist is non-empty.

 public boolean nonEmpty()
 {
 return ptr != null;
 }

 // first() returns the first element of a non-empty list.

 public Object first()
 {
 return ptr.first();
 }

 // rest() returns the rest of a non-empty Polylist.

 public Polylist rest()
 {
 return ptr.rest();
 }

 // cons returns a new Polylist given a First, with this as a Rest

 public Polylist cons(Object First)
 {
 return new Polylist(First, this);
 }

 // static cons returns a new Polylist given a First and a Rest.

 public static Polylist cons(Object First, Polylist Rest)
 {
 return Rest.cons(First);
 }
 }

public class polycell
 {
 Object First;
 Polylist Rest;

 // first() returns the first element of a NonEmptyList.

 public Object first()
 {
 return First;
 }

 // rest() returns the rest of a NonEmptyList.

 public Polylist rest()
 {
 return Rest;
 }

266 Object-Oriented Programming

 // polycell is the constructor for the cell of a Polylist,
 // given a First and a Rest.

 public polycell(Object First, Polylist Rest)
 {
 this.First = First;
 this.Rest = Rest;
 }
 }

One possible reason for preferring the static 2-argument form of cons is as follows:
suppose we construct a list using the 1-argument cons method:

nil.cons(a).cons(b).cons(c)

This doesn't look bad, except that the list constructed has the elements in the reverse
order from how they are listed. That is, the first element of this list will be c, not a.

To give an example of how coding might look using the object-oriented style, we present
the familiar append method. Here append produces a new list by following elements of
the current list with the elements in the argument list. In effect, the current list is copied,
while the argument list is shared.

 // append(M) returns a Polylist consisting of the elements of this
 // followed by those of M.

 public Polylist append(Polylist M)
 {
 if(isEmpty())
 return M;
 else
 return cons(first(), rest().append(M));
 }

Exercises

•• 1 Implement a method that creates a range of Integers given the endpoints of the
range.

•• 2 Implement a method that returns a list of the elements in an array of objects.

••• 3 Implement a Stack class using composition of a Polylist.

••• 4 Implement a Queue class using linked lists. You probably won't want to use the
Polylist class directly, since the natural way to implement a queue requires a
closed list rather than an open one.

Object-Oriented Programming 267

7.22 Enumeration Interfaces

A common technique for iterating over things such as lists is to use the interface
Enumeration defined in java.util. To qualify as an implementation of an Enumeration, a
class must provide two methods:

public Object nextElement()
public boolean hasMoreElements()

The idea is that an Enumeration is created from a sequence, such as a list, to contain the
elements of the sequence. This is typically done by a method of the underlying sequence
class of type

 public Enumeration elements()

that returns the Enumeration. The two methods are then used to get one element of a
time from the sequence. Note that nextElement() returns the next element and has the
side-effect of advancing on to the next element after that. If there are no more elements,
an exception will be thrown.

Using Enumeration interfaces takes some getting used to, but once the idea is
understood, they can be quite handy. A typical use of Enumeration to sequence through
a Polylist would look like:

for(Enumeration e = L.elements(); e.hasMoreElements();)
 {
 Object ob = e.nextElement();

 use ob
 }

This can be contrasted with simply using a Polylist variable, say T, to do the sequencing:

for(Polylist T = L; T.nonEmpty(); T = T.rest())
 {
 Object ob = T.first();

 use ob
 }

Note that the for statement in the Enumeration case has an empty updating step; this is
because updating is done as a side effect of the nextElement method. A specific example
is the following iterative implementation of the reverse method, which constructs the
reverse of a list. Here elements() refers to the elements of this list.

268 Object-Oriented Programming

 // reverse(L) returns the reverse of this

 public Polylist reverse()
 {
 Polylist rev = nil;
 for(Enumeration e = elements(); e.hasMoreElements();)
 {
 rev = rev.cons(e.nextElement());
 }
 return rev;
 }

Another example is the method member that tests whether a list contains the argument:

 // member(A) tells whether A is a member of this list

 public boolean member(Object A)
 {
 for(Enumeration e = elements(); e.hasMoreElements();)
 if(A.equals(e.nextElement())
 return true;
 return false;
 }

This form of iteration will not be used for every occasion; for example, recursion is still
more natural for methods such as append, which build the result list from the outside-in.

One possible reason to prefer an Enumeration is that it is a type, just as a class is a type.
Thus a method can be constructed to use an Enumeration argument without regard to
whether the thing being enumerated is a list, an array, or something else. Thus an
Enumeration is just an abstraction for a set of items that can be enumerated.

Now we have a look at how the Polylist enumeration is implemented. As with most
enumerations, we try not to actually build a new structure to hold the elements, but rather
use the elements in place. This entails implementing some kind of cursor mechanism to
sequence through the list. In the present case, the Polylist class itself serves as the cursor,
just by replacing the list with its rest upon advancing the cursor.

The class that implements the enumeration is called PolylistEnum. The method elements
of class Polylist returns an object of this type, as shown:

 // elements() returns a PolylistEnum object, which implements the
 // interface Enumeration.

 public PolylistEnum elements()
 {
 return new PolylistEnum(this);
 }

The implementation class, PolylistEnum, then appears as:

public class PolylistEnum implements Enumeration
 {

Object-Oriented Programming 269

 Polylist L; // current list ("cursor")

 // construct a PolylistEnum from a Polylist.

 public PolylistEnum(Polylist L)
 {
 this.L = L;
 }

 // hasMoreElements() indicates whether there are more elements left
 // in the enumeration.

 public boolean hasMoreElements()
 {
 return L.nonEmpty();
 }

 // nextElement returns the next element in the enumeration.

 public Object nextElement()
 {
 if(L.isEmpty())
 throw new NoSuchElementException("No next in Polylist");

 Object result = L.first();
 L = L.rest();
 return result;
 }
 }

 Let's recap how this particular enumeration works:

1. The programmer wants to enumerate the elements of a Polylist for some
purpose. She calls the method elements() on the list, which returns an
Enumeration (actually a PolylistEnum, but this never needs to be shown in
the calling code, since PolylistEnum merely implements Enumeration.)

2. Method elements() calls the constructor of PolylistEnum, which initializes
L of the latter to be the original list.

3. With each call of nextElement(), the first of the current list L is reserved,
then L is replaced with its rest. The reserved first element is returned.

4. nextElement() can be called repeatedly until hasMoreElements(), which
tests whether L is non-empty, returns false.

Exercises

•• 1 Implement the method nth that returns the nth element of a list by using an
enumeration.

270 Object-Oriented Programming

•• 2 Implement a method that returns an array of objects given a list.

•• 3 Locate an implementation of Enumeration for the Java class Vector and achieve
an understanding of how it works.

••• 4 Implement an Enumeration class for an array of Objects.

••• 5 Implement an Enumeration class that enumerates an array of Objects in reverse
order.

7.23 Higher-Order Functions as Objects

The preceding material has shown how we can implement nested lists as in rex. We
earlier promised that all of the functional programming techniques that we illustrated
could be implemented using Java. The one item unfulfilled in this promise is higher-order
functions"higher-order functions" : functions that can take functions as arguments and
ones that can return functions as results. We now address this issue.

Java definitely does not allow methods to be passed as arguments. In order to implement
the equivalent of higher-order functions, we shall have to use objects as functions, since
these can be passed as arguments. Here's the trick: the objects we pass or create as
functions will have a pre-convened method, say apply, that takes an Object as an
argument and returns an Object as a result. We define this class of objects by an
interface definition, called Function1 (for 1-argument function):

public interface Function1
 {
 Object apply(Object x);
 }

To be used as a function, a class must implement this interface. An example of such a
class is one that concatenates the string representation of an object with the String "xxx":

Object concatXXX implements Function1
 {
 Object apply(Object arg)
 {
 return "xxx" + arg.toString();
 }

 concatXXX() // constructor
 {}
 }

Note that this particular implementation has a static character, but this will not always be
the case, as will be seen shortly. An application of a concatXXX method could be shown
as:

(new concatXXX()) . apply("yyy"); // note: Strings are Objects

Object-Oriented Programming 271

which would return a String "xxxyyy".

Here's the way map, a method which applies a Function1 to each element of a Polylist,
would be coded:

 // map maps an object of class Function1 over a Polylist returning a
 // Polylist

 Polylist map(Function1 F)
 {
 if(isEmpty())
 return nil;
 else
 return cons(F.apply(first()), rest().map(F));
 }

For example, if the list L contained ["foo", "bar", "baz"] then

L.map(new concatXXX)

would produce a list containing ["xxxfoo", "xxxbar", "xxxbaz"].

More interesting is the case where the object being applied gets some data from "the
outside", i.e. through its constructor. Suppose we want a function that returns a function
that concatenates a specified prefix, not just "xxx" invariably. Here's how we can modify
the class definition concatXXX to one, call it concat, that does this:

Object concat implements Function1
 {
 String prefix; // prefix to be concatenated

 Object apply(Object arg)
 {
 return prefix + arg.toString();
 }

 concat(String prefix) // constructor
 {
 this.prefix = prefix;
 }
 }

Now we can use map to create a method that concatenates an argument string to each
element of a list:

static Polylist concatToAll(String prefix, Polylist L)
 {
 return L.map(new concat(prefix));
 }

In rex, the same idea could be shown as:

272 Object-Oriented Programming

concatToAll(prefix, L) = map((X) => prefix + x, L);

We are now just one step away from functions that return functions as results. All such a
function needs to do is to call the constructor of a Function1 object to return a new
object that can be applied. For example, the rex definition:

f(X) = (Y) => X + Y;

represents a function that takes an argument (X) and returns a function. In Java this
would be the method:

static Object f(Object X)
 {
 return new concat(X.toString());
 }

The object-oriented version of higher-order functions might be a little harder to
understand than the rex version, which is one reason we wanted to present the rex version
first. Underneath the syntax, the implementation using objects is very similar to standard
implementations using functions, where the function objects are called closures (meaning
that they are a closed environment in which otherwise free variables are bound).

Exercises

••• 1 The higher-order function reduce takes a function argument that has two
arguments. Define an interface definition Function2 analogous to Function1
above, then give the implementation of reduce so as to take a Function2 as an
argument.

•••• 2 Define a method compose that takes two Function1 arguments and returns their
composition as a Function1 argument.

••• 3 Develop a class FunctionFromArray that implements a Function given an array.
The function applied to the integer i is to give the ith element of the array.

7.24 Conclusion

This chapter has presented a number of ideas concerning object-oriented programming.
Java is an object-oriented language accompanied by a rich library of classes, including an
abstract window toolkit for doing graphics, menus, etc. As this book does not attempt to
be a tutorial on Java, we recommend other books that can be studied for the finer details.
Attempting to program applications in Java is the best way to understand the concepts
described here, including inheritance and interfaces.

Object-Oriented Programming 273

7.25 Chapter Review

Define the following terms:
abstract base class
abstract data type (ADT)
aggregation
applet
attribute
circular array
class
client
composition
constructor
container class
deep copying
deque
derived class
enumeration (Java-style)
equality
extend (a class)
getter
inheritance
implement (an interface)

interface
interning
is-a
message
method
modularity
normalization (of code)
object
Object class
over-ride
priority-queue
queue
setter
shallow copying
stack
static method
static variable
sub-class
wrapper

7.26 Further Reading

G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaard, Simula Begin, Auerbach,
Philadelphia, 1973. [Describes the Simula language, generally regarded as the original
object-oriented programming language. Moderate.]

Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988. [Moderate.]

David Flanagan, Java in a Nutshell, Second Edition, O'Reilly, 1997. [A succinct guide to
Java for moderately-experienced programmers. Moderate.]

James Gosling, Frank Yellin, the Java Team, The Java application programming
interface, Volumes 1 and 2, Addison-Wesley, 1996. [A thorough guide to the essential
Java classes. Moderate.]

James Rumbaugh, Ivar Jacobson, Grady Booch, The unified modeling language reference
manual, Reading, Mass : Addison-Wesley, 1998. [One of many references on UML.]

