
11. Complexity

11.1 Introduction

This chapter focuses on issues of program running time, including how to measure and
analyze programs for their running time, as well as provide examples of techniques for
improving program performance. Examples are taken from the areas of sorting and
searching.

The pragmatic aspects of computing require one to be cognizant of the resource-usage
aspects of a program. While such concerns should be secondary to those of the
correctness of the program, they are nonetheless concerns that, like correctness, can make
the difference between success and failure in computer problem solving. The general
term used by computer scientists to refer to resource usage is "complexity". This term
refers not to how complex the program is, i.e. how difficult it is to understand, but rather
how much resources are consumed when the program is executed. Indeed, the least
difficult to understand program might be fairly profligate in its use of resources.

The process of making a program more "efficient" unfortunately often has the effect of
making it harder to understand. To develop a program to a first approximation, the
following axiom might be applied.

Get it right first, then make it faster.

In particular, this axiom should be applied when considering small incremental
improvements in code, which can shave off some fraction of execution time, but which
make the program obscure and more difficult to debug.

The greater thrust of this chapter, however, is algorithmic improvements, that is make a
program faster by choice or development of a better algorithm. Coding a new algorithm
can be like starting afresh with respect to "getting it right" however. For this reason, it is
best to have designed the overall program as a set of modules, with "plug replaceability"
between a simple but slower module and a faster one.

11.2 Resources

By "resource", we typically are concerned with one or more of the following:

Execution time: This is the time it takes a program to process a given input. Time
is considered a resource for at least two reasons:

422 Complexity

The time spent waiting for a solution (by a human, or by some other facet
of automation) is time that could be put to other productive uses. In this
sense, time is not the actual resource, but is instead reflective of resources
that might go unused while waiting.

Thinking of the computer as providing a service, there is a limitation on
the amount of service that can be provided in a given time interval. Thus
programs that execute longer use up more of this service.

Memory space: This is the space used by a program to process a given input.
Memory space used translates into cost of computation in the sense that memory
costs money and the ability to use a certain amount of memory directly depends
on the memory available.

Memory space could be further sub-divided along the lines of a memory
hierarchy, some form of which is found in most computer systems:

Main memory: Semiconductor memory in which most of the program and
data are stored when the program is running.

Cache memory: Very high-speed semiconductor memory that "caches"
frequently-used program and data from main memory.

Paging memory: Slower memory, usually disk, which in simplistic terms
serves as kind of "overflow" or "swapping" area for the main memory.

File memory: Disk or tape memory for file objects used by a program .

In these notes, our primary focus will be on execution time as the resource Some
consideration will be given to memory requirements as well. As we shall see, it is often
possible to "trade off" time resources for memory resources and vice-versa.

11.3 The Step-Counting Principle

Most often we will be interested in relative execution-time comparisons between two or
more algorithms for solving a given problem. Rather than dealing with the actual times a
computer would spend on an algorithm, we try to use a measure that is relatively
insensitive to the particular computer being used. While the speeds of various primitive
operations, such as addition, branching (change of control from one point in the program
to another), etc. may vary widely, we make the assumption that for purposes of
comparing algorithms on a given computer, we can just count the number of each kind
of operation during execution, rather than be concerned with the actual times of those
operations. This is not to say that every occurrence of a given kind of operation takes the
same time; there will be a general dependency on the values of the arguments as well.
However, for purposes of getting started, we make the assumption that the count is an

Complexity 423

adequate measure. We could then get an overall time estimate by multiplying the counts
of various operations by the time taken by those operations and summing over all n
different kinds of operations:

Execution time = ∑
 i = 1

n
 count(Operation i)*time(Operation i)

Straight-line Programs

Straight-line programs are programs with no branching: every operation in the program is
executed. Thus the execution time is the same regardless of data. For example, consider
the straight-line program:

a = b*c + d;
c = d/e + f;
f = a*c;

Here there are two multiply operations, one divide, and two additions. Thus the total time
would be computed as

execution time =

 2*time(multiply)
+ 1*time(divide)
+ 2*time(add)
+ 3*time(assign)

where time(assign) refers to the time to assign a value to a variable explicitly.

Loop Programs

Very few programs of substance will be straight-line. Typically we have loops, the
execution of which will depend on the data itself. In this case, the total time depends on
the data. Consider

sum = 0;
for(i = 0; i < N; i++)
 sum = sum + i*i;

Here the number of times the loop body is executed will be N. Therefore, there will be N
multiply operations. There will also be N additions in the loop body, as well as N
additions of the form i++, and N comparisons i < N. We have as total execution time:

execution time =
2*time(assign) +
N*[time(multiply) + time(add) + time(compare) + time(increment) + time(assign)]

424 Complexity

Recursive Programs

As we know, loop programs can be represented as recursive programs. However,
recursive programs also have the possibility of "non-linear" recursion, making them
sometimes more of a challenge to analyze. Consider the computation of the rex program
sum(1, N) where N >= 0.

sum(M, N) => M >= N ? M;
sum(M, N) => K = (M+N)/2, sum(M, K) + sum(K+1, N);

sum(M, N) computes the sum of integers M through N by dividing the range into two, until
the range is empty. The value of sum is obtained by summing the results of recursive
calls to the function.

The following tree shows how the recursion decomposes for sum(1, 6):

sum(1, 6)

sum(1, 3) sum(4, 6)

sum(1, 2) sum(3, 3) sum(4, 5) sum(6, 6)

sum(1, 1) sum(2, 2) sum(4, 4) sum(5, 5)

Figure 170: Tree of a recursive decomposition

The tree representation for the program's execution of sum(1, N) will have N leaves and
therefore N-1 interior nodes, i.e. 2*N-1 nodes altogether. For each node there will be a
comparison to determine which rule to use, for a total of 2*N-1 comparisons. For each
interior node, there will be 3 additions, and one division by 2. So overall we have

execution time =
 (N-1)*[3*time(add) + time(divide)]
+ (2*N-1)*time(compare)

Here we are ignoring any overhead required to do function calls, and are assuming that
the times to do the basic operations are constant, i.e. independent of the argument sizes.
This is only an approximation to reality, especially if we have to deal with arbitrarily-
large arguments. If time(add) = time(divide) = time(compare) = 1, then the total time is

4*(N - 1) + 2*N - 1

= 6*N - 5

Complexity 425

The analysis above assumes that we already understand the algorithm well enough to see
that a tree is involved, and that we know how to analyze a tree. An alternative approach
that doesn't make such assumptions is to derive a recurrence formula for time patterned
after the rules, but with the data size as an argument. In this case, the "size" is the range
of numbers to be summed. For the basis case, there is only a comparison, so we have:

T(1) => time(compare);

For the induction rule, we make the simplifying assumption that the range is of even
length, so we can divide it in half:

T(2*N) =>
time(compare) + 3*(time add) + 1*time(divide) + 2*T(N);

Again assuming that all operations take the same time, we get

T(1) => 1;

T(2*N) => 5 + 2*T(N);

For example, to sum 8 numbers,

T(8) ==> 5 + 2*T(4)
==> 5 + 2*(5 + 2*T(2))
==> 5 + 2*(5 + 2*(5 +2*T(1)))
==> 5 + 2*(5 + 2*(5 +2*1))
==> 43

which agrees with our earlier calculation of 6*N-5 when N = 8. We can also see that
there is agreement for general N that is repeatedly divisible by 2. Such a number must be
a power of 2, N = 2k. Let S(k) = T(2k). Then we have the equivalent recurrence

S(0) ==> 1;

S(k+1) ==> 5 + 2*S(k);

We can "solve" this recurrence by successive substitutions:

S(k) ==> 5 + 2*S(k-1)
==> 5 + 2*(5 + 2*S(k-2))
==> 5 + 2*(5 + 2*(5 + 2*S(k-3)))
==> ...

until the argument to S is reduced to 0. This will obviously occur after k substitutions, so

426 Complexity

S(k) = 5 + 2*S(k-1)
= 5 + 2*(5 + 2*S(k-2))
= 5 + 2*5 + 22*S(k-2)
= 5 + 2*5 + 22*5 + 23*S(k-3)
= 5 + 2*5 + 22*5 + 23*5 + 24*S(k-4)

....
= 5*(1 + 2 + 22 + 23 + + 2k-1) + 2k * S(0)
= 5*(2k - 1) + 2k

= 6*2k - 5

11.4 Profiling

Many systems provide a software tool known as a "profiler". Such a tool counts
executions of procedures and the places from which they are called. Using it, one can get
an idea of how much time overall is being spent in various procedures, and thus
possibilities for where to devote attention in improving run time.

A specific example, using the Java interpreter with -prof option will put profile results
from the run in a file java.prof.

Let's suppose that we have the following break down of the time devoted to various
pieces of code A, B, C:

A B C

Figure 171: Execution time profile

The suggestion is that A takes about 50% of the time, B 30%, and C 20%. The question is
where to concentrate code improvements to reduce the execution time? Intuitively we
should concentrate on A, because there we stand to achieve the biggest reduction. But
how much improvement can we get from A alone? In the very best case, we could
eliminate A altogether. This would result in a 50% reduction in execution time. On the
other hand, if we eliminated C altogether, we would still have 80% of the time we did
before, or only a 20% reduction.

Such considerations are quantified in a rule known as Amdahl’s law. In general, if chunk
A takes fraction f of the overall time, then the speedup achieved by reducing A to 0 is at
most 1/(1-f). So, execution of A would have to occupy about 90% of the execution to
enable a 10-fold reduction in execution time if A were eliminated completely. Amdahl's
law was originally derived for application to parallel computing and we'll see more about
it in the chapter Limitations of Computing.

Complexity 427

11.5 Suppressing Multiplicative Constants

Quite often we make the further simplifying assumption that the operation times are the
same for all operations. While this may seem like a drastic oversimplification, it is useful
for comparative purposes. If every operation requires a constant time, then each time can
be expressed as some factor times one of the operations. Thus, in assuming all operations
have the same time, the resulting time estimate will be off by a factor that is at most the
maximum of these factors. For reasons to be explained, it is defensible to make the
assumption that all times are the same, so long as it is clear that this assumption is being
made. With this assumption, we would have the following for the above examples:

straight-line example: execution time = 8 steps

loop example: execution time = 5*N + 2 steps

recursive example: execution time = 6*N - 5 steps

11.6 Counting Dominant Operations

In many cases, we can get an idea of the execution time by simply focusing on the
number of dominant operations. For example, in the loop program, we could focus on the
number of multiplies or the number of times the loop body is executed. In both cases, we
would end up with an execution time of N steps. In the recursive program, we could
count the number of times the recursive rule is used, which would give us N-1 steps.

11.7 Growth-Rate

Although we may, on occasion, engage in estimating time for a specific input to a
program, in general we will be interested in a much broader measure to give an idea of
the quality of the program or its algorithm. Such a measure is found in the form of
growth-rate comparisons, as we now discuss.

Most programs are designed to work with not just a single input, but rather with a wide,
and usually infinite, set of input possibilities. We often can associate a measure of the
input, usually in the form of a parameter that implies the size of the input. Some examples
are:

Program application Possible measure(s) of input
word processing number of characters in the document, or

number of editing commands
solving linear equations number of equations, and/or

number of unknowns
sorting an array number of elements in the array
displaying a scene graphically number of polygons in the scene

428 Complexity

With each type of program, we try to focus on one key measure in which to express the
program's performance. We try to express the programs resource usage, e.g. execution
time, as a function of this measure. For example, in the loop program above, we could
use the value N as the measure. We derived that

execution time = 5*N + 2 steps

With slight modification, we can convert that program into one that sums the squares of
an array of N elements:

sum = 0;
for(i = 0; i < N; i++)

sum = sum + a[i]*a[i];

Now the input measure is equated to the size of the array.

Now consider sorting an array, using the following minimum-selection sort algorithm
expressed in Java. (Here calling the constructor on an array of doubles sorts the array in
place; the object created can then be discarded).

class minsort
{
private double array[]; // The array being sorted
int N; // The length of the prefix to be sorted

 // Calling minsort constructor on array of doubles sorts the array.
 // Parameter N is the number of elements to be sorted (which might
 // be fewer than are in the array itself).

 minsort(double array[], int N)
 {
 this.array = array;
 this.N = N;

 for(int i = 0; i < N; i++)
 {
 swap(i, findMin(i));
 }
 }

 // findMin(M) finds the index of the minimum among
 // array[M], array[M+1],, array[N-1].

 int findMin(int sortFrom)
 {
 // by default, the element at minSoFar is the minimum
 int minSoFar = sortFrom;

 for(int j = sortFrom+1; j < N; j++)
 {
 if(array[j] < array[minSoFar])
 {
 minSoFar = j; // a smaller value is found

Complexity 429

 }
 }
 return minSoFar;
 }

 // swap(i, j) interchanges the values in array[i] and array[j]

 void swap(int i, int j)
 {
 double temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }

If we count comparisons, as in array[j] < array[minSoFar], as the dominant
operation, then we could derive

execution time = n*(n-1)/2 steps

To see this, let us extract the loop structure essence of the program:

for(i = 0; i < n; i++)
 {
 for(j = i + 1; j < n ; j++)
 *** one step ***
 }

Here one step represents the comparison operation that we are counting. Now examine
the number of times the inner loop body executes as a function of the outer loop index:

i = 0 j = 1, 2,, n - 1 n - 1 steps
i = 1 j = 2, 3,, n - 1 n - 2 steps
...
i = n-1 j = n,, n - 1 0 steps

In total, we have 0 + 1 + 2 + + (n-1) steps, which sums to n*(n-1)/2. This summation
can be shown by induction. This is a special case of the sum of an arithmetic series.

In terms of the topic of this section, we would say that the sorting program's growth-rate
is represented by the function

n → n*(n –1)/2

that is, the function that, with argument n, yields the value of n*(n –1)/2. It is important
to keep in mind that the growth rate is a function, even though it is often written just as an
expression

 n*(n –1)/2

430 Complexity

with the argument n being implicit for simplicity.

Not all programs run the same amount of time for a given input measure. For those that
do not, it is common to use the maximum over all inputs having a given value of the
measure as the growth rate function. For example, suppose we had a program that inputs
strings of 0's and 1's, with the following observed execution times:

Input Time
λ 0
0 1
1 1
00 1
01 4
10 4
11 2
000 1
001 9
010 9
011 9
100 8
101 6
110 4
111 9
...

If we use the length of the input as the measure, then a growth-rate of n → n2 is

suggested, even though not all inputs of length n require n2 time. Thus, we are often
content with focusing on the worst-case among inputs of a given value of the input
measure, rather than considering all inputs, in order to get an idea of the complexity.
Another way of looking at it is that the derived function forms an envelope around the
actual executions times, or is an upper bound on the execution time of the algorithm.
The figure below demonstrates this for the example at hand.

Complexity 431

1 2 3

5

1 0

n

execution time

input
measure

Figure 172: Execution times for a string-processing program, plotted vs. input
string length. The quadratic curve is an upper-bound on the times.

11.8 Upper Bounds

In general, a function can be an upper bound on execution time without having all of its
points correspond to actual execution times. For example, if the above hypothetical
algorithm used at most 12 steps to process any input of length 4, then the upper bound of

n → n2 would still be consistent. Likewise, the function n → n3 would also be an upper
bound, although qualitatively a poorer one with respect to the given data.

Informally, when an upper bound fits the data points closely, we say it is a tight upper
bound. Obviously, the tighter an upper bound is, the more information is conveyed by the

statement that it is an upper bound. That is, saying that n → n2 is an upper bound

conveys more information than saying that n → n3 is.

For convenience, it is common to omit the argument part of functional expressions when

talking about growth rates. Thus n3 would actually stand for the function n → n3. We
will be taking this approach from here on in the discussion, except at points where it is
useful to make it clear that we are talking about a function rather than just an expression.

11.9 Asymptotic Growth-Rate

A coarse, but useful, measure for comparing algorithms is based on asymptotic growth-
rate. This measure has the benefit of being relatively easy to derive, since it is impervious
to the making of many approximations in the derivation process. Asymptotic growth rate
is a measure of goodness of the time taken by an algorithm as the value of the input
measure n grows without bound. In computing asymptotic growth rate, we often ignore
multiplicative constants in the complexity function and focus on the "rate" itself. Thus,

432 Complexity

while an execution time measure of n2 (i.e. the function n → n2) is obviously better than

one of n3, the asymptotic comparison would also rank 1000n2 (i.e. the function
n → 1000n2) as being better than n3, even though the latter is better (i.e. lower) for

values of n < 1000, called the crossover point. The reason to prefer 1000n2 is that n3 is
only better than it for a finite number of values of n (assuming the input measure is an

integer). For the remaining infinite number of inputs, 1000n2 is better. Of course, this
sort of reasoning is most meaningful when the crossover point is within the range of
values of n to which the algorithm is actually going to be applied.

We can simplify the task of asymptotic comparisons by observing that, in a function the
value of which is a sum of terms, the sum is often asymptotically dominated by one of
those terms. Consider for example, the function

n → 1000n2 + n3

For large n, the second term dominates, in the sense that the first term becomes relatively
insignificant the larger n becomes. Thus, for purposes of comparing this function to

another, we can simply neglect the term 1000n2 in the limit. The first function, now
approximated by

n → n3

is clearly seen to grow faster than the second function.

11.10 The "O" Notation

For purposes of comparing asymptotic growth rates, the "O" (for "order") notation has
been invented†. In considering a function such as

n → 1000n2 + n3

it is natural to indicate that the growth rate of that function is "on the order of" the
growth-rate of the function n → n3, or for short, the function is "order of" n3. A simple
way of accomplishing this is to define a set of functions, the growth rate of each of which
is no more than a certain metric times an arbitrary constant. For example,

O(n3)

means the set of functions growing no faster than does the function n → cn3, where c is
an arbitrary constant.

† The "O" notation is due to P.G.H. Bachmann, Zahlentheorie, vol. 2: Die analytische Zahlentheorie,

B.G. Teubner, Leipzig, 1894.

Complexity 433

If f and g are two functions,
f ∈ O(g)

means that f is bounded from above by g times a constant.

It is also common to see in the literature
f = O(g)

which is a slight abuse of notation, but one having the same meaning as f ∈ O(g). It is
also common to use expressions in place of functions. Thus, one often sees something
like

n2 ∈ O(n3)

when what is really meant is the following relationship:

(n → n2) ∈ O(n → n3)

Examples

We have already seen that n2 ∈ O(n3). We also mentioned that 1000n2 ∈ O(n3). As

will be seen, cnr ∈ O(ns) whenever r < s, for any constant c. The rationale for all of
these can be seen by looking at the slopes of the curves as n increases without limit. Even

if c is very large, cnr will eventually be overtaken by ns for large enough n if r < s. The
following diagram show the case where f ∈ O(g) even though for low values of n, f's
value is a significant multiple of g's value.

n

f

g

Figure 173: f ∈ O(g), assuming the indicated trends in f and g continue

We can use g's algorithm for small values of n and f's algorithm for large values to get the
best of both worlds. We would choose between the two algorithms depending on whether
n < n0 where n0 is the breakpoint, and the resulting execution time would then appear as
in the following diagram.

434 Complexity

Figure 174: Combining two algorithms to get a superior execution time function

Simplified Definition of "O"

We give a definition for the special case of functions with natural number arguments,
which allows most resource measures to be modeled, due to the fact that we almost
always base the measure on the size of some input facet and the size is in integral units.
Later (in the exercises) we give the more general definition, and indicate that the two
definitions are consistent on the domain of natural numbers.

Let f: N → R and g : N → R be two functions with domain being the
natural numbers and range being the positive real numbers. Then

f ∈ O(g)

[typically read "f is oh of g" or "f is big-oh of g"]

means

(∃ c)(∀ n) f(n) < cg(n)

This says: "there exists a constant c such that for all n, f(n) is less than or
equal to c times g(n).

For the case of R as a domain, we would need to use a more complex definition for f
 ∈ O(g):

Complexity 435

(∃ c)(∃ n0)(∀ n > n0) f(n) < cg(n)

For the case of N as a domain, the two definitions are equivalent.

If we are given f and g, then in order to show that f ∈ O(g), we need only to exhibit an
appropriate c. We show this in the following examples.

Examples

n2 ∈ O(n3) Take c = 1. Obviously (∀ n) n2 < 1n3.

1000n2 ∈ O(n3) Take c = 1000. Obviously (∀ n) 1000n2 < 1000n3.

n2 + 106n ∈ O(n2) Take c =2*106. We have

(∀ n) n2 + 106n < 106n2+ 106n

< 106n2+ 106n2 = 2*106n2

since (∀ n) n < n2.

11.11 O Notation Rules

Fortunately, it is not necessary to return to first principles for every comparison of two
functions. We can establish some rules that help us reason about relationships between
asymptotic growth rates:

Transitivity Rule

If f ∈ O(g) and g ∈ O(h), then f ∈ O(h).

Proof: Suppose that f ∈ O(g) and g ∈ O(h). Then by definition, we know that for some
constants c and d:

(∀ n) f(n) < cg(n)
and

(∀ n) g(n) < dh(n)

i.e. the existence of c and d is guaranteed by our supposition and the definition of O. We
must then show

(∃ e)(∀ n) f(n) < eh(n)

436 Complexity

We can do this by exhibiting a constant e that makes this statement true. It appears that
choosing e to be the product of c and d will do the job: We need to show that, for
arbitrary n,

f(n) < cdh(n)

But we already have

f(n) < cg(n)

and
g(n) < dh(n)

Putting these two inequalities together gives exactly what we need.

Sum Rule

If f ∈ O(h) and g ∈ O(k), then f+g ∈ O(max(h, k)).

Here we use f + g as an abbreviation for the function n → f(n) + g(n) and max(h, k) as an
abbreviation for the function n → max(h(n), k(n)).

Proof: For convenience, define m to be the function n → max(h(n), k(n)). That is, for all
n, m(n) = max(h(n), k(n)). Assume that f ∈ O(h) and g ∈ O(k), to show that
(n → f(n) + g(n)) ∈ O(m). Let c and d be constants such that

(∀ n) f(n) < ch(n)
and

(∀ n) g(n) < dk(n)

Then we have

(∀ n) f(n) + g(n) < max(ch(n), dk(n))

Thus

(∀ n) f(n) + g(n) < max(c, d) m(n)

Therefore we have found a constant, namely max(c, d), which establishes what we want
to show.

The sum rule is frequently applied in program analysis. If a program consists of two parts
in sequence, P; Q, with the complexity of each in terms of the input measure being

Complexity 437

represented by functions f and g, respectively, and h and k are known upper bounds on f
and g, then the function n → max(h(n), k(n)) is an upper bound on the overall program
complexity. Put another way, the complexity of the combination P; Q is dominated by the
part with the greater complexity. Quite often, the same part dominates for all values of
the input measure.

Polynomial Rule

By applying the sum rule inductively, we can get the following:

Let f(n) be any polynomial in n, with k being the highest exponent.

Then f ∈ O(nk).

Caution: We need to be aware that polynomials have a fixed number of terms, i.e. the set
of terms cannot be a function of n, as in the following:

Example of a Fallacious Argument: n3 ∈ O(n2)

Bogus Proof: n3 = n2+ n2+....+n2 where the sum is taken over n terms. By the

polynomial rule, since the highest exponent is 2, we have n3 ∈ O(n2).

Constant Absorption Rule

It is never necessary to write f(n) ∈ O(dg(n)) where d is a constant. It is always
considered preferable to write this as f(n) ∈ O(g(n)). The argument here is that the
constant d can be "absorbed into" the constant that exists by definition of f(n) ∈ O(g(n)).

Proof: Assume that f(n) ∈ O(dg(n)) where d is a constant, to show f(n) ∈ O(g(n)). By
supposition, there is a c such that

(∀ n) f(n) < cdg(n)

But letting e = cd, e is also a constant, so

(∃ e)(∀ n) f(n) < eg(n)

Therefore f(n) ∈ O(g(n)).

438 Complexity

Meaning of O(1)

When we say that f ∈ O(1), we mean that f is O of the function n → 1, i.e. the constant
function 1. By the constant absorption rule, any function bounded above by a constant is
O(1). So saying f ∈ O(1) is just another way of saying that f is bounded by a
constant. To say that f ∈ O(c) where c is some other constant is the same as saying
f ∈ (1), so we always write the latter.

For example, the linear addressing principle says that any element within an array can
be accessed, given its index, in time O(1). This is an important advantage of arrays over
linked lists, for which the access can only be bounded by O(n) where n is the number of
elements in the list.

Multiplication Rule

The proper form of argument when the number of terms is a function of n is given by the
following:

If f ∈ O(g), then m(n)*f(n) ∈ O(m(n)*g(n)).

In terms of programs, if g provides an upper bound on the execution of the body of a
loop, where n is the value of the input measure, and the loop executes m(n) times, then
the function n → m(n)*g(n) provides an upper bound for the overall program.

Example – The following program has O(ng(n)) as an upper bound, assuming that the
loop body does not change i.

for(i = 0; i < n; i++)

.... some O(g(n)) computation

Here m(n) = n.

11.12 Analyzing Growth of Exotic Functions

The rules above give us ability to analyze some basic functions, but it does not help us
handle cases that will be encountered frequently, such as ones involving log n [all logs
will be assumed base 2 unless otherwise noted. However, since logs of different bases
differ by constant factors, it would not be worthwhile differentiating them in the O
notation anyway, due to the constant absorption rule.]

As an overview, it is worth establishing a framework of a few functions in a "hierarchy"
of functions that often come up in algorithms:

1 < log n < < n1/4 < n1/3 < n1/2 < n < n log n < n2 < n3 < n4 < < 2n < n !

Complexity 439

Each "function" in this chain is O of the next function, but not conversely. We will
establish some of these relations in this section. First we show a few comparative plots to
remind ourselves of how some of these functions behave.

n*n

n log(n)

n

Figure 175: n2 vs. n log n vs. n

2n

2n

Figure 176: 2n vs. n2

440 Complexity

A convenient way to approach analysis of some functions is through the derivative.
Suppose we are trying to establish f ∈ O(g). Even though we are working with functions
on a natural number domain, suppose that each function has an analytic counterpart F and
G on the real domain. If G maintains a greater derivative than F for sufficiently large n,
then at some point the slope of the curve for F will stay less than the slope of the curve
for G. By extrapolating from this point, we can see that G will ultimately overtake F.
This is illustrated in the following diagram.

n

F

G

n
0

Figure 177: Showing that f ∈ O(g) through knowledge of the derivatives

of corresponding analytic functions. At point n0 the
derivative of G becomes greater than that of F.

11.13 Derivative Rule

A sufficient condition for f ∈ O(g), where f and g are restrictions of analytic functions F
and G to the natural number domain, is that

(∃ n0)(∀ n > n0) F'(n) < G'(n)

where F' and G' denote the first derivatives of F and G respectively.

Caution: The condition above is only sufficient for f ∈ O(g). It is not necessary. For
example, one can easily construct examples using functions where each function is O of
the other, yet there are no corresponding analytic functions.

Example: log n ∈ O(n)

Here we are comparing two functions: log, and the identity function n → n. Let us call
the analytic counterparts F and G. Then from calculus the derivatives have the property
that

Complexity 441

F'(n) = c / n where c is an appropriate constant†

G'(n) = 1

Thus if we choose n
0
 to be the next integer above c, we have the conditions set forth in

the derivative rule: (∀ n > n
0
) c / n < 1.

Example: log n ∈ O(n1/2)

n1/2 is, of course, another way of writing the square root of n. From calculus, the

derivative of this function is 1/(2n1/2). This derivative will overtake the derivative of log
n, which is c / n. Equality occurs at the point where

 c / n = 1/(2n1/2)

i.e. n = ceiling(4c2).

11.14 Order-of-Magnitude Comparisons

Below is a table of some common functions and their approximate values as n ranges
over 6 orders of magnitude.

log n 3.3219 6.6438 9.9658 13.287 16.609 19.931
log2n 10.361 44.140 99.317 176.54 275.85 397.24
sqrt n 3.162 10 31.622 100 316.22 1000
n 10 100 1000 10000 100000 1000000
n log n 33.219 664.38 9965.8 132877 1.66*106 1.99*107

n1.5 31.6 103 31.6*104 106 31.6*107 109

n2 100 104 106 108 1010 1012

n3 1000 106 109 1012 1015 1018

2n 1024 1030 10301 103010 1030103 10301030

n! 3 628 800 9.3*10157 102567 1035659 10456573 105565710

Values of various functions vs. values of argument n.

Such tables can give hints to the growth rate of functions, although are by no means to be
considered a proof. For such things we should rely on analytic methods. In any case, such
tables are instructive. For example, the table above shows that we can run a problem with

a factor of 106 larger in its input measure using an O(log n) algorithm in only 20 times

† Recall that for any two bases, a and b, logbx = logba logax.

442 Complexity

longer to execute. For an O(n log n) algorithm, we would require only 20*106 times

longer, as compared to 1012 times longer for an O(n2) algorithm, a factor of 5*104.

An "inverted" version of the table can be used determine the relative sizes of problem that
can be run in a fixed time using algorithms of various orders.

Time Multiple 10 100 1000 10000 100000 1000000
log n 1024 1030 10300 103000 1030000 1030000

log2n 8 1024 3*109 1.2*1030 1.5*1095 1.1*10301

sqrt n 100 104 106 108 1010 1012

n 10 102 103 104 105 106

n log n 4.5 22 140 1000 7.7*103 6.2*104

n1.5 4 21 100 210 2100 10000
n2 3 10 32 100 320 1000
n3 2 4 10 21 46 100
2n 3 6 9 13 16 19
n! 3 4 6 7 8 9

Increase in size of problem that can be run based on increase in allowed
time, assuming algorithm runs problem size 1 in time 1.

This table tells us, for example, that if we have 1000 times more time, if our algorithm is
O(n!) we can only run a problem 6 times as large. On the other hand, if we have an
n log n algorithm, we could run a problem 140 times as large in the same time.

11.15 Doubling Comparisons

Perhaps a handier way to remember how various functions grow is to consider what
happens if we double the input size. If the function is O(n), then doubling the input size
will at most double the execution time. If the function is log(n), then doubling the input
size will only add a constant to the execution time, and so on. We can summarize these
sorts of observations in the following table, where k is a constant.

Complexity Doubling the input causes execution time to
O(1) stay the same

O(log n) increase by an additive constant

O(n1/2) increase by a factor of sqrt(2)

O(n) double
O(n log n) double, plus increase by a constant factor times n

O(n2) increase by a factor of 4

O(nk) increase by a factor of 2k

O(kn) square

Complexity 443

This table can be used to help intuition in algorithm design. For example, if the algorithm
is observed to double in time plus add a constant factor times the input, then we can infer
that the algorithm is O(n log n). An example of this kind of behavior is quicksort, under
ideal circumstances.

11.16 Estimating Complexity Empirically

Given access to the code of a program, the complexity can often be determined by
analysis. However, it may be desirable to check our analysis empirically, or we might
wish to estimate the complexity of a program the code of which we do not have. A way
to proceed experimentally is to run the program on inputs of a variety of values of the
input measure and record the time in each case. This will give us a set of size-time pairs
(Si, Ti). A good choice would be to have input sizes differ by successive powers of two.
Of course we do not know that our chosen inputs achieve the maximum time among
inputs of that size; we are just assuming that all will be about the same, an assumption
that is not always valid. If this assumption is in question, we can run the program with
multiple inputs of each size.

The size-time pairs derived above constitute an approximation to the time complexity
function T of the program. Now we form a hypothesis that T is O(f) for some function f.
For example, if we were analyzing a sorting program, we might hypothesize that T is

O(n2). If our hypothesis is correct, then there must be a constant c such that

(for all S) T(S) < cf(S).

We can compute the ratios T(S)/f(S). If there is a noticeable upper bound on this ratio,
then that would make a possible value of c. If the ratios seem to hover around c,
especially as S gets larger, then there is a good chance that our hypothesis is correct. On
the other hand, if the ratios tend to decrease with S, our hypothesis is probably correct,
but it might have been too conservative. That is, there might be a tighter bound, such as n
log n in the case of the sorting program. The third possibility is that there is no bound
evident. In this case, our hypothesis is probably incorrect and we should try again with a
new hypothesis of a faster growth rate.

Empirical Comparison of Sorting Procedures

The various sorts described were tested on our local computer with varying sizes of
arrays, doubling the sizes from 16 through 4096. The algorithms themselves will be
described in a later section. As we timed each run, we also computed the time divided by

n, n2, and n log n, in an effort to ascertain the asymptotic performance and compare it to
our analytic results. The results are shown below. The reader should examine each table
and conclude:

444 Complexity

(a) which bound best describes the performance of that particular algorithm

(b) an appropriate multiplicative constant for each bound

(c) an estimate of the time each algorithm would take for one million elements

The reader should also try to get a sense of how a good asymptotic bound does not
necessarily indicate the best algorithm for small data sizes.

minsort
elements time (sec) time/n time/(n*n) time/(n*log n)
 16 0.00085938 0.00005371 0.00000336 0.00001937
 32 0.00304688 0.00009521 0.00000298 0.00002747
 64 0.01109375 0.00017334 0.00000271 0.00004168
 128 0.03687500 0.00028809 0.00000225 0.00005937
 256 0.14187500 0.00055420 0.00000216 0.00009994
 512 0.56750000 0.00110840 0.00000216 0.00017768
 1024 2.24750000 0.00219482 0.00000214 0.00031665
 2048 8.98000000 0.00438477 0.00000214 0.00057508
 4096 35.89000000 0.00876221 0.00000214 0.00105343

insertSort
elements time (sec) time/n time/(n*n) time/(n*log n)
 16 0.00058594 0.00003662 0.00000229 0.00001321
 32 0.00210938 0.00006592 0.00000206 0.00001902
 64 0.00781250 0.00012207 0.00000191 0.00002935
 128 0.03000000 0.00023437 0.00000183 0.00004830
 256 0.11875000 0.00046387 0.00000181 0.00008365
 512 0.47125000 0.00092041 0.00000180 0.00014754
 1024 1.88000000 0.00183594 0.00000179 0.00026487
 2048 7.50500000 0.00366455 0.00000179 0.00048062
 4096 34.86000000 0.00851074 0.00000208 0.00102320

quicksort
elements time (sec) time/n time/(n*n) time/(n*log n)
 16 0.00082031 0.00005127 0.00000320 0.00001849
 32 0.00171875 0.00005371 0.00000168 0.00001550
 64 0.00328125 0.00005127 0.00000080 0.00001233
 128 0.00906250 0.00007080 0.00000055 0.00001459
 256 0.01625000 0.00006348 0.00000025 0.00001145
 512 0.03500000 0.00006836 0.00000013 0.00001096
 1024 0.07500000 0.00007324 0.00000007 0.00001057
 2048 0.17000000 0.00008301 0.00000004 0.00001089
 4096 0.35000000 0.00008545 0.00000002 0.00001027

Complexity 445

heapsort
elements time (sec) time/n time/(n*n) time/(n*log n)
 16 0.00144531 0.00009033 0.00000565 0.00003258
 32 0.00242187 0.00007568 0.00000237 0.00002184
 64 0.00640625 0.00010010 0.00000156 0.00002407
 128 0.01218750 0.00009521 0.00000074 0.00001962
 256 0.02875000 0.00011230 0.00000044 0.00002025
 512 0.06375000 0.00012451 0.00000024 0.00001996
 1024 0.14250000 0.00013916 0.00000014 0.00002008
 2048 0.31000000 0.00015137 0.00000007 0.00001985
 4096 0.68000000 0.00016602 0.00000004 0.00001996

radixSort
elements time (sec) time/n time/(n*n) time/(n*log n)
 16 0.00335937 0.00020996 0.00001312 0.00007573
 32 0.00546875 0.00017090 0.00000534 0.00004931
 64 0.01093750 0.00017090 0.00000267 0.00004109
 128 0.02187500 0.00017090 0.00000134 0.00003522
 256 0.04312500 0.00016846 0.00000066 0.00003038
 512 0.08500000 0.00016602 0.00000032 0.00002661
 1024 0.18000000 0.00017578 0.00000017 0.00002536
 2048 0.35000000 0.00017090 0.00000008 0.00002241
 4096 0.69000000 0.00016846 0.00000004 0.00002025

Use of Limits

Sometimes a quick way to check whether f ∈ O(g), g ∈ O(f), etc. is to look at the limit of
f(n)/g(n) as n increases without bound. If this limit exists (i.e. is finite), then f ∈ O(g).
This follows from the definition of "limit":

lim h(n) = c
n → ∞

means that

(∀ ε > 0)(∃ n0) (∀ n > n0) | h(n) - c | < ε

If this limit exists, where the h(n) of interest is f(n)/g(n), then

(∀ n > n0) | f(n)/g(n) - c | < ε

Thus (since functions of interest to us are positive)

(∀ n > n0) f(n) < (c + ε)g(n)

By letting d be the maximum of the values of f(n) for n < n0, we get

(∀ n) f(n) < max(d, (c + ε))g(n)

446 Complexity

By choosing the constant in the definition of O to be max(d, (c + ε)), we have shown

Limit Rule

If a finite limit c of the ratio of f(n)/g(n) exists

lim f(n)/g(n) = c
n → ∞

then f ∈ O(g).

L’Hopital's Rule

Sometimes the limit may exist but is not easy to derive. This happens when the ratio
f(n)/g(n) cannot be simplified in an obvious way. An example is log(n) / sqrt(n). Both the
numerator and denominator go to ∞ as n increases. In such cases, the notion of derivative
can again be used:

lim f(n)/g(n) = lim f'(n)/g'(n)
n → ∞ n → ∞

where f' and g' denote the first derivatives of f and g, provided that

lim f(n) = lim g(n) = ∞
n → ∞ n → ∞

We can continue applying this rule iteratively until a reducible form is obtained, since

lim f'(n)/g'(n) = lim f''(n)/g''(n)
n → ∞ n → ∞

Additional Complexity Notation

Here is some additional notation that is used in the literature (see the references by Knuth
and by Brassard).

f ∈ Ω(g) is used to designate that g ∈ O(f). That is, g is a lower bound on f,
within the confines of some multiplicative constant.

f ∈ Θ(g) is used to abbreviate that f ∈ O(g) and g ∈ O(f), i.e. the two functions
have the same growth-rate.

f ∈ ο(g) [f is "little-oh" of g] means that f ∈ O(g) and that the limit of f(n)/g(n) is
0. In other words, f(n) becomes insignificant compared to g(n) as n gets large.

Complexity 447

In particular, use of Θ notation indicates that the given bound is tight.

Exercises

1 •• Show that for any positive constant ε, log n ∈ O(nε).

2 •• Show that ∑
 i = 1

n
 i2 ∈ O(n3)

3 ••• Derive a closed form expression for ∑
 i = 1

n
 i2 . Prove that your expression is correct

by induction. (Hint: From the preceding problem, it might be reasonable to try a
3rd order polynomial. If there is such a polynomial, you could solve for its
coefficients by constructing 4 equations with the coefficients as unknowns.)

4 ••• Show that for any fixed k, and any c > 1, nk ∈ O(cn).

5 •• Which of the following are true, and why? 2
n
 ∈ O(2

n+1
). 2

 n+1
 ∈ O(2

 n
).

6 • Suppose that a and b are positive integers with a < b. Which of the following are

true, and why? na ∈ O(nb). nb ∈ O(na).

7 •• Suppose that a and b are positive constants with 1 < a < b. Which of the following

are true, and why? an ∈ O(bn). bn ∈ O(an).

8 •••• Suppose that f and g are functions such that f(n) ∈ O(g(n)). Let c be a positive
constant. Is it necessarily true that f(cn) ∈ O(g(n))? Justify your answer.

9 ••• Let b be a positive integer. Show that

(1 + b + b2 + b3 + … + bn) ∈ Ο(bn).

 [Hint: There is a closed form for the left-hand side: It is the sum of a geometric
series.]

10 •• Show that for any positive integer k, (log n)k ∈ O(n).

11 •• Prove the multiplication rule: If f ∈ O(g), then n → n*f(n) ∈ O(n → n*g(n)).

448 Complexity

12 ••• As mentioned earlier, our definition of f ∈ O(g) applies to the restricted case that
the domains are natural numbers. For the more general case of real domains, the
definition needs to be modified. In fact, the standard definition of f ∈ O(g) is

(∃ c)(∃ n0)(∀ n > n0) f(n) < cg(n)

That is, there exist constants c and n0 such that for all n beyond n0, f(n) < cg(n).
Show that on the domain of natural numbers, this definition is equivalent to the
definition given in these notes. [Hint: For a given n0, the set of natural numbers
less than n0 is finite. Thus one can use the maximum of the values of f(n) over
this set in the construction of the constant c.]

13 •••• Using the general definition in the previous exercise, re-prove each of the rules for
O that have been derived in the notes.

14 ••• For each of the following program outlines, provide the best "O" upper bound on
the time complexity growth rate as a function of parameter N, where P(); is some
constant-time computation. In all cases i and j are declared as int. Unless
otherwise stated, assume single arithmetic operations are O(1).

a. for(i = N; i > 0; i--)
P();

b. for(i = N; i > 0; i--)
for(j = 0; j < i; j++)

P();

c. for(i = N; i > 0; i--)
for(j = i; j < i+1000000; j++)

P();

d. for(i = N; i > 0; i--)
for(j = i; j > 1; j = j/2)

P();

e. for(i = N; i > 0; i = i/2)
for(j = i; j > 1; j = j/2)

P();

f. for(i = N; i > 0; i /= 2)
 for(j = i; j > 0; j--)

P();

g. int i, j;
for(j = N; j > 0; j--)
 for(i = j; i > 0; i /= 2)

P();

h. double F = 1;

Complexity 449

for(i = N; i > 0; i--)
F *= N;

15 ••• Rank the following functions in such a way that f precedes g in the ranking
whenever f(n) ∈ O(g(n)). Show your rationale.

a(n) = n1.5

b(n) = n * log n

c(n) = n/ log n + n3

d(n) = (log n)2 + log(log n)

e(n) = n + 109

f(n) = n!

g(n) = 2n

11.17 Case Studies Using Sorting

As already mentioned, the problem of arranging the elements of a sequence into
increasing order is called sorting. Because the problem is easy to understand and there is
a large number of methods, sorting provides a good set of examples for analyzing
complexity. Earlier we saw that sorting by repeatedly selecting the minimum element

from an array gives an upper bound of O(n2) for an n-element array. Here we look at
other methods for sorting with hopes that good algorithm design can improve this bound.

This is important when n gets large. For a sequence of size 106, if the complexity of

sorting were n2 microseconds, it would take 106 seconds to sort the sequence, i.e. it
would take over 11.5 days. If we had a supercomputer that ran 100 times this fast, then
the time still might be prohibitive, over 2.7 hours. If we were able to improve the
algorithm to n log n microseconds, then a sequence of the same size would take less than
12 milliseconds, or less than .12 milliseconds on the supercomputer.

Although they may be expressed using numbers as data elements, a typical sorting
application actually sorts structs, data objects consisting of several components or fields.
Typically only one or two fields comprise the values upon which records are compared.
The aggregate of these fields is called the key of the record. For example, records
representing people might have a combination of last name and first name as the key. If
the keys consist only of integers in a relatively small range, the best algorithm is apt to be
quite different than in a case where the key is a chemical formula of arbitrary size.

450 Complexity

Bucket Sort

For sorting elements chosen from a small range of integers, a bucket sort is a good
choice. Suppose the range is 0 to N-1 where N is fixed. Then we can sort by constructing
an array of N items into which the data are placed. The elements of this array are thought
of as buckets. The general principle here is called distribution sorting, since we
distribute the items into buckets. If the data items are just numbers, then since all
numbers are alike, the buckets can just be counters of the number of times each number
occurs. If the data items are general records, then the buckets would need to be containers
for a sufficient number of records. A linked list of records would be a good candidate
implementation.

The advantage of bucket sort is that it runs in O(n) time, because we need only make one
pass through the input data to put all of the data in buckets, then a pass over the buckets
to create the sorted data. This analysis assumes that most buckets are non-empty. If there
is a much larger number of buckets than records and many of the buckets are empty, then
the time to scan the buckets could dominate. Our O(n) figure assumes that almost all
buckets have something in them.

Radix Sort

Radix sort is a variant of bucket sorting which uses fewer buckets by exploiting radix
representations of the integer keys. The reason that the number of buckets is of concern is
that if there are many more buckets than items to be sorted, and many buckets end up
empty, handling the number of buckets could dominate the sorting time.

If the range of numbers is very large, we can conduct the distribution sort recursively, by
dividing up the range into sub-ranges, performing an initial distribution, then sorting
within the buckets. A variation on this idea is to use the radix principle. It is applicable
when the values are represented as integer numerals in some base (radix). We sort on
each digit of the numerals, starting with the least-significant. If the radix is b, then there
are b buckets. We repeat this process, progressing toward the most-significant digit. After
each distribution, we regroup the items anew, taking care to preserve their order from the
previous distribution. After the last regrouping, the items are sorted.

The radix sorting principle was used on automatic punch-card sorters, and can also be
used in hand punch-card sorting. The following illustrates how a home-made indexing
system amenable to radix sorting can be constructed using cards. Obtain a deck of cards.
Estimate n, the maximum range of values to be used in sorting. Punch log n holes along a
specific edge of each of the cards, as suggested by the following diagram. For a card
numbered m, cut a channel from the hole to the edge of the card for each hole
corresponding to a 1 bit in the binary representation of m.

Complexity 451

Figure 178: The card for number 0 in the indexing system

Figure 179: The card for number 5 in the indexing system

To sort the cards, insert a spindle into the holes representing the lowest-order bit. Lift the
spindle, separating the cards without channels at that bit to those with channels. Restack
the cards with the non-channel cards in front. Repeat this process on the next significant
bit, and so on, up to the most significant bit. At the conclusion, the cards will be sorted.

Figure 180: Using a spindle to select the cards having their fifth bit 0,

a step in the radix sorting process

The following Java code simulates the sorting process outlined above.

class radixSort
{
/**
 * Calling radixSort constructor on array of floats sorts the array.
 * Parameter N is the number of elements to be sorted.
 */

// radixSort works using binary representation of numbers being sorted.
// radixSort first sorts on the least-significant bit, then the next least,
// and so on until there are no more bits which have 1 as a value.
// On each pass, it counts the number of words with a 0 in the current
// bit position. It then copies the elements from the array into a
// buffer so that all words with a 0 precede all with a one. It then
// copies the buffer back to the array for the next pass.

452 Complexity

radixSort(int array[], int N)
 {
 int buffer[] = new int[N]; // place to put result of one pass

 boolean done = false; // indicates whether sorting completed

 for(int shiftAmount = 0; !done; shiftAmount++)
 {
 // one pass consists of the following:

 int count = 0; // count of number of 0 bits

 done = true;

 // first phase: determine number of words with 0 bit

 for(int i = 0; i < N; i++)
 {
 int shifted = (array[i] >> shiftAmount); // move bit to low-order

 if(shifted > 0) // is anything left?
 done = false;

 if(shifted % 2 == 0)
 count++; // count this 0
 }

 if(done)
 break;

 // second phase: redistribute words with 0 vs. 1

 int lower = 0, upper = count; // positions for redistribution

 for(int i = 0; i < N; i++)
 {
 int shifted = (array[i] >> shiftAmount);

 if(shifted % 2 == 0)
 {
 buffer[lower++] = array[i];
 }
 else
 {
 buffer[upper++] = array[i];
 }
 }

 for(int i = 0; i < N; i++)
 {
 array[i] = buffer[i];
 }
 }
 }

The time to sort a set of numerals using radix sort is proportional to the number of
numerals times the number of digits in the longest numeral. If the latter number is
bounded by a constant K, then n numerals can be sorted in time proportional to Kn, i.e.

Complexity 453

O(n) time. Again, this sort works only in the case that data can be represented as
numerals in some radix.

We now turn to sorting methods that work on general keys, using only the assumption
that two keys can be compared, but nothing further. A number of obvious sorting

algorithms repeat the bound of O(n2) given by minsort discussed earlier. These include:

Simple insertion sort:

Repeat the following process: Begin with a prefix of the array containing just one
element as a sorted array. From the remaining elements, choose the next one and find its
position in the sorted array. Insert the element by moving the higher elements upward
one. The algorithm is expressed in Java is shown below. As before, calling the
constructor is what causes the array to be sorted, in place.

class insertSort
 {
 private double array[]; // The array being sorted
 int N; // The length of the prefix to be sorted

 // Calling insertSort constructor on array of doubles sorts it.
 // Parameter N is the number of elements to be sorted (which might
 // be fewer than are in the array itself).

 insertSort(double array[], int N)
 {
 this.array = array;
 this.N = N;

 for(int i = 1; i < N; i++)
 {
 insert(i, findPosition(i));
 }
 }

 // insert(i, j) inserts array[i] into an array at position j,
 // shifting to the right the elements
 // array[j+1], array[j+2],, array[i-1]

 void insert(int i, int j)
 {
 double hold = array[i];
 for(int k = i; k > j; k--)
 {
 array[k] = array[k-1];
 }
 array[j] = hold;
 }

 // findPosition(i) finds the position at which to insert array[i]
 // in array[0] array[i-1]
 //

454 Complexity

 int findPosition(int i)
 {
 double item = array[i];
 for(int k = i-1; k >= 0; k--)
 {
 if(array[k] <= item)
 return k+1;
 }
 return 0;
 }
 }

That the above insertion sort is O(n2) can be seen by analyzing the programs using step

counting. Intuitively, minsort and insertion sorts get their O(n2) linear nature of their
attack on the problem: we have an outer loop that runs n steps, and the cost of that loop

ranges from 1 to n. If we are to break through O(n2) to a lower upper bound, we must
find an approach that is not so linear. Here is where the following principle suggests
itself:

Divide-and-Conquer Principle: Try to break the problem
in half, rather than paring off one element at a time.

Perhaps the most obvious divide-and-conquer sorting algorithm is Quicksort. At least, it
is obvious that the approach is correct. Quicksort is easiest to state recursively:

Quicksort: Sorting by Divide-and-Conquer

Basis: If the sequence consists of at most 1 element, it is sorted.

Recursion:
Break a sequence of more than 1 element into two, as follows:

Chose an element from the sequence as a pivot value. All elements
less than the pivot value are selected as subsequence L and all
elements greater than or equal the pivot value are selected as
subsequence R.

Sort the subsequences L and R (recursively). Then form the sequence
consisting of L (sorted) followed by the pivot, followed by R (sorted).

In Java this could be expressed as follows:

class quicksort
 {
 float a[];

 // Calling quicksort constructor on array of floats sorts the array.
 // Parameter N is the number of elements to be sorted.

Complexity 455

 quicksort(float array[], int N)
 {
 a = array;
 divideAndConquer(0, N-1);
 }

 // sort the segment of the array between low and high

 void divideAndConquer(int low, int high)
 {
 if(low >= high)
 return; // basis case, <= 1 element

 float pivot = a[(low + high)/2]; // select pivot

 // shift elements <= pivot to bottom
 // shift elements >= pivot to top

 int i = low-1;
 int j = high+1;

 for(; ;)
 { // find two elements to exchange
 do { i++; } while(a[i] < pivot); // slide i up
 do { j--; } while(a[j] > pivot); // slide j down

 if(i >= j) break; // break if sliders meet or cross

 swap(i, j); // swap elements and continue
 }

 divideAndConquer(low, i-1); // sort lower half
 divideAndConquer(j+1, high); // sort upper half
 }

 // swap(i, j) interchanges the values in a[i] and a[j]

 void swap(int i, int j)
 {
 float temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

Under ideal circumstances, the dividing phase of quicksort will split the elements into
two equal-length subsequences. In this case, there will be log n levels of recursive calls to
quicksort. At each level, O(n) steps must be done to split the array. So the running time is
on the order of n log n. Unfortunately this is only in ideal circumstances, although by a
probabilistic argument that we do not present, it also represents an average case
performance under reasonable assumptions. The worst case performance however causes

the array to split very unevenly, resulting in a worst case of O(n2), which is the worst
case for the other sorting algorithms presented. In a worst-case sense, we have made no
progress.

456 Complexity

Heapsort: Using a Tree to Sort

Now that we have a hint from Quicksort that O(n log n) might be achievable in the best
case, we seek an algorithm that has this performance. Whenever we are trying to make
improvements over algorithms that deal with linear sequences, the following approach is
worth trying:

Tree Structuring Principle:

Rather than dealing with the sequence linearly, try to
employ a tree structure to cut sequence traversal needs
from n to log n.

How about doing insertions within a tree rather than in a linear array, as is done by the
simple insertion sort? If there are n elements and we can do each insertion in O(log n)
time, we might be able to achieve our goal. Of course there are details to be worked out
concerning how we can do the insertions so as to maintain the balance of the tree.

A linear array, as used in select_min sort and simple insertion sort, maintains the items
sorted thus far in a strict order. By relaxing this condition, we can keep the information
"partially ordered" and gain a faster insertion. The original sort of this nature, as
presented by Williams, 1964, was called heapsort, reflecting a "heap" structure, a
particular type of tree structure.

Note: The heap in this section should not be confused with the heap used for general
storage of dynamic data structures.

The Heap Invariant

An example of a heap is shown below. A heap has the following defining property (or
invariant)

The children of any node cannot be greater than the
node itself.

heap invariant

This means that there is a tendency for increasing values as we move toward the root. As
a corollary, we see that the progeny of a node cannot be greater than the node itself, and
further the root must be the greatest element in the tree.

Complexity 457

32

27 19

18 1526 1

12 7 16 4 13

Figure 181: A heap

The following diagram shows the standard implementation of a heap using an array. The
array is viewed as being indexed starting at 1. A node can have 0, 1, or 2 children. The
children of a node with index p have indices 2*p and 2*p+1.

1

2 3

4 5 6 7

8 9 10 11 12

Figure 182: A heap mapped onto the locations of an array.

The numbers show indices of locations, not data values.

The reasoning for choosing 1-origin indexing is just so the relationship between parent
and child indices is simple arithmetically. If we use 0-origin instead, it becomes slightly
more complicated.

We can get a rough idea of how sorting is done using a heap by first explaining another
structure that can be implemented as a heap: a priority queue. This term was introduced
earlier. Recall that in a priority queue discipline, the largest item is always the next to be
removed. Evidently, the largest item in a heap is always the root, so it is easy enough to
locate. However, in removing the root, we must fill the vacancy thus left in such a way
that the result is still a heap. Our goal will be to show that the heap can be formed in time
O(n log n) and reformed, after removing an element, in time O(log n). Given this, the
following code indicates how a heap can be used to achieve an O(n log n) sorting
algorithm.

.... create an empty heap
for(i = 0; i < n; i++)

.... add a[i] to the heap

for(i = n-1; i >= 0; i--)
.... remove a[i] from the heap

458 Complexity

The heapsort algorithm also uses a space-saving trick: using the vacated locations in the
heap for storage of the final sorted array. This means that no additional memory space is
needed.

Deleting the Maximum from a Heap

The ability to find the maximum quickly within a heap is based on the "partial ordering"
of the node values. To preserve this property, it is not enough to simply remove the root.

When removing the max from a heap, we must adjust the
tree immediately afterward so that the max so that the heap
invariant once again holds.

preservation of the heap invariant

Below we show our original heap example after removing the max. Obviously there is a
"hole" at the root that needs to be filled. Also obviously, the value that must fill this hole
is 27, since it is the maximum of the remaining nodes.

27 19

18 1526 1

12 7 16 4 13

Figure 183: Original heap example after removing the maximum,

but before restoring the heap invariant

However, if we move 27 to the root, that leaves another hole, etc. Continuing this
process, we would eventually have a hole in the top row. This situation is undesirable, for
it means that the heap can no longer be represented as a contiguous array.

27

19

18 15

26

1

12 7

16

4 13

Figure 184: Undesirable situation: after filling the hole at the root with the
maximum, and continuing this process down the tree, we have left a hole at the

bottom level. This heap can no longer be represented as a contiguous array.

Complexity 459

In order to avoid this situation, we shall have to plan in advance to preserve the
contiguity of the heap. We can do this by removing that last item in the heap, i.e. the one
that appears in the lower right node of the tree, 13 in this case. So we temporarily make
an orphan out of 13, to find a new home somewhere in the array.

We fill the hole at the root with this former leaf value (13), then adjust the array by
"bubbling up" that value. In this case, bubbling up means to repeatedly adjust a
combination of three nodes so that the maximum is the parent, as shown in the following
sequence.

27 19

18 1526 1

12 7 16 4

13

27 is the maximum of {13, 27, 19}
and will "bubble up"

27

19

18 1526 1

12 7 16 4

13
26 is the maximum of {13, 18, 26}
and will "bubble up"

27

19

18 15

26

1

12 7 16 4

13

13 continues its
descent as others
bubble up

460 Complexity

27

19

18 15

26

1

12 7

16

4

13

13 reaches its final resting
place

Figure 185: Restoring the heap invariant

At this point, the heap invariant is restored and the corresponding heap is again
contiguous. The algorithm for delete_max then is a mechanization of this process. We
notice that the algorithm for deleting max runs in O(log n), since all accesses to nodes are
made along a single path from root to some leaf. We only look at nodes directly on that
path and single nodes to one side or the other.

Initial Creation of a Heap

A heap can be created by starting with an empty heap and repeatedly adding new
elements. As with removal, we must show how to maintain the heap invariant when
inserting, as well as making sure that insertions are also O(log n).

Let us work with the heap above as an example, and suppose that the value 25 is to be
added. As before, to maintain contiguity as a heap, we will need to put into play the node
shown vacant below. We use a technique similar, but not identical, to the one used for
removing the maximum: We put the new element 25 into the vacancy, then let nodes
above it change places until an appropriate level is reached. This is simpler than deleting
the maximum, because it only involves a 2-way comparison, rather than a 3-way one.

27

19

18 15

26

1

12 7

16

413 25

Complexity 461

27

19

18

15

26

1

12 7

16

413

25

27

1918

15

26

1

12 7

16

413

25

Figure 186: Bubbling up in the initial creation of a heap

At this point, the proper position for the new element has been found, so bubbling stops,
leaving us with a new heap. Again we notice that the heap modification is accomplished
in O(log n), since only nodes on the path from the created vacancy to the root are
examined.

The following code shows the combination of these ideas in the heapsort procedure,
which sorts an array in place:

class heapsort
 {
 private float array[]; // The array being sorted

 // Calling heapsort constructor on array of floats sorts the array.
 // Parameter N is the number of elements to be sorted.

 heapsort(float array[], int N)
 {
 this.array = array;
 int Last = N-1;

 // A heap is a tree in which each node is smaller than either of its
 // children (and thus than any of its descendants). All sub-trees
 // of a heap are also heaps. In this program, a heap is stored as
 // an array, with the root at element 0. In general, if a node is
 // at element I, its children are at elements 2*I+1 and 2*I+2.

462 Complexity

 // phase 1: form heap
 // Construct heap bottom-up, starting with small trees just above
 // leaves and coalescing into larger trees near the root.

 for(int Top = Last/2; Top >= 0; Top--)
 {
 adjust(Top, Last);
 }

 // phase 2: use heap to sort
 // Move top element (largest) out of heap, swapping with last
 // element and changing the heap boundary, until only one element
 // remains.

 while(Last > 0)
 {
 swap(0, Last);
 adjust(0, --Last);
 }
 }

 // adjust(Top, Last) adjusts the tree between Top and Last

 void adjust(int Top, int Last)
 {
 float TopVal = array[Top]; // Set aside top of heap
 int Parent, Child;

 for(Parent = Top; ; Parent = Child) // Iterate down tree
 {
 Child = 2*Parent+1; // Child is left child

 if(Child > Last)
 break; // No left child exists

 if(Child+1 <= Last // Right child exists
 && array[Child] < array[Child+1]) // and is larger
 Child++; // Child is larger child

 if(TopVal >= array[Child])
 break; // Location for TopVal

 array[Parent] = array[Child]; // Move larger child up
 }

 array[Parent] = TopVal; // Install TopVal
 }

 // swap(i, j) interchanges the values in array[i] and array[j]

 void swap(int i, int j)
 {
 float temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }

Complexity 463

Merge Sort

One natural method of sorting is to sort by repeated merging. A set of rules for this form
of sort was given in the chapter Low-Level Functional Programming. Our analysis of
merge_sort as given in that chapter follows:

a. The time to merge a pair of lists to get an N element list is O(N) since each
recursive call "retires" an element to the result list and each element of the result
gets retired only once.

b. Thus, the time to merge_pairs on a list of lists, the summed total length of which
is N, is O(N), since from a. the time to merge a single pair is proportional to the
number of elements in the result.

c. The time to use repeat on a list of N 1-element lists is the number of times repeat
is called recursively times O(N), from b.

d. The number of times repeat is called is O(log N), since each call sees a list that is
about half as long as the previous call.

e. The time to merge_sort an N element list is O(N) + time to repeat an N element
list, since mapping an N element list is O(N). From c and d, the time to repeat is
O(N log N).

Therefore the overall time to merge_sort an N element list is O(N log N).

11.18 Complexity of Set Operations and Mappings

A recurring theme in computer problem solving is the need to deal with various kinds of
sets and mappings. Frequently we have need for sets of integers, strings, and more
complex data types, as well as mappings from a wide variety of types to integers, etc.
Thus it is worthwhile using these as one of the foci in our discussion of complexity. A
wide variety of different representations for these abstractions is available and they differ
in the types of data they handle, the complexity, space requirements, and coding
difficulty. It is helpful to taxonomize the methods based on these points.

Thinking of a set as a class, the following operations are typical:

find Find out whether a member is in the set. If so, return a locator for
it. A locator is a kind of reference to the member. It is used in
deleting the member or changing it.

add Add a new member to the set (assuming it is not present already)

delete Given a locator for a member, remove the member from the set.

464 Complexity

new Create a new set.

Set Implementation Using an Unordered Array

Perhaps the simplest way to represent a set is as an array, the elements of which are in no
particular order. The implementation is similar to that for a stack using an array, with an
index indicating the last element in the set. Adding to the set (assuming there is space
available) is trivial, essentially the same as a push onto the stack. Finding a member
requires a search through the array up until the point the element is found or the end is
reached. In the worst case, all elements in the array are examined. Delete, given a locator,
is simple: since order is not important, we can fill the hole left by deletion by putting the
last element in its place (unless, of course, we wish to maintain the order of insertion, but
once order becomes important, we no longer have a set).

Letting N represent the current set size, we can see from the above discussion that the
following upper bounds hold on the set operations:

find O(N)
add O(1)
delete O(N)
new O(1)

Here we assume that the delete accounts only for the time to do the deletion, not to find
the element being deleted as well. A similar discussion and set of bounds holds for using
a linked-list to represent a set.

Binary Search Principle

Some improvement can be obtained, at the expense of slightly greater coding complexity,
by keeping the members of the set in order. This requires that an order be available for
the domain of the set, which is not always the case. The ordering assumption is not at
odds with the definition of a set being unordered, since its use is for internal purposes.

By keeping the set elements in order, the technique of binary search becomes available
for the find operation. Here is how binary search works for find: Using index
computation to find the index of the mid-point of the array, we take a "stab" at that point
and compare it with the element to be found. If we have equality, we return the index as
the locator. If the element to be found is less than the mid-point, then we search in the
half-array below the mid-point; if it is greater, we search in the half-array above. This
process is repeated until the element is either found, or we are left with an empty array to
search.

Complexity 465

Each step of the binary search procedure reduces the number of elements still under
consideration by half. Therefore, the number of steps is proportional to the number of
halvings it takes to reduce the original number of elements, N, to less than 1. This number
of steps is, of course, log N.

The superiority of binary search for find in an ordered array is tempered somewhat by the
costs of addition and deletion. In order to maintain the ordering, we have to shift
elements one way or the other when we insert or delete. In the worst case, we might have
to shift all of the elements. The complexity for the ordered array case would thus appear
as follows:

find O(log N)
add O(N)
delete O(N)
new O(1)

If most of the activity involving the set is of the find type, with few additions or deletions,
then binary search on an ordered set is preferred over using an unordered set.

Binary Search Trees

Does using an ordered linked-list help in a similar way? If we have a linked structure,
additions and deletions usually become less complex. Unfortunately a linked-list doesn't
provide a good way to do the index computation required for binary search. That is, we'd
like to have a way to find the mid-point of a list similar to what was used for an array.
But without adding additional structure, there is no such way. The desire to have
something approaching a linked structure on which binary search can be done has
motivated the use of various tree structures, the most obvious of which is the binary
search tree.

A binary search tree enables binary searching on a linked structure by approximating
access to successive mid-points, similar to the way that binary search was described. To
do this, each node in the structure has two links, one to the elements below the current
one and one to the elements above. The figure shows a binary search tree that holds the
set {1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}

8

4 12

1

62 10

11

14

13 15

Figure 187: A binary search tree

466 Complexity

The defining property of a binary search tree is that all elements in the left sub-tree of a
node are less than the node itself, while all elements in the right sub-tree are greater than
or equal to the node. If the binary search tree is balanced, meaning that for a tree with N
nodes, the length of the longest path is at most 1 + log N, then the search can be done in
time O(log N). We can also insert and delete in time O(log N). However, it is not obvious
that we can insert and delete in this amount of time and still maintain the balance needed
for O(log N) search. In fact, several extensions of binary search trees have been
developed that maintain the balance. These include AVL-trees, 2-3 trees, 2-3-4 trees, red-
black trees, and B-trees. The reader might explore these interesting possibilities in future
courses.

Bit Vectors

If the domain of a set's elements consists of integers, or can be easily mapped into
integers (for example, character strings can be considered as large-radix numerals and are
thus identifiable as integers), then a very fast method of set representation is available. A
bit vector is an array with one array element per domain element. The value of an
element is either 1, indicating that the corresponding domain element is a member of the
set being represented, or 0 indicating that it is not. For example, if the domain is
{0,, 15}, then a bit vector representation of the set {1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}
is

0 15
1 1 1 1 1 1 1 1 1 1 1

Figure 188: A bit vector representation of the set

{1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}
with empty entries representing 0

The advantage of a bit vector is that find is extremely fast. We simply index the position
corresponding to the element we are trying to find. If the value is 1, the element is in the
set, otherwise it is not. By the linear addressing principle, find is O(1) time. Similarly,
add and delete are also O(1) time. In a bit vector, the actual elements are not stored, so
the representation can be compact in terms of space. However this compactness only
occurs if the elements in the set are relatively dense in the range of possible elements.
The amount of space required by a bit vector is O(M) where M is the domain size. If the
set is sparse and M is large, much space will be wasted. Also, it requires time
proportional to M to initialize a bit vector, compared to time proportional to the size of
the set for the other representations studied so far. To summarize, for a bit vector:

find O(1)
add O(1)
delete O(1)
new O(M)

Complexity 467

Analysis of Hashing

Hashing was introduced in the chapter Implementing Information Structures. Under
nominal conditions, the time for find using hashing is best regarded as O(1). This
assumes that

• the elements of the set are distributed relatively evenly into buckets,

• the size of any one bucket is bounded by a constant, and

• the time to compute the hashing function is bounded by a constant

Any of these assumptions can be violated, but there are ways to remedy any tendency to
violate them. For example, the first assumption can be satisfied by devising an
appropriate hashing function, such as hash_pdg presented earlier. The size of buckets are
bounded, assuming the first assumption holds, by making the table large enough. If the
number of elements in the set is not known in advance, there are ways to extend the table
size dynamically. This is not a trivial problem, but it is a solvable one, using techniques
such as "extendible hashing" (see Fagin, et al. 1979). The third assumption is true if there
is a bounded number of digits in the representation of each element. Obviously this
would not be true if we used arbitrarily-long strings, but it is approximately true for many
common cases. Since we have to look at every character of the string to be matched
anyway, and the time to compute a typical hashing function is bounded by a constant
times the length of the string, this time can be considered to be part of the cost of looking
at the elements to be found.

The Trie Principle

Trie representation is a form of tree demonstrated in Information Structures. Unlike
binary search trees, but similar to radix sorting, tries can exploit situations where the data
can be represented as numerals. Since the linear addressing principle applies at each level
of a trie, the access time to any element of a trie is O(1) if the number of levels is
bounded, or O(L) where L is the number of levels, in general.

Sets vs. Bags and Mappings

So far we have emphasized structures for storing sets. However, most of these structures
can also be adapted to implement bags and mappings as well. Usually it is a matter of
storing additional information with the element inside the representation. For example,
with bags we store a number indicating the multiplicity of the element in the bag; the
absence of an element implies multiplicity 0. With mappings, the elements stored in the
set are the domain values, and with each element in the domain we store the
corresponding range value.

468 Complexity

Exercises

1 ••• Rewrite the radix-sort procedure using a queue abstract data type. In particular,
store the initial data on one queue and dequeue each item, placing it in one of two
other queues depending on the least significant bit. Repeat this process for bits of
successively-increasing significance. (Note: You do not have to implement the
queue data type; that was discussed in Computing Objectively.) Hopefully your
algorithm is easier to understand now that more abstraction has been employed.

2 ••• Try to devise an O(n) sort for numbers of fixed precision using a trie.

3 ••• Design a data abstraction for "bignums", integers of arbitrary precision, using
internal arrays of fixed-precision items (such as short int). Implement the
operations of addition, subtraction, and multiplication at a minimum. Give O
bounds on the complexity of your operations as a function of argument size.

4 ••• Using your implementation in the previous problem, code the Russian peasants'
method of raising a bignum to a power. Analyze the complexity of raising a fixed
constant to a power. See how well your analysis agrees with empirical
observation.

5 •••• Explore the possibility of speeding up bignum multiplication using the divide-
and-conquer strategy.

6 ••• Empirically compare the performance of a spell checker using hashing against
ones using (a) binary search, and (b) a trie. Assume that you do not count the time
taken to create the ordered array or the trie.

7 ••• Conduct a literature search on methods for keeping binary search trees in balance,
so as to ensure an O(log n) search time.

8 •• Write a program that will do a fast spelling check by using a dictionary stored as a
hash table. Populate the table from a dictionary files, such as /usr/dict/words
available in most UNIX systems. Compare the speed of your program to one
that searches the dictionary sequentially.

9 ••• Suppose you wish to treat arbitrary Polys as keys. Develop a hash function for
this application. Use recursion and avoid converting the Poly into text first.

10 ••• Implement merge sort. Use linked lists. Verify empirically the n log n upper bound

Complexity 469

11.19 Chapter Review

Define the following terms:

Amdahl's law
asymptotically dominated
binary search
binary search tree
bit vector
bucket sort
complexity
distribution sorting
divide and conquer
growth-rate
hashing
heapsort
insertion sort
L'Hopital's rule
merge sort
"O" notation
profiling
quicksort
radix sort
tight
trie
upper bound

Describe how you would estimate the complexity of a program empirically.

Describe the role of limits of sequences in interpreting complexity bounds.

11.20 Further Reading

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data Structures and
Algorithms, Addison-Wesley, Reading, 1983. [Moderate.]

Jon Bentley, Programming Pearls, Addison-Wesley, Reading Mass., 1986. [A series of
articles on algorithms and programming. Easy to moderate.]

Jon Bentley, More Programming Pearls, Addison-Wesley, Reading Mass., 1988. [A
continuation of Bentley, 1986. Easy to moderate.]

G. Brassard. Crusade for a better notation. ACM SIGACT News, 17, 1, 60-64 (1985).

470 Complexity

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, Mass., 1990. [Moderate.]

E. Fredkin, Trie memory, Comm. ACM, 3, 4, 490-500, 1960.

R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong, Extendible hashing – a fast
access method for dynamic files, ACM Trans. on Database Systems, 4, 315-344, 1979.
[Shows an interesting way to expand hashing tables by splitting buckets. Moderate to
difficult.]

R.W. Floyd, Algorithm 245: Treesort 3, Comm. ACM, 7, 12, 345, 1964 [Improvements
on the original heapsort.]

C.A.R. Hoare, Quicksort, Computer Journal, 5, 1, 10-15, 1962.

D.E. Knuth. Big omicron and big omega and big theta. ACM SIGACT News, 8, 2, 18-24
(1976).

D.E. Knuth, The Art of Computer Programming, 3 volumes, Addison-Wesley, Reading
Mass., 1973, 1981. [Comprehensive reference on algorithms and analysis. Moderate to
difficult.]

Williams, J.W.J., Algorithm 232: Heapsort, Comm. ACM, 7, 6, 347-348, 1964 [Original
paper on heapsort.]

