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Optimal Spatial Filtering of Single Trial EEG During
Imagined Hand Movement

Herbert Ramoser, Johannes Müller-Gerking, and Gert Pfurtscheller

Abstract—The development of an electroencephalograph
(EEG)-based brain-computer interface (BCI) requires rapid and
reliable discrimination of EEG patterns, e.g., associated with
imaginary movement. One-sided hand movement imagination
results in EEG changes located at contra- and ipsilateral central
areas. We demonstrate that spatial filters for multichannel EEG
effectively extract discriminatory information from two popula-
tions of single-trial EEG, recorded during left- and right-hand
movement imagery. The best classification results for three
subjects are 90.8%, 92.7%, and 99.7%. The spatial filters are
estimated from a set of data by the method of common spatial
patterns and reflect the specific activation of cortical areas. The
method performs a weighting of the electrodes according to their
importance for the classification task. The high recognition rates
and computational simplicity make it a promising method for an
EEG-based brain–computer interface.

Index Terms—Assistive communication, electroencephalograph
(EEG) classification, event-related desynchronization (ERD), mu
rhythm, prosthesis, sensorimotor cortex.

I. INTRODUCTION

PATIENTS in a late stage of amyotropic lateral sclerosis
(ALS) or suffering from a locked-in syndrome are not able

to produce any voluntary muscle movements. Sensory and cog-
nitive functions of the brain are only minimally affected by such
a disease. One possibility to open a communication channel for
these patients is to use electroencephalograph (EEG) signals to
control an assistive device that allows, for example, the selec-
tion of letters on a screen [brain–computer interface (BCI)]. It
has been shown that the imagination of a limb activation can
modify brain electrical activity [1]. Depending on the type of
motor imagery, different EEG patterns can be obtained. Activa-
tion of hand area neurons either by preparation for a real move-
ment or by imagination of the movement is accompanied by
an circumscribed event-related desynchronization (ERD) [2] fo-
cused at the hand area [3].

In a number of experiments, we found that EEG signals
recorded from two bipolar channels over the left- and right-hand
areas during imagined one-sided hand movements could be
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Fig. 1. Timing of the movement imagery task. The cue stimulus in form of an
arrow gives the side of imagination.

differentiated with an accuracy of about 85% [3] (accuracy
refers to the number of correctly classified trials divided by the
overall number of trials). This accuracy compares quite well
to other studies [4] but it is still too low for a BCI. In current
prototypes of a BCI, patients with ALS need about one minute
to select a letter, when the single trial accuracy is 80% [17]. If
we could achieve a classification accuracy close to 100%, the
required time for selection of a letter would be dramatically
reduced, since fewer corrections are necessary after choosing a
wrong letter.

There are different ways to increase the classification accu-
racy of an EEG-based BCI.

1) In the case when only one or two EEG channels are avail-
able, more advanced algorithms for the extraction of dis-
crimination-relevant features might be used (e.g., adap-
tive autoregressive filtering [5]) and/or better classifiers
might be employed [e.g., finite impulse response (FIR)
multilayer perceptrons] [6], [7].

2) The use of multiple EEG channels to acquire additional
information about the state of the brain.

Recently, an analysis of multichannel EEG data has shown that
classification accuracy can be increased by training an artificial
neural network for each EEG channel and combining all net-
works to a committee [8]. A different approach used specifically
designed spatial filters obtained by the method of common spa-
tial patterns (CSP) to construct very few new time-series whose
variances contained the most discriminative information. These
were classified by a linear discriminator [9].

The method of common spatial patterns was first applied to
EEG for detection of abnormalities [10] and later used to dis-
criminate movement-related patterns [9]. The method of CSP
is based on a decomposition of the raw EEG signals into spatial
patterns, which are extracted from two populations of single trial
EEG. These patterns maximize the difference between the popu-
lations. In this study, one population consists of EEG recordings
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during left motor imagery and the other population consists of
right motor imagery data.

The goal of this paper is to apply the method of CSP to
56-channel EEG recordings obtained during right and left motor
imagery and to investigate whether multiple channels can im-
prove the classification accuracy as compared to two channels.
The CSP method is applied to common reference EEG data and
to computed reference-free data.

II. M ETHODS

A. Experiment and Data Acquisition

1) Subjects:Three female right-handed subjects (age 20–27
years) took part in the study. The student volunteers were paid
for their participation.

2) Procedure: The subjects were seated in an armchair and
looked at a computer monitor placed approximately 2 m in front
at eye level. They were asked to keep their arms and hands re-
laxed and to avoid eye movements during the recordings. Each
trial started with the presentation of a fixation cross at the center
of the monitor, followed by a short warning tone (“beep”) at 2 s
(Fig. 1). At 3 s, the fixation cross was overlaid with an arrow at
the center of the monitor for 1.25 s, pointing either to the right
or to the left (“cue”). Depending on the direction of the arrow,
the subject was instructed to imagine a movement of the right
or the left hand. The sequence of right and left trials, as well as
the duration of the breaks between consecutive trials (ranging
between 0.5 and 2.5 s), was randomized. Thus, the interval be-
tween consecutive cue stimuli was at least 9 s. The experiment
comprised four experimental runs of 40 trials each (20 left and
20 right trials).

3) Recordings:EEG was recorded referentially from 56
Ag/AgCl electrodes placed over central and related areas,
equally spaced with approximately 2.5 cm distance. The refer-
ence electrode was mounted on the right ear and the grounding
electrode on the forehead. The EEG was filtered in a 0.5–50
Hz frequency band. Electrooculogram (EOG) was derived
bipolarly using two electrodes, one placed medially above and
the other laterally below the right eye. In addition, the surface
electromyogram (EMG) was obtained from the extensor
digitorum communisof the right and left forearm to detect
task-related muscle activity. The EMG was filtered in a 1.5–1
kHz frequency range and rectified. A contour follower with
a 4-Hz upper frequency limit was used to extract the overall
EMG activity. All signals, including 56 EEG signals, EOG, and
the EMG contour, were sampled at 128 Hz.

B. Data Preprocessing

1) Artifact Detection: All trials were visually checked for
EEG artifacts during the movement imagery period (i.e., second
4–8). From the total of 160 trials recorded, all trials containing
artifacts found during visual inspection, e.g., task-related EMG
(i.e., hand movements during the imagination period) or EOG
activity were omitted from further analysis, leaving 149 (74 left,
75 right), 142 (75/67), and 115 (59/56) trials for subjects S1, S2,
and S3, respectively.

2) EEG Rereferencing:The selection of a suitable EEG ref-
erence can greatly influence the classification accuracy and sen-
sitivity to artifacts [11], [12]. In this study we use referential,
small Laplacian, large Laplacian, bipolar, and common average
referenced (CAR) data.

A small (large) Laplacian reference is obtained by rerefer-
encing an electrode to the mean of its four nearest (next-nearest)
neighboring electrodes. For bipolar recordings, the difference of
the electrodes in anterior and posterior direction gives the reref-
erenced signal. A common average reference uses the mean of
all electrodes as reference [13].

For bipolar, small, and large Laplacian rereferencing, border
electrodes are omitted; hence, 34, 30, and seven EEG channels
remain for these methods.

3) Filters: Prior to calculation of the spatial filters, the reref-
erenced EEG signal was filtered in an 8–30 Hz band. The filter
used was a zero-phase forward/backward FIR filter with a width
of 20 points. The frequency band was chosen because it encom-
passes the alpha and beta frequency bands, which have been
shown to be most important for movement classification [3].
Furthermore, in a recent movement study, it was shown that a
broad frequency band (e.g., 8–30 Hz) gives better classification
results compared to narrow bands [9].

C. Spatial Filters

The goal of this study is to design spatial filters that lead to
new time series whose variances are optimal for the discrimina-
tion of two populations of EEG related to left and right motor
imagery. The method used to design such spatial filters is based
on the simultaneous diagonalization of two covariance matrices
[14]. This method, called the method of common spatial pat-
terns, has been introduced to EEG analysis for detection of ab-
normal EEG [10] and was recently applied successfully to the
classification of movement-related EEG [9].

For the analysis, the raw EEG data of a single trial is repre-
sented as an matrix , where is the number of channels
(i.e., recording electrodes) andis the number of samples per
channel. The normalized spatial covariance of the EEG can be
obtained from

(1)

where denotes the transpose operator and traceis the sum
of the diagonal elements of. For each of the two distributions
to be separated (i.e., left and right motor imagery), the spatial
covariance is calculated by averaging over the trials
of each group. The composite spatial covariance is given as

(2)

can be factored as , where is the matrix of
eigenvectors and is the diagonal matrix of eigenvalues. Note
that throughout this section, the eigenvalues are assumed to be
sorted in descending order.

The whitening transformation

(3)
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equalizes the variances in the space spanned by, i.e., all
eigenvalues of are equal to one. If and are trans-
formed as

and (4)

then and share common eigenvectors, i.e.,

if then and
(5)

where is the identity matrix. Since the sum of two corre-
sponding eigenvalues is always one, the eigenvector with largest
eigenvalue for has the smallest eigenvalue for and vice
versa. This property makes the eigenvectorsuseful for clas-
sification of the two distributions. The projection of whitened
EEG onto the first and last eigenvectors in(i.e., the eigen-
vectors corresponding to the largestand ) will give feature
vectors that are optimal for discriminating two populations of
EEG in the least squares sense.

With the projection matrix , the decomposition
(mapping) of a trial is given as

(6)

The columns of are the common spatial patterns and can
be seen as time-invariant EEG source distribution vectors.

D. Classification

The features used for classification are obtained by decom-
posing (filtering) the EEG according to (6). For each direction
of imagined movement, the variances of only a small number
of signals most suitable for discrimination are used for the con-
struction of the classifier. The signals ( ) that
maximize the difference of variance of left versus right motor
imagery EEG are the ones that are associated with the largest
eigenvalues and . These signals are the first and last
rows of due to the calculation of

(7)

The feature vectors of left and right trials are used to cal-
culate a linear classifier [15]. The log-transformation serves to
approximate normal distribution of the data.

For proper estimation of the classification accuracy, the data
set of each subject is divided into a training and testing set. The
training set is used to calculate a classifier, which is used to clas-
sify the testing set. This training/testing procedure is repeated 20
times with different random partitions into training and testing
sets (i.e., 20 cross-validation).

III. RESULTS

For calculation of the spatial filters, each trial is split into
nonoverlapping time segments of 1.5 s length (i.e., 192
in the equations above). For each of these segments, spatial fil-
ters and classifiers are calculated using the formulas in the pre-
ceding section, and the classification accuracy is determined by

TABLE I
CLASSIFICATION ACCURACY FOR EACH

SUBJECT, FIVE EEG REFERENCINGMETHODS, AND VARYING NUMBERS OF

CHANNELS. ONLY THE CLASSIFICATION ACCURACIES OF THESINGLE

BEST TIME SEGMENT OFEACH SUBJECT AREGIVEN. THE BEST RESULT

OF EACH SUBJECTIS SET IN BOLD FACE

the cross-validation procedure. For each direction, only the two
most important filters (i.e., in the equations above) are
used for setting up a classifier. It has been shown that the use of
more filters does not significantly improve classification accu-
racy [9].

In the remainder of this section, we consider only the time
segment with the highest classification accuracy. For subjects S1
and S2, all methods give the best results for the segment 4.5–6 s;
for subject S3, the segment 3–4.5 s is selected.

A. Accuracy

Table I shows the classification accuracy for each subject
and each EEG referencing method. For three of the referencing
methods, results for electrode subsets are included. These elec-
trode subsets are 18 electrodes surrounding C3 and C4. The
results for two EEG channels were obtained by designing a
linear classifier for the variances of the rereferenced EEG sig-
nals of electrodes C3 and C4, i.e., without application of the
CSP method.

For each of the subjects, an accuracy of more than 90% can be
achieved. For subject S3, several methods give results close to
100%. The referencing method has little influence on the clas-
sification accuracy. Taking more than two channels sensibly in-
creases performance. For example, a referential recording using
18 channels increases the performance by more than 10% com-
pared to two channels. A further increase to 56 channels does
not significantly improve performance. For a large Laplacian
reference, the results are less dependent on the number of chan-
nels. It must, however, be kept in mind that the large Laplacian
reference with two channels actually requires a montage with
ten electrodes.

B. Spatial Patterns

Fig. 2 shows the spatial patterns calculated for subject S1 [i.e.,
the first and last columns of in (6)]. The contour plots are
obtained with cubic interpolation. Since within a pattern the co-
efficients seldomly cross the zero line, and for filtering only the
absolute value of the coefficients is of importance, the patterns
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are plotted in grayscale symmetric to zero to allow for easier
comparison.

Left motor imagery causes a relatively increased EEG
variance over the left hemisphere because on the contralateral
hemisphere, event-related desynchronization of EEG takes
place. This behavior is reflected in large coefficients for
electrodes on the left hemisphere in the most important spatial
pattern. Mirrored behavior can be seen for right motor imagery.

The most important patterns show their strongest modulation
at electrodes above the motor cortex. The pattern for left motor
imagery is focused at electrode C3 overlaying the hand area.
However, the focus for right imagery is at electrodes slightly
anterior to C4. The second most important patterns do not ex-
hibit a clear focus at specific electrodes.

C. Subjects

Figs. 3–5 display the most important spatial patterns for all
subjects with referential, small Laplacian, and bipolar refer-
ences.

The patterns for all referencing methods are very similar. Be-
cause of the spatial filtering properties of the small Laplacian
reference (actually, this reference approximates a spatial second
derivative), it shows more distinct spatial differences.

For each subject, the focus of the patterns is at the same
electrodes regardless of the referencing method, and, generally,
electrodes overlaying the hemisphere opposite to the focus have
coefficients close to zero. For none of the subjects are the pat-
terns for leftand right imagery are centered exactly at C3 and
C4, which are currently used for EEG classification in the BCI
project [3]. Especially in the right hemisphere, the electrode
with maximum discriminatory power is anterior to C4 for sub-
ject S1 and posterior to C4 for subjects S2 and S3. This dis-
placement of the focus relative to electrodes C3 and C4 partly
explains the increase in classification accuracy with multiple
channels with respect to a two-channel montage.

IV. DISCUSSION

All three subjects have participated in a series of motor
imagery sessions (left versus right hand) with delayed feedback
and two bipolar EEG channels prior to the reported multi-
channel experiment [3]. The best classification results in these
sessions were 91.3% for subject S1, 83.7% for S2, and 89.9%
for S3. These results were obtained online in a feedback session
whereby in each subject, the bandpower of two optimized
narrow frequency bands was classified. The use of the common
spatial patterns method increases the classification accuracy
between 1% (subject S1) and 10% (subject S3), even though
in the multichannel experiment no feedback was given. From
the inspection of the ERD time course calculated for electrodes
C3 and C4 during left and right motor imagery in experiments
with and without feedback, it can be expected that in the latter
case the classification accuracy is lower [3, Fig. 3].

Imagination of left (right) movement leads to reduced ampli-
tude of sensorimotor rhythms over the right (left) hemisphere.
The topographical display of the ERD during motor imagery
in subjects S1, S2, and S3 showed a focal ERD over the con-
tralateral primary sensorimotor area. Additionally, in two of the

Fig. 2. Most important and second most important spatial patterns for
the discrimination of left from right motor imagery. Subject S1, referential
recording, 56 channels. Electrode positions are marked with a black dot except
for electrodes C3 (left) and C4 (right), which are marked with a “+.” All
electrodes are arranged in a grid of 2.5-cm spacing.

Fig. 3. Most important spatial patterns for the detection of left and right motor
imagery for each subject and referential recording, 56 channels. See Fig. 2 for
further explanation.

subjects (S2 and S3), ipsilateral event-related synchronization
(ERS) was present [16, Fig. 2]. It is therefore not surprising that
the relative increase of EEG variance as indicated in the spatial
patterns is focused on the ipsilateral side.

In online experiments with two bipolar EEG channels, the
most reactive frequency bands were 9–13 Hz for subject S1,
10–12 Hz for S2, and 22–29 Hz for S3 [16]. In these bands, the
EEG reactivity (i.e., ERD and ERS) was most impressive and
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Fig. 4. Most important spatial patterns for the detection of left and right motor
imagery for each subject and small Laplacian reference, 30 channels. See Fig. 2
for further explanation.

showed largest differences between both imagination tasks. The
analyzed frequency band of 8–30 Hz covers all of these most re-
active frequency components. It is of interest that especially in
subject S3 with a reactive beta frequency band, the classification
results with the CSP method are close to 100%. In this subject,
classification of two channels (large Laplacian reference) results
already in an accuracy of 93%. This can be interpreted that for
subject S3, the most relevant information for differentiation of
left and right motor imagery is in the central beta rhythm located
at the Rolandic region. In the other subjects, a more widespread
activity in the alpha band explains the relatively poor classifica-
tion results with two channels and the improvement with addi-
tional channels.

The major problem in the application of the method presented
in this paper is the sensitivity to artifacts in the EEG. In the re-
ported study, we use the sample covariance to estimate the co-
variance matrices, which are the basis for calculation of the spa-
tial filters. This estimator is known to be nonrobust. Since the
covariance matrices are estimated with a comparatively small
number of examples (e.g., 100 trials with 192 samples each for
a 56 56 covariance matrix), a single trial contaminated with
artifacts can cause severe changes to the filters. Therefore, the
method currently requires EEG data free of any artifact for re-
liable calculation of the spatial filters. The use of a robust vari-
ance estimation method may circumvent these problems. Once
the filters have been calculated, the influence of artifacts is re-
duced since each filter performs weighted spatialaveragingof
the EEG. Further possible drawbacks of the CSP method are as
follows.

Fig. 5. Most important spatial patterns for the detection of left and right motor
imagery for each subject and bipolar reference, 34 channels. See Fig. 2 for
further explanation.

1) The need for at least 18 EEG electrodes, which necessi-
tates costly hardware and also makes electrode and hard-
ware failures more likely.

2) The CSP method detects spatial patterns in the EEG.

Hence, changing electrode positions may render the improve-
ments in classification accuracy gained by the method useless.
The method, therefore, requires almost identical electrode posi-
tions for all trials and sessions, which is difficult to accomplish.

The EEG referencing method has little influence on the clas-
sification accuracy. However, another study indicates that large
Laplacian and CAR references are most suited for a BCI [11].
These contradictory results may be caused by the fact that the
data in this study were free of artifacts, and therefore, the reref-
erencing methods could not improve the signal-to-noise ratio. A
noise-insenitive rereferencing method, e.g., a small Laplacian,
may prove useful when the data are not completely free of arti-
facts.

The results also indicate that 18 channels covering the hand
areas of the motor cortex are sufficient for good classification.
A further increase in the number of channels does not signifi-
cantly improve accuracy. The use of two EEG channels with a
large Laplacian reference gives satisfactory classification accu-
racy for two of the subjects. Hhowever, this referencing method
requires a total of ten EEG electrodes.

The methods used in this study do not take into account tem-
poral information of the filtered EEG signal. Solely, the variance
of the spatially filtered EEG is used for classification. The use of
time-dependent parameters estimated from the spatially filtered
EEG (e.g., adaptive autoregressive models) may further improve
classification accuracy. Results of a similar study indicate that
the use of more advanced (nonlinear) methods for classification
of the variances does not improve classification accuracy [9].
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