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Abstract 
Development of music education software inevitably 
leads to questions of how to acquire musical knowledge 
to be made available to the student user. I will describe 
machine learning of patterns for accompaniment styles 
and grammars for improvisation, based on melodic 
abstraction, clustering, and chaining. I will also discuss 
supervised and unsupervised approaches to 
improvising over chord progressions using neural 
network. Finally, I will mention a challenging unsolved 
application: learning to classify idiomatic patterns in 
chord progressions. 
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Context: Educational Music Software 

n  Intelligent Music Software Project at 
Harvey Mudd College 
n  Impro-Visor 

n  Style pattern learning 
n  Melodic grammar learning 
n  Melody generation using neural network critic 

 
n  RBM-provisor: Using Deep-Belief Networks 

n  Melody generation using unsupervised learning 



Two Major Music Universes 

n  Audio (mp3, wav, AIFF, au, …) 

n  Symbolic 
MIDI = “Musical Instrument Digital Interface” 



Example: SmartMusic 
MakeMusic, Inc. 

n  Provides feedback for student practice sessions 
(“used by over 75,000 students worldwide”) 
 

n  http://www.youtube.com/watch?v=xhYXO6TPKw4 

n  Developed by Prof. Roger Dannenberg at CMU. 
 

n  Proprietary 



Learning 

n  Intelligent software can also “learn”,  
so as to improve its ability to make 
decisions beneficial to the user. 

n  Also ideally, humans can learn from the 
software, whether or not the software 
learns. 



Music Plus One (formerly Music++) 
Prof. Chris Raphael, Indiana University 

n  Uses Hidden Markov Models 
n  Virtual orchestra anticipates player’s 

tempo, follows retakes, etc. 
n  http://www.music.informatics.indiana.edu/~craphael/music_plus_one/index.html 



Creativity 
Ideally, intelligent music software can also 
“create”, i.e. use its ability to make 
decisions to produce new results that will 
inform or intrigue the user. 



GenJam (Genetic Jammer) 
Prof. Al Biles, Rochester Inst. of Technology 

n  Improvises jazz solos  

n  Trades interactively with human soloist. 
n  http://www.youtube.com/watch?v=xWHU8uE043g 

n  Learning based on  
Genetic Algorithm 
 

n  Proprietary code 



HMC Intelligent Music Software Project 

n  Oriented toward helping musicians learn 
to improvise 

n  Focus is on jazz education,  
but not limited to jazz 



Impro-Visor 
 

n  Short for “Improvisation Advisor”. 

n  A software “workbook” that can 
learning to improvise by: 
n  Helping users write out solos 
n  Creating solos while trading with user 
n  Playing backing accompaniments 

 



Impro-Visor Parameters 
n  Much musical information is in the form 

of user-editable text files: 
n  Vocabulary defines 

Scales, Chords, Cells, Idioms, Licks, Quotes 
n  Styles govern 

How accompaniment is played and sound 
n  Grammar creates melodies 

Somewhat in the style of specific players 
n  Leadsheet specifies 

n  Chord progression 
n  Melody, solos 



Leadsheet vs. Sheet Music 

1 bar of sheet music 

1 bar of a leadsheet 
 
In a leadsheet, the 
accompaniment aspect 
is left to the performer. 



Impro-Visor Leadsheet View 



User Constructing a Solo 

Entry Options: 
•  Point-and-click 
•  Cut-and-paste 
•  Textual 
•  Midi-keyboard 



Note Coloration: Chord-Related 
Part of the “Advisor” aspect of Impro-Visor 

Green: tone not in the chord, but sonorous with it 
   (called “color” tone). 

Red: None of the others (“outside”). 

Black: tone in the chord 

Blue: Half-step away from chord or color 
 (called “approach” tone). 



A Helpful Insight 

n  Note coloration categories, originally 
intended to educate users, can be 
useful for machine learning aspects. 

n  Use in Grammar Learning 

n  Use in Critic Development 



Generating Licks for Examples 

n  Lick = a short melodic phrase 
n  sometimes idiomatic 
n  sometimes original 

n  Prior to introducing  
lick generation,  
Impro-Visor used a  
database to store  
lick suggestions. 



Probabilistic Grammar Illustration 

n  We could fill a beat with a variety of rhythms: 

n  Let B denote one beat of music 
n  A grammar represents all of these 

possibilities: 
 B → X4    4 means quarter note 
 B → X8 X8    8 means eighth note 
 B → X8 X16 X16   etc. 

Here X4, X8, X16 are understood “terminal” symbols, 
while B is a non-terminal to be expanded. 

. . . 



Probabilistic Grammar Illustration 

n  Assign a probability to the various choices 
n  Probabilities will then dictate a prevalent style 

n  A grammar represents a distribution of these 
possibilities: 

 B → X4    p = 0.3   common 
 B → X8 X8   p = 0.6   frequent   
 B → X8 X16 X16  p = 0.1   rare 

 



Grammars Can Exhibit 
Hierarchy and Recurrence 

n  Instead of 
 B → X4    p = 0.3   common 
 B → X8 X8   p = 0.6   frequent  
 B → X8 X16 X16   p = 0.1   rare 

n  Use 
 B → X4    p = 0.3   common 
 B → C C    p = 0.7   frequent  
 C → X8    p = 0.8   very frequent 
C → X16 X16   p = 0.2   rare 

n  Generates 

p = 0.3 p = 0.448 p = 0.112 p = 0.112 p = 0.028 



Recurrence Allows a Grammar to 
Fill an Arbitrary Number of Beats 

n  R → B R   One beat, then more 

n  R → empty   No more 

n  So R can produce B, BB, BBB, BBBB, 
etc. 

  



Abstract vs. Real Melodies 

C8 C8 C8 C8 L4 C8 C8 

c+8 ab8 bb8 e8 db4 d8 f8 

g8 bb8 f8 ab8 db+4 f+8 g#+8 d+8 bb8 f8 ab8 g4 b8 f+8 

A real melody 
on the staff 
and as text 

Abstract melody as text: 

Two other melodies with  
the same abstract melody 

C = Chord tone 
L = coLor tone 
8 = 8th note 
4 = quarter noter 



Markov Chains in Grammars 

n  Recurrent productions allow us to embed an 
arbitrary Markov chain in the grammar. 

n  The reason for wanting this will be explained 
shortly. 

Markov chain Grammar 



A Complete Grammar 
(Terminals in Bold) 

(startsymbol P) 
(base (P 0) () 1.0) 
(rule (M4) (A4) 0.01) 
(rule (M4) (C4) 0.2) 
(rule (M4) (C4) 0.1) 
(rule (M8) (A8) 0.01) 
(rule (M8) (C8) 0.4) 
(rule (M8) (C8) 0.2) 
(rule (M8) (C8) 0.1) 
(rule (N2) (C2) 1.0) 
(rule (N4) (M4) 0.75) 
(rule (N4) (R4) 0.25) 
(rule (N8) (M8) 0.9) 
(rule (N8) (R8) 0.1) 
 
(rule (P Y) (Seg1 (P (- Y 120))) 0.0010) 
(rule (P Y) (Seg2 (P (- Y 240))) 0.25) 
(rule (P Y) (Seg4 (P (- Y 480))) 0.75) 
(rule (Seg1) (C4) 1.0) 
(rule (Seg2) (N2) 0.06) 
(rule (Seg2) (N8 C4.) 0.3) 

(rule (Seg2) (V2) 0.3) 
(rule (Seg2) (V4 V4) 0.6) 
(rule (Seg2) (V8 N4 V8) 0.12) 
(rule (Seg2) (V8 V8 V8 V8) 0.6) 
(rule (Seg4) (C4. N8 Seg2) 0.1) 
(rule (Seg4) (C4/3 C4/3 C4/3 Seg2) 0.02) 
(rule (Seg4) (Seg2 C4/3 C4/3 C4/3) 0.02) 
(rule (Seg4) (Seg2 V4 V4) 0.52) 
(rule (Seg4) (V8 N4 N4 N4 V8) 0.01) 

 
(rule (V2) (C16 C16 C16 C16 M4) 0.05) 
(rule (V2) (C16/5 C16/5 C16/5 C16/5 C16/5 M4) 0.0050) 
(rule (V2) (C8 C8 C8 C8) 0.3) 
(rule (V2) (C8/5 C8/5 C8/5 C8/5 C8/5) 5.0E-4) 
(rule (V4) (C8/3 C8/3 A8/3) 0.01) 
(rule (V4) (C8/3 C8/3 C8/3) 0.05) 
(rule (V4) (C8/3 C8/3 C8/3) 0.02) 
(rule (V4) (N4) 0.22) 
(rule (V4) (V8 V8) 0.72) 
(rule (V8) (C16 A16) 0.01) 
(rule (V8) (N8) 0.99) 



Grammar Learning Feature 

n  Impro-Visor can learn a grammar by 
examining one or more transcribed solos. 

n  For greater coherence special construct 
called a slope is introduced, from which 
melodic contours can be constructed. 

n  Slopes can appear in the rules in the place of 
terminals. 



Slopes Encode Contours 



Grammar Learning Algorithm 
enables grammar to be learned from transcriptions 

Learned	  Grammars	  

Transcription	  of	  Dave	  Liebman’s	  	  
Solo	  on	  Picadilly	  Lilly:	  

Transcription	  in	  Text	  



Grammar Learning Interface 



From Transcription to Grammar 

Transcription	  
2-‐bar	  melody	  windows	  
in	  context	  of	  chords	   Abstract	  	  

melodies	  

Abstract	  melodies	  
clustered	  by	  
similarity	  metric	  

Cluster	  representatives	  chosen	  Representatives	  	  
Markov-‐Chained	  

0.2	  

0.8	  

Grammar	  

A	  

B	  

C	  

A	  →	  A0	  B	  	  	  	  (p	  =	  0.8)	  
A	  →	  A0	  C	  	  	  	  (p	  =	  0.2)	  
B	  →	  	  B0	  	  	  	  	  	  	  	  	  	  	  (p	  =	  1)	  
C	  →	  	  C0	  	  	  	  	  	  	  	  	  	  (p	  =	  1)	  



Example: Dave Liebman Grammar Excerpt 
(The full grammar is over 1000 lines) 

(startsymbol P) 
(base (P 0) () 1.0) 
(rule (P Y) (Seg1 (P (- Y 120))) 1.0) 
(rule (Seg1) (C4) 1.0) 
(rule (P Y) ((START 1) (P (- Y 480))) 1.0) 
(rule (P Y) ((START 2) (P (- Y 960))) 10.0) 
(rule (P Y) ((START 4) (P (- Y 1920))) 100.0) 
(rule (P Y) ((START 8) (P (- Y 3840))) 1000.0) 
 
(rule (START Z) ((Cluster0 Z)) 0.03) 
(rule (START Z) ((Cluster1 Z)) 0.02) 
(rule (START Z) ((Cluster2 Z)) 0.07) 
(rule (START Z) ((Cluster3 Z)) 0.08) 
 . . . 
(rule (START Z) ((Cluster28 Z)) 0.08) 
 
(base (Cluster0 0) () 1) 
(base (Cluster1 0) () 1) 
 . . . 
(base (Cluster28 0) () 1) 
 

(base (Cluster0to3 0) () 1) 
(base (Cluster0to4 0) () 1) 
(base (Cluster0to11 0) () 1) 
 . . . 
(base (Cluster28to28 0) () 1) 
 
(rule (Cluster0 Z) (Q0 (Cluster0to3 (- Z 1))) 0.33) 
(rule (Cluster0 Z) (Q0 (Cluster0to4 (- Z 1))) 0.11) 
 . . . 
(rule (Cluster28to28 Z) (Q28 (Cluster28to13 (- Z 1))) 0.33) 
 
(rule (Q0)((slope 0 0 C2)(slope -4 -4 R4+8 L8)) 0.20) 
(rule (Q0)((slope 0 0 C4)(slope -2 -2 R4+8 L8)(slope 1 5 X8 A8)) 0.20) 
(rule (Q0)((slope -2 -1 L2)(slope -4 -4 R4+8 L8)) 0.20) 
. . . 
(rule (Q28)((slope 2 4 L4+8)(slope -2 -1 A8 C8 L8 C8)(slope 2 2 L8)) 0.20) 



Style Learning in Impro-Visor 
n  Style Patterns are used (along with chord 

sequence) in creating accompaniment.  

n  Patterns are like a non-recursive grammar. 
 

n  Impro-Visor can learn a style specification  
(in its own language), given a MIDI file of a 
performance in that style. 

n  As with grammar learning, clustering is used. 

 



Style Patterns Represented Graphically 
Style Spreadsheet 

“Piano roll” for one column of spreadsheet 



A Different Approach to Learning 
RBM-provisor 

n  Applies Restricted Boltzmann Machines (RBMs) 
stacked as  Deep Belief Networks (Geoffrey Hinton). 
 

n  RBMs are neural networks based on probabilities of 
switching, determined by unsupervised learning of 
synaptic weights. 

n  An RBM tries to learn a set of concepts based on a 
set of input samples: melodies over chords.  

n  RBM’s stabilize to probability distributions 
reflecting those concepts, and can generate music 
probabilistically, as can grammars. 



Deep Belief Network Rationale 
n  Try to learn with as little wired-in 

musical knowledge as possible. 

n  Use probabilistic behavior of network to 
generate novelty. 



Deep Belief Networks  
Geoffrey Hinton, U. of Toronto 

n  Hinton demonstrated how a stack of RBM’s can 
learn higher order concepts sufficient to perform 
tasks such as digit recognition. 

n  We applied a similar idea to  
learning concepts that  
produce melodies over  
chord progressions. 

 



Pattern learning and generation 
inspired by G. Hinton 



Restricted Boltzmann Machines vs. 
Deep Belief Networks 

RBM DBN (3-layer) 

Deeper 
Concepts 



Data Representation 

 

strike/rest               pitches                            octave 



Improvising Jazz with a 
Deep Belief Network 

Melody Out                Chord Progression In 



Moving Window Training Approach 



RBM-provisor Examples 

Example from Training Set 

Output from Trained Network 

Random output from Untrained Network 



Issues with Deep Belief Approach 

n  Learning is very slow 

n  So far, not enough variety compared to 
what grammars can do. 

n  Thus too soon to integrate with  
Impro-Visor 



Neural Network Critic for  
Improved Improvisation 

 
Recent work by Hayden Blauzvern and 
the speaker 
 
Integrated into the development version of 
Impro-Visor (v 6.0, not yet released) 
 



Using a Critic 

Arbitrary 
 Lick 

Generator 

Passing 
Grade 

Use 

Reject 
Retry 

Critic assigns 
Grade 

 
 
 
 
 

Failing 
Grade 

Try 



New Critic Data Representation 
(compared to RBM-provisor) 

n  Learn abstract note categories over chords 
rather than absolute pitches. 

n  Learn pitch intervals between successive 
notes rather than absolute pitches. 

n  Use non-uniform sub-division 
representation for note durations rather than 
uniform spacing and tie bits.  
(Partly motivated by accenting concerns. 



Critic Melody Note Representation 



Style Recognition, One NN per Style  

•  Grammar generated solos 

o  32 measures, 16-bar blues 

•  50 generations for 22 musicians 

•  Grade = Confidence score 



Other Recent Work 
n  Automate analysis of idiomatic harmonic 

sequences (“chord bricks”) and key centers. 

n  Helps musicians understand tune 
construction. 

n  Helps players recognize the importance of 
key centers in improvisation. 



Analyzing a Tune using Bricks 

Inferred 
Key 

Input 
Chords 

Brick 
Name 

Cm69 | / | Fm7 | / |  
 
Dm7b5 | G7alt | Cm69 | / |  
  
Ebm7 | Ab7 | DbM7 | / |  
 
Dm7b5 | G7alt | Cm69 | Dm7b5 G7alt | 

Input Chord Progression 

Output Roadmap Join Names 
(yellow tags) 

Impro-Visor 

Open ML Problem: 
 
How to learn the 
Brick Dictionary? 



Other Future Work: 
Bricks as a Basis for Grammar Learning 

See: http://www.cs.hmc.edu/~keller/jazz/improvisor/licks/ 



Concluding 
n  Unsupervised learning: 

n  Clustering to produce Grammars 
n  Deep-Belief Networks (stacked RBMs) 

n  Supervised learning: 
n  Training an MLP Melody Critic 
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