
Machine Learning
Applied to Musical

Improvisation
Robert M. Keller

Harvey Mudd College

Constructive Machine Learning Workshop
NIPS 2013, 10 December 2013

Lake Tahoe, Nevada, USA

Abstract
Development of music education software inevitably
leads to questions of how to acquire musical knowledge
to be made available to the student user. I will describe
machine learning of patterns for accompaniment styles
and grammars for improvisation, based on melodic
abstraction, clustering, and chaining. I will also discuss
supervised and unsupervised approaches to
improvising over chord progressions using neural
network. Finally, I will mention a challenging unsolved
application: learning to classify idiomatic patterns in
chord progressions.

Collaborators for
Machine Learning Aspects

Jon Gillick
Kevin Tang
Jim Herold
Brandy McMenamy
Sayuri Soejima

Hayden Blauzvern
Greg Bickerman
Sam Bosley
Peter Swire
Kevin Choi

Context: Educational Music Software

n  Intelligent Music Software Project at
Harvey Mudd College
n  Impro-Visor

n  Style pattern learning
n  Melodic grammar learning
n  Melody generation using neural network critic

n  RBM-provisor: Using Deep-Belief Networks

n  Melody generation using unsupervised learning

Two Major Music Universes

n  Audio (mp3, wav, AIFF, au, …)

n  Symbolic
MIDI = “Musical Instrument Digital Interface”

Example: SmartMusic
MakeMusic, Inc.

n  Provides feedback for student practice sessions
(“used by over 75,000 students worldwide”)

n  http://www.youtube.com/watch?v=xhYXO6TPKw4

n  Developed by Prof. Roger Dannenberg at CMU.

n  Proprietary

Learning

n  Intelligent software can also “learn”,
so as to improve its ability to make
decisions beneficial to the user.

n  Also ideally, humans can learn from the
software, whether or not the software
learns.

Music Plus One (formerly Music++)
Prof. Chris Raphael, Indiana University

n  Uses Hidden Markov Models
n  Virtual orchestra anticipates player’s

tempo, follows retakes, etc.
n  http://www.music.informatics.indiana.edu/~craphael/music_plus_one/index.html

Creativity
Ideally, intelligent music software can also
“create”, i.e. use its ability to make
decisions to produce new results that will
inform or intrigue the user.

GenJam (Genetic Jammer)
Prof. Al Biles, Rochester Inst. of Technology

n  Improvises jazz solos

n  Trades interactively with human soloist.
n  http://www.youtube.com/watch?v=xWHU8uE043g

n  Learning based on
Genetic Algorithm

n  Proprietary code

HMC Intelligent Music Software Project

n  Oriented toward helping musicians learn
to improvise

n  Focus is on jazz education,
but not limited to jazz

Impro-Visor

n  Short for “Improvisation Advisor”.

n  A software “workbook” that can
learning to improvise by:
n  Helping users write out solos
n  Creating solos while trading with user
n  Playing backing accompaniments

Impro-Visor Parameters
n  Much musical information is in the form

of user-editable text files:
n  Vocabulary defines

Scales, Chords, Cells, Idioms, Licks, Quotes
n  Styles govern

How accompaniment is played and sound
n  Grammar creates melodies

Somewhat in the style of specific players
n  Leadsheet specifies

n  Chord progression
n  Melody, solos

Leadsheet vs. Sheet Music

1 bar of sheet music

1 bar of a leadsheet

In a leadsheet, the
accompaniment aspect
is left to the performer.

Impro-Visor Leadsheet View

User Constructing a Solo

Entry Options:
•  Point-and-click
•  Cut-and-paste
•  Textual
•  Midi-keyboard

Note Coloration: Chord-Related
Part of the “Advisor” aspect of Impro-Visor

Green: tone not in the chord, but sonorous with it
 (called “color” tone).

Red: None of the others (“outside”).

Black: tone in the chord

Blue: Half-step away from chord or color
 (called “approach” tone).

A Helpful Insight

n  Note coloration categories, originally
intended to educate users, can be
useful for machine learning aspects.

n  Use in Grammar Learning

n  Use in Critic Development

Generating Licks for Examples

n  Lick = a short melodic phrase
n  sometimes idiomatic
n  sometimes original

n  Prior to introducing
lick generation,
Impro-Visor used a
database to store
lick suggestions.

Probabilistic Grammar Illustration

n  We could fill a beat with a variety of rhythms:

n  Let B denote one beat of music
n  A grammar represents all of these

possibilities:
 B → X4 4 means quarter note
 B → X8 X8 8 means eighth note
 B → X8 X16 X16 etc.

Here X4, X8, X16 are understood “terminal” symbols,
while B is a non-terminal to be expanded.

. . .

Probabilistic Grammar Illustration

n  Assign a probability to the various choices
n  Probabilities will then dictate a prevalent style

n  A grammar represents a distribution of these
possibilities:

 B → X4 p = 0.3 common
 B → X8 X8 p = 0.6 frequent
 B → X8 X16 X16 p = 0.1 rare

Grammars Can Exhibit
Hierarchy and Recurrence

n  Instead of
 B → X4 p = 0.3 common
 B → X8 X8 p = 0.6 frequent
 B → X8 X16 X16 p = 0.1 rare

n  Use
 B → X4 p = 0.3 common
 B → C C p = 0.7 frequent
 C → X8 p = 0.8 very frequent
C → X16 X16 p = 0.2 rare

n  Generates

p = 0.3 p = 0.448 p = 0.112 p = 0.112 p = 0.028

Recurrence Allows a Grammar to
Fill an Arbitrary Number of Beats

n  R → B R One beat, then more

n  R → empty No more

n  So R can produce B, BB, BBB, BBBB,
etc.

Abstract vs. Real Melodies

C8 C8 C8 C8 L4 C8 C8

c+8 ab8 bb8 e8 db4 d8 f8

g8 bb8 f8 ab8 db+4 f+8 g#+8 d+8 bb8 f8 ab8 g4 b8 f+8

A real melody
on the staff
and as text

Abstract melody as text:

Two other melodies with
the same abstract melody

C = Chord tone
L = coLor tone
8 = 8th note
4 = quarter noter

Markov Chains in Grammars

n  Recurrent productions allow us to embed an
arbitrary Markov chain in the grammar.

n  The reason for wanting this will be explained
shortly.

Markov chain Grammar

A Complete Grammar
(Terminals in Bold)

(startsymbol P)
(base (P 0) () 1.0)
(rule (M4) (A4) 0.01)
(rule (M4) (C4) 0.2)
(rule (M4) (C4) 0.1)
(rule (M8) (A8) 0.01)
(rule (M8) (C8) 0.4)
(rule (M8) (C8) 0.2)
(rule (M8) (C8) 0.1)
(rule (N2) (C2) 1.0)
(rule (N4) (M4) 0.75)
(rule (N4) (R4) 0.25)
(rule (N8) (M8) 0.9)
(rule (N8) (R8) 0.1)

(rule (P Y) (Seg1 (P (- Y 120))) 0.0010)
(rule (P Y) (Seg2 (P (- Y 240))) 0.25)
(rule (P Y) (Seg4 (P (- Y 480))) 0.75)
(rule (Seg1) (C4) 1.0)
(rule (Seg2) (N2) 0.06)
(rule (Seg2) (N8 C4.) 0.3)

(rule (Seg2) (V2) 0.3)
(rule (Seg2) (V4 V4) 0.6)
(rule (Seg2) (V8 N4 V8) 0.12)
(rule (Seg2) (V8 V8 V8 V8) 0.6)
(rule (Seg4) (C4. N8 Seg2) 0.1)
(rule (Seg4) (C4/3 C4/3 C4/3 Seg2) 0.02)
(rule (Seg4) (Seg2 C4/3 C4/3 C4/3) 0.02)
(rule (Seg4) (Seg2 V4 V4) 0.52)
(rule (Seg4) (V8 N4 N4 N4 V8) 0.01)

(rule (V2) (C16 C16 C16 C16 M4) 0.05)
(rule (V2) (C16/5 C16/5 C16/5 C16/5 C16/5 M4) 0.0050)
(rule (V2) (C8 C8 C8 C8) 0.3)
(rule (V2) (C8/5 C8/5 C8/5 C8/5 C8/5) 5.0E-4)
(rule (V4) (C8/3 C8/3 A8/3) 0.01)
(rule (V4) (C8/3 C8/3 C8/3) 0.05)
(rule (V4) (C8/3 C8/3 C8/3) 0.02)
(rule (V4) (N4) 0.22)
(rule (V4) (V8 V8) 0.72)
(rule (V8) (C16 A16) 0.01)
(rule (V8) (N8) 0.99)

Grammar Learning Feature

n  Impro-Visor can learn a grammar by
examining one or more transcribed solos.

n  For greater coherence special construct
called a slope is introduced, from which
melodic contours can be constructed.

n  Slopes can appear in the rules in the place of
terminals.

Slopes Encode Contours

Grammar Learning Algorithm
enables grammar to be learned from transcriptions

Learned	 Grammars	

Transcription	 of	 Dave	 Liebman’s	 	
Solo	 on	 Picadilly	 Lilly:	

Transcription	 in	 Text	

Grammar Learning Interface

From Transcription to Grammar

Transcription	
2-‐bar	 melody	 windows	
in	 context	 of	 chords	 Abstract	 	

melodies	

Abstract	 melodies	
clustered	 by	
similarity	 metric	

Cluster	 representatives	 chosen	 Representatives	 	
Markov-‐Chained	

0.2	

0.8	

Grammar	

A	

B	

C	

A	 →	 A0	 B	 	 	 	 (p	 =	 0.8)	
A	 →	 A0	 C	 	 	 	 (p	 =	 0.2)	
B	 →	 	 B0	 	 	 	 	 	 	 	 	 	 	 (p	 =	 1)	
C	 →	 	 C0	 	 	 	 	 	 	 	 	 	 (p	 =	 1)	

Example: Dave Liebman Grammar Excerpt
(The full grammar is over 1000 lines)

(startsymbol P)
(base (P 0) () 1.0)
(rule (P Y) (Seg1 (P (- Y 120))) 1.0)
(rule (Seg1) (C4) 1.0)
(rule (P Y) ((START 1) (P (- Y 480))) 1.0)
(rule (P Y) ((START 2) (P (- Y 960))) 10.0)
(rule (P Y) ((START 4) (P (- Y 1920))) 100.0)
(rule (P Y) ((START 8) (P (- Y 3840))) 1000.0)

(rule (START Z) ((Cluster0 Z)) 0.03)
(rule (START Z) ((Cluster1 Z)) 0.02)
(rule (START Z) ((Cluster2 Z)) 0.07)
(rule (START Z) ((Cluster3 Z)) 0.08)
 . . .
(rule (START Z) ((Cluster28 Z)) 0.08)

(base (Cluster0 0) () 1)
(base (Cluster1 0) () 1)
 . . .
(base (Cluster28 0) () 1)

(base (Cluster0to3 0) () 1)
(base (Cluster0to4 0) () 1)
(base (Cluster0to11 0) () 1)
 . . .
(base (Cluster28to28 0) () 1)

(rule (Cluster0 Z) (Q0 (Cluster0to3 (- Z 1))) 0.33)
(rule (Cluster0 Z) (Q0 (Cluster0to4 (- Z 1))) 0.11)
 . . .
(rule (Cluster28to28 Z) (Q28 (Cluster28to13 (- Z 1))) 0.33)

(rule (Q0)((slope 0 0 C2)(slope -4 -4 R4+8 L8)) 0.20)
(rule (Q0)((slope 0 0 C4)(slope -2 -2 R4+8 L8)(slope 1 5 X8 A8)) 0.20)
(rule (Q0)((slope -2 -1 L2)(slope -4 -4 R4+8 L8)) 0.20)
. . .
(rule (Q28)((slope 2 4 L4+8)(slope -2 -1 A8 C8 L8 C8)(slope 2 2 L8)) 0.20)

Style Learning in Impro-Visor
n  Style Patterns are used (along with chord

sequence) in creating accompaniment.

n  Patterns are like a non-recursive grammar.

n  Impro-Visor can learn a style specification
(in its own language), given a MIDI file of a
performance in that style.

n  As with grammar learning, clustering is used.

Style Patterns Represented Graphically
Style Spreadsheet

“Piano roll” for one column of spreadsheet

A Different Approach to Learning
RBM-provisor

n  Applies Restricted Boltzmann Machines (RBMs)
stacked as Deep Belief Networks (Geoffrey Hinton).

n  RBMs are neural networks based on probabilities of
switching, determined by unsupervised learning of
synaptic weights.

n  An RBM tries to learn a set of concepts based on a
set of input samples: melodies over chords.

n  RBM’s stabilize to probability distributions
reflecting those concepts, and can generate music
probabilistically, as can grammars.

Deep Belief Network Rationale
n  Try to learn with as little wired-in

musical knowledge as possible.

n  Use probabilistic behavior of network to
generate novelty.

Deep Belief Networks
Geoffrey Hinton, U. of Toronto

n  Hinton demonstrated how a stack of RBM’s can
learn higher order concepts sufficient to perform
tasks such as digit recognition.

n  We applied a similar idea to
learning concepts that
produce melodies over
chord progressions.

Pattern learning and generation
inspired by G. Hinton

Restricted Boltzmann Machines vs.
Deep Belief Networks

RBM DBN (3-layer)

Deeper
Concepts

Data Representation

strike/rest pitches octave

Improvising Jazz with a
Deep Belief Network

Melody Out Chord Progression In

Moving Window Training Approach

RBM-provisor Examples

Example from Training Set

Output from Trained Network

Random output from Untrained Network

Issues with Deep Belief Approach

n  Learning is very slow

n  So far, not enough variety compared to
what grammars can do.

n  Thus too soon to integrate with
Impro-Visor

Neural Network Critic for
Improved Improvisation

Recent work by Hayden Blauzvern and
the speaker

Integrated into the development version of
Impro-Visor (v 6.0, not yet released)

Using a Critic

Arbitrary
 Lick

Generator

Passing
Grade

Use

Reject
Retry

Critic assigns
Grade

Failing
Grade

Try

New Critic Data Representation
(compared to RBM-provisor)

n  Learn abstract note categories over chords
rather than absolute pitches.

n  Learn pitch intervals between successive
notes rather than absolute pitches.

n  Use non-uniform sub-division
representation for note durations rather than
uniform spacing and tie bits.
(Partly motivated by accenting concerns.

Critic Melody Note Representation

Style Recognition, One NN per Style

•  Grammar generated solos

o  32 measures, 16-bar blues

•  50 generations for 22 musicians

•  Grade = Confidence score

Other Recent Work
n  Automate analysis of idiomatic harmonic

sequences (“chord bricks”) and key centers.

n  Helps musicians understand tune
construction.

n  Helps players recognize the importance of
key centers in improvisation.

Analyzing a Tune using Bricks

Inferred
Key

Input
Chords

Brick
Name

Cm69 | / | Fm7 | / |

Dm7b5 | G7alt | Cm69 | / |

Ebm7 | Ab7 | DbM7 | / |

Dm7b5 | G7alt | Cm69 | Dm7b5 G7alt |

Input Chord Progression

Output Roadmap Join Names
(yellow tags)

Impro-Visor

Open ML Problem:

How to learn the
Brick Dictionary?

Other Future Work:
Bricks as a Basis for Grammar Learning

See: http://www.cs.hmc.edu/~keller/jazz/improvisor/licks/

Concluding
n  Unsupervised learning:

n  Clustering to produce Grammars
n  Deep-Belief Networks (stacked RBMs)

n  Supervised learning:
n  Training an MLP Melody Critic

Some References
n  Gillick, Tang, and Keller, Machine Learning of Jazz Grammars,

Computer Music Journal, 34:3, pp. 56-66, Fall 2010, MIT Press."

n  Bickerman, Bosley, Swire, and Keller, Learning to Create Jazz
Melodies Using Deep Belief Nets, Proc. First International
Conference on Computational Creativity, 228-237, January, 2010.

n  Keller, Schofield, Toman-Yih, Merritt,
A Creative Improvisation Companion Base on Idiomatic Harmonic
Bricks, Proc. Third ICCC, June, 2012.

n  Keller, Schofield, Toman-Yih, Merritt, and Elliott, Automating the
Explanation of Jazz Chord Progressions Using Idiomatic Analysis,
Computer Music Journal, 37:4, pp. 54-69, Winter 2013, MIT Press.

