
Impro-Visor

A Research Project
featuring

Open-Source Software Development

National University of Singapore

17 January 2014

Robert Keller
Harvey Mudd College

keller@cs.hmc.edu

My Roles

§  Researcher (music theory, machine learning)

§  User (musician, jazz teacher)

§  Project director (or BDFL)

§  Chief evangelist

§  Developer

§  Maintainer

Collaborators from HMC

n  Prof. Belinda Thom
n  Stephen Jones
n  Aaron Wolin
n  David Morrison
n  Martin Hunt
n  Sayuri Soejima
n  Stephen Lee
n  Greg Bickerman

n  Emma Carlson
n  Paul Hobbs
n  Alexandra Schofield
n  August Toman-Yih
n  Audrey Musselman-Brown
n  Kevin Choi
n  Hayden Blauzvern
n  Kelly Lee

More Collaborators

n  Steven Gomez, Darmouth College
n  Jim Herold, Cal Poly Pomona
n  Brandy McMenamy, Carleton College
n  John Goodman, UK
n  Jon Gillick, Wesleyan University
n  Kevin Tang, Cornell University
n  Chad Waters, Winthrop University
n  Peter Swire, Brandeis University
n  Sam Bosley, Stanford University
n  Lasconic (Nicolas Froment), France
n  Julia Botev, Rice University
n  Zack Merritt, University of Central Florida

n  Ryan Wieghard, Pomona College
n  Amos Byon, Troy H.S.
n  John Elliott, UK
n  John Davison, Harvard University
n  David Halpern, Columbia University
n  Brian Howell, Belmont University
n  Nick Chung, Troy H.S.
n  Caitlin Chen, Los Osos H.S.
n  Connor Yoste, Willamette University
n  Nate Tarrh, Tufts University
n  Anna Turner, Pomona College

Impro-Visor = “Improvisation Advisor”

Intended to help jazz musicians:

§  Understand chord progressions and tunes

§  Work out solo lines, provide notation tool

§  Provide play-along with auto-accompaniment

§  Be a trading companion

Chord Progressions for
Standards and Jazz Tunes

n  Jazz chord progressions can be
complex.

n  Beginning to intermediate players may
have difficulty understanding them.

n  But they need to understand them
in order to be effective soloists.

Example Features
n  Notation tool: Colorization for visual

feedback
n  Advice database: scales, licks, etc.
n  Auto accompaniment: Pattern-based, with

some style pattern learning
n  Auto-improvisation: Grammar-based, with

grammar learning from transcriptions
n  Chord progression parsing: Into idiomatic

progressions (“bricks”)

Example Leadsheet

The Improviser’s “Canvas”

Software Engineering Lessons (I)

n  Single source for all platforms is best.
n  Open, Easily-Readable/writeable

Text Representations are helpful:
n  S expressions (as opposed to XML) used for

musical vocabulary (chords, scales, voicings),
leadsheets, style specifications

n  Much Theory may underlie apparently simple
interfaces.
n  Grammars are helpful for improvising music.
n  Sophisticated analysis techniques are needed

for explaining tunes.

Example Theory
n  Machine Learning of Jazz Grammars,

Gillick, Tang, and Keller, Computer Music
Journal, Fall 2010, Vol. 34, No. 3, Pages
56-66.

n  Automating the Explanation of Jazz Chord
Progressions Using Idiomatic Analysis, Keller,
Schofield, Toman-Yih, Merritt, and Elliott,
Computer Music Journal, Winter 2013, Vol.
37, No. 4, Pages 54-69.

Idiomatic Bricks Theory
n  A way to comprehend tunes is to

decompose them into building blocks.

n  Music theory has recognized blocks
such as cadences for a long time.

n  Jazz musicians have refined this theory.

“LEGO Bricks” Approach
n  Semi-formalized by Conrad Cork, 1988 …2008
n  Extended by John Elliott, 2009.

Bricks: Idiomatic
Subsequences of Chords

Chord Sequence Brick Name
 Dm7 G7 | C Straight Cadence

 Dm7b5 G7b9 | Cm Sad Cadence

 Em7 A7 | Dm7 G7 | C Long Cadence

 C Am7 | Dm7 G7 Plain Old Turnaround (POT)

 C Eb7 | Ab Db7 Ladybird Turnaround

A few hundred brick types have been identified.

Example Problem
n  Given the chord sequence of a tune in

textual form, parse the sequence into a
sequence of bricks that best explains
the tune.

n  The brick explanation will be called a
“roadmap”.

Roadmapping Satin Doll

Example:

Deriving Roadmap for “Satin Doll”

Input Chord Part:

(section (style swing))

Dm7 G7 | Dm7 G7 | Em7 A7 | Em7 A7 |
Am7 D7 | Abm7 Db7 | C B7 | Bb7 A7 |
(section)
Dm7 G7 | Dm7 G7 | Em7 A7 | Em7 A7 |
Am7 D7 | Abm7 Db7 | C69 | / |
(section)
Gm7 | C7 | FM7 | / |
Am7 | D7 | Dm7 | G7alt |
(section)
Dm7 G7 | Dm7 G7 | Em7 A7 | Em7 A7 |
Am7 D7 | Abm7 Db7 | C69 | Em7 A7 |

Example: Satin Doll Roadmap
Bricks

Software Engineering Lessons (II)

n  Pay extreme attention to design of multiply-
used low-level classes.

n  Use Design Patterns:
n  Model-View-Controller (didn’t use enough)
n  Command/Memo (maybe used too much)
n  Flyweight
n  Factory Method
n  Iterator

Life Lessons
n  If using an existing library, try to live with its

API, rather than re-coding your own version.
(Or maybe use Adapter Pattern.)

n  Evaluate the decision to depend on open-
source libraries carefully.

n  Beware of open-source trolls & vigilantes.

Goals Not Yet Realized

n  Brick-Based Improvisation & Learning

n  Audio input

n  Reacting to soloist during trading

n  Neural network critic / generation

Miscellaneous Details
n  Platforms, etc.:

n  Windows, MacOSX, Linux
n  Repository and Tracking: SourceForge
n  Language: Java
n  Sound: MIDI
n  IDE: NetBeans
n  Libraries:

n  jMusic (Queensland University of Technology)
n  Polya (HMC)
n  clustering library

Impro-Visor
 For more information, including
publications, downloading, tutorials,
video, etc. please see:

 http://www.cs.hmc.edu/~keller/jazz/improvisor/

