Learning to Play Jazz with Deep Belief Networks

Greg Bickerman, Harvey Mudd College Sam Bosley, Stanford University Peter Swire, Brandeis University Robert Keller, Harvey Mudd College

Motivation

- People are able to improvise jazz on the spot
- Jazz Improvisation
 - Patterned and structured
 - Creative and novel
- Could a machine learn to improvise as well as a human?

Motivation

- Artificial jazz improvisers already exist
 - GenJam
 - Supervised genetic learning
 - Impro-Visor
 - Extensive musical knowledge built in
- Interested in unsupervised learning
- Minimal representational assumptions

Restricted Boltzmann Machines

- 2-layer network
 - Visible layer
 - Hidden layer
- Nodes
 - Interconnected
 - Can be set ON or OFF
- Weights
 - Assigned to each connection
 - Symmetric

Activation

- Nodes activated probabilistically based on activation states of nodes in opposite layer
 - Compute weighted sum of active connections
 - Activation function determines probability of firing

Activation

Activation

Input / Output

- Input
 - Binary data sequences
 - Mapped onto visible neurons
- Output
 - Identically sized data sequences
 - Read off of visible neurons

Input / Output

Input/Output

Training

- Contrastive divergence method
 - Activate network normally
 - Activate network with inputs "clamped"
 - Adjust weights to make normal activation behave more like clamped activation

Deep Belief Networks

 Use individual RBMs as layers in a larger network

Hidden layer of one RBM forms input layer of another

 If single RBMs learn features about data, DBMs learn features about features

Encoding Scheme

- Requirements
 - Binary encoding
 - Music must be encoded in a string of standard length
 - Each note must be the same "distance" from every other note

Encoding Scheme

- Break melody into beat subdivisions
- Each subdivision contains 18 bits
 - 1 Sustain Bit
 - 1 Rest Bit
 - 12 Pitch Bits
 - 4 Octave Bits

Encoding Scheme

Chord Encoding Scheme

Initial Dataset

- Children's songs
 - 2 measures
 - 8th note resolution
 - Simple chords
 - 14 melodies
- Generated similar songs

Main Dataset

- Jazz licks
 - 4 measures
 - 12 beat subdivisions
 - (32nd triplet note resolution)
 - ii-V⁷-I-VI⁷ chord progression
 - 100+ licks
 - Transcribed
 - Handwritten

 Rather than training on entire piece at once, break music into "windows"

 Start with the first measure of a lick and gradually move window forward

 Allows learning/generating arbitrary length music sequences with a fixed size network

Generating New Melodies

 Need to specify a chord sequence over which to generate a new melody.

 Chord bits are "clamped" during generation so that they can influence the melody being generated without changing themselves

Generating New Melodies

Use a windowing strategy analogous to our windowed training method

 As each successive beat is generated the whole melody and chord sequence shifts forward to make room for the next beat

Generating New Melodies

Results

Rhythmically stable

Respects chord tones

Occasional color tones

Very few foreign tones

Results

- Trained on transpositions as well
 - Generated music following key of given chord progression
 - Succeeded with up to four transpositions

Example Training Licks

Example Generated Licks

More Generated Examples

Random Music

Future Work – Repeated Notes

 Our machines produced disproportionate numbers of repeated notes

Can sound static or too immobile for jazz

Future Work – Repeated Notes

- Possible solution: post processing
 - Merge repeated notes together
 - Results in a smoother output, but starts to cross line of unsupervised learning
- Ideally, machine should avoid repeated notes in the first place

Future Work – Training Algorithm

- Slow
 - Optimization
 - Parallelization
 - Adaptive termination
- Sensitive to training presentation order
 - Randomize training inputs

Future Work – Chord Inference

- We believe our work naturally lends itself to the open problem of inferring unknown chords for a melody
 - Currently we provide a chord seed to generate a melody.
 - If we instead provide a melody as input, we could determine which chords fit that melody

Conclusion

- Unsupervised learning algorithm
- Based on probabilistic neural network theory
- Able to create novel jazz licks based on an existing corpus
- Minimal assumptions about musical knowledge