
Under consideration for publication in J. Functional Programming 1

The Genuine Sieve of Eratosthenes

Melissa E. O’Neill
Harvey Mudd College, Claremont, CA, U.S.A. (e-mail: oneill@acm.org)

Abstract

A much beloved and widely used example showing the elegance and simplicity of lazy
functional programming represents itself as “The Sieve of Eratosthenes”. This paper shows
that this example is not the sieve, and presents an implementation that actually is.

1 Introduction

The Sieve of Eratosthenes is a beautiful algorithm that has been cited in introduc-
tions to lazy functional programming for more than thirty years (Turner, 1975).
The Haskell code below is fairly typical of what is usually given:

primes = sieve [2..]

sieve (p : xs) = p : sieve [x | x <− xs, x ‘mod‘ p > 0]

The code is short, looks elegant, and seems to make a persuasive case for the
power of lazy functional programming. Unfortunately, on closer inspection, that
case begins to fall apart. For example, the above algorithm actually runs rather
slowly, sometimes inspiring excuses as extreme as this one:

Try primes !! 19.You should get 71. (This computation may take a few seconds, and do
several garbage collections, as there is a lot of recursion going on.)1

A skeptic might very well ask whether it is really okay for computing the first few
thousand primes (or, in the above case, only first twenty!) to be such a taxing
problem, and begin to wonder whether laziness or functional programming as a
whole is a hopelessly inefficient waste of time.

The culprit, however, is neither laziness nor functional programming: It is the
algorithm. Despite widespread assertion to the contrary, this algorithm is not the
Sieve of Eratosthenes!

This paper shows

• Why this widely-seen implementation is not the Sieve of Eratosthenes;
• How an algorithm that is the Sieve of Eratosthenes may be written in a lazy

functional style; and
• How our choice of data structure matters.

1 This rather extreme example was found in a spring, 2006, undergraduate programming-
languages assignment used by several well-respected universities. The original example was
not in Haskell (where typical systems require a few orders of magnitude more primes before
they bog down), but I have modified it to use Haskell syntax to fit with the rest of this paper.

2 M. E. O’Neill

In passing, we will look at the time complexity of the prime-finding methods we
examine, and in doing so discover how we may analyze their performance in a fairly
straightforward way.

2 What the Sieve Is and Is Not

Let us first describe the original “by hand” sieve algorithm as practiced by Era-
tosthenes. We start with a table of numbers (e.g., 2, 3, 4, 5, . . .) and progressively
cross off numbers in the table until the only numbers left are primes. Specifically,
we begin with the first number, p, in the table, and

1. Declare p to be prime, and cross off all the multiples of that number in the
table, starting from p2;

2. Find the next number in the table after p that is not yet crossed off and set
p to that number; and then repeat from step 1.

The starting point of p2 is a pleasing but minor optimization, which can be made
because lower multiples will have already been crossed off when we found the primes
prior to p. For a fixed-size table of size n, once we have reached the

√
nth entry in

the table, we need perform no more crossings off—we can simply read the remaining
table entries and know them all to be prime. (This optimization does not affect the
time complexity of the sieve, however, so its absence from the code in Section 1 is
not our cause for worry.)

The details of what gets crossed off, when, and how many times, are key to the
efficiency of Eratosthenes algorithm. For example, suppose that we are finding the
first 100 primes (i.e., 2 through 541), and have just discovered that 17 is prime,
and need to “cross off all the multiples of 17”. Let us examine how Eratosthenes’s
algorithm would do so, and then how the algorithm from Section 1 would do so.

In Eratosthenes’s algorithm, we start crossing off multiples of 17 at 289 (i.e., 17×
17) and cross off the multiples 289, 306, 323, . . . , 510, 527, making fifteen crossings
off in total. Notice that we cross off 306 (17 × 18), even though it is a multiple of
both 2 and 3 and has thus already been crossed off twice.2 The algorithm is efficient
because each composite number, c, gets crossed off f times, where f is the number
of unique factors of c less than

√
c. The average value for f increases slowly, being

less than 3 for the first 1012 composites, and less than 4 for the first 1034.3

Contrast the above behavior with that of the algorithm from Section 1, which I
shall call “the unfaithful sieve”. After finding that 17 is prime, the unfaithful sieve
will check all the numbers not divisible by 2, 3, 5, 7, 11 or 13 for divisibility by 17. It
will perform this test on a total of ninety-nine numbers (19, 23, 29, 31, . . . , 523, 527).

The difference between the two algorithms is not merely that the unfaithful sieve
doesn’t perform “optimizations”, such as starting at the square of the prime, or

2 Optimizations to the Sieve of Eratosthenes usually special-case the first prime, 2, and sometimes
other small primes. We’ll discuss those optimizations in Section 3.2.

3 The number of unique factors in a number n is usually written ω(n), and ω(n) ≈ ln ln n (Hardy
& Wright, 1979). Thus the average value for f is Θ(log log n).

The Genuine Sieve of Eratosthenes 3

that it uses a divisibility check rather than using a simple increment. For exam-
ple, even if it did (somehow) begin at 289, it would still check all forty-five num-
bers that are not multiples of the primes prior to 17 for divisibility by 17 (i.e.,
289, 293, 307, . . . , 523, 527). At a fundamental level, these two algorithms “cross off
all the multiples of 17” differently.

In general, the speed of the unfaithful sieve depends on the number of primes
it tries that are not factors of each number it examines, whereas the speed of
Eratosthenes’s algorithm depends on the number of (unique) primes that are. We
will discuss how this difference impacts their time complexity in the next section.

Some readers may feel that despite all of these concerns, the earlier algorithm is
somehow “morally” the Sieve of Eratosthenes. I would argue, however, that they
are confusing a mathematical abstraction drawn from the Sieve of Eratosthenes
with the actual algorithm. The algorithmic details, such as how you remove all the
multiples of 17, matter.

If this algorithm is not the Sieve of Eratosthenes, what is it? In fact it is a simple
näıve algorithm, known as trial division, that checks the primality of x by testing
its divisibility by each of the primes less than x. But even this näıve algorithm
would normally be more efficient, because we would typically check only the primes
up to

√
x. We can write trial division more clearly as

primes = 2 : [x | x <− [3..], isprime x]
isprime x = all (\p −> x ‘mod‘ p > 0) (factorsToTry x)

where
factorsToTry x = takeWhile (\p −> p*p <= x) primes

2.1 Performance in Theory and Practice

To futher convince ourselves that we are are not looking at the same algorithm, and
to further understand why it matters, it is useful to look at the time performance
of the algorithms we have examined so far, both in theory and in practice. For
asymptotic time performance, we will examine the time it takes to find all the
primes less than or equal to n.

The Sieve of Eratosthenes implemented in the usual way requires Θ(n log log n)
operations to find all the primes up to n. This result is widely known, but we can
derive this result for ourselves by noting that we perform n/p crossings off for each
prime p, and thus the performance of the sieve is

π(
√

n)∑
i=1

n

pi
≈ n

2
+ n

2
√

n
ln n∑
i=2

1
i ln i

≈ n

2
+ n

∫ 2
√

n
ln n

i=2

1
i ln i

≈ n ln lnn + O(n)

where, from the Prime Number Theorem, π(x) ≈ x/ lnx is the number of primes
less than x, and pi ≈ i ln i is the ith prime.4 (When we apply this approximation,

4 If we start crossing off at p2 rather than p, the number of composites we cross off is n/p−p+1, but
it makes no significant difference to our sum, because it only subtracts an irrelevant O(n/ log n)
factor.

4 M. E. O’Neill

we separate out the first prime to avoid the terrible approximation that the first
prime is zero).

Let us now turn our attention to trial division. Although we can use industrial-
strength number theory (see Section 5) to derive a bound, instead we will take a
slightly gentler and hopefully more accessible route. We will create a tight bound by
underestimating the amount of work the algorithm does to provide a lower bound
and then overestimating it to generate an upper bound, and then we shall find that
both bounds are the same, asymptotically.

First, let us underestimate by considering only the work the algorithm does on
primes, ignoring all composites. Each prime will be divided by all primes less than
its square root (the first two primes, 2 and 3, won’t be divided by any primes since
there are no primes less than their square root). Thus, the number of attempted
divisions is

π(n)∑
i=3

π(
√

pi) ≈ 2

n
ln n∑
i=3

√
i ln i

ln(
√

i ln i)
≈ 2

∫ n
ln n

3

√
i ln i

ln(i ln i)
di ≈ 4

3
n
√

n

(lnn)2

Having found a lower bound, let us now create an upper bound by also considering
the work required for the composites. We can actually afford to be generous and
overcount the work done processing composites as follows: all multiples of two (all
n/2 of them) are handled with one trial division, but let us go on to assume that
all multiples of three (n/3 of them) require two trial divisions, all multiples of five
(n/5 of them) require three trial divisions, and so forth. Clearly we are overcounting
because some of the multiples of three are also multiples of two and are thus counted
twice, and likewise most of the multiples of five are counted two or three times! In
general, the amount of work done in processing the composites, with considerable
overcounting, is

π(
√

n)∑
i=1

i
n

pi
≈ n

2
+ n

2
√

n
ln n∑
i=2

i

i ln i
≈ n

2
+ n

∫ 2
√

n
ln n

i=2

1
ln i

≈ 2n
√

n

(lnn)2
+ O(n)

Including the work done in processing noncomposites (primes), which we derived
earlier, an upper bound on the number of trial divisions is 10

3 n
√

n/(lnn)2. From
these upper and lower bounds, we can conclude that trial division has time com-
plexity Θ(n

√
n/(log n)2).

The unfaithful sieve does the same amount of work on the composites as normal
trial division (because on a composite i, one of the primes <

√
i will divide it), but

it tries to divide primes by all prior primes. Thus, the amount of work done on the
primes is

π(n)∑
i=1

(i − 1) =
1
2
π(n)(π(n) − 1) ≈ n2

2(lnn)2

and thus the unfaithful sieve has time complexity Θ(n2/(log n)2).
Thus, we can see that from a time-complexity standpoint, the unfaithful sieve is

asymptotically worse than simple trial division, and that in turn is asymptotically
worse than than the true Sieve of Eratosthenes.

The Genuine Sieve of Eratosthenes 5

0 10000 20000 30000 40000 50000
0

100

200

300

400

500

600

700

800

900

Problem Size

T
im

e
(R

ed
uc

tio
ns

)
—

 M
ill

io
ns Unf

ai
th

fu
l

Trial Division

(a) Unfaithful Sieve.

0 10000 20000 30000 40000 50000
0

5

10

15

20

25

Problem Size

T
im

e
(R

ed
uc

tio
ns

)
—

 M
ill

io
ns U

nf
ai

th
fu

l

Tria
l D

ivi
sio

n

(b) Trial Division.

Fig. 1. Time Performance of The Unfaithful Sieve and Trial Division5

The performance results shown in Figure 1 provide some practical support for our
theoretical results, showing the performance of trial division and the unfaithful sieve
finding all the primes less than some n. We can see that not only are the asymptotics
of trial division better than those of the unfaithful sieve, but the constant factors
are also dramatically improved.

To draw a similar graph for the Sieve of Eratosthenes, we require a functional
implementation of the algorithm, which we discuss next.

3 An Incremental Functional Sieve

Despite their other drawbacks, the implementations of the unfaithful sieve and
trial division that we have discussed use functional data structures and produce
an infinite list of primes. In contrast, classic imperative implementations of the
Sieve of Eratosthenes use an array and find primes up to some fixed limit. Can the
genuine Sieve of Eratosthenes also be implemented efficiently and elegantly in a
purely functional language and produce an infinite list? Yes!

Whereas the original algorithm crosses off all multiples of a prime at once, we
perform these “crossings off” in a lazier way: crossing off just-in-time. For this
purpose, we will store a table in which, for each prime p that we have discovered so
far, there is an “iterator” holding the next multiple of p to cross off. Thus, instead
of crossing off all the multiples of, say, 17, at once (impossible, since there are
infinitely many for our limit-free algorithm), we will store the first one (at 17× 17;
i.e., 289) in our table of upcoming composite numbers. When we come to consider
whether 289 is prime, we will check our composites table and discover that it is a
known composite with 17 as a factor, remove 289 from the table, and insert 306
(i.e., 289+17). In essence, we are storing “iterators” in a table keyed by the current
value of each iterator.

Let us consider what kind of data structure would be useful for storing our table.

5 I have followed Runciman (1997) in measuring time performance according to the number of
reduction steps performed by the Hugs Haskell interpreter. Similar time results can be obtained
using a Haskell compiler, such as GHC.

6 M. E. O’Neill

Just as the standard Sieve of Eratosthenes algorithm would cross off 306 three
times (for 2, 3, and 17), so our algorithm will eventually move the iterators for
17, 3, and 2 so that their current positions are all 306, and then, when we hit
306, these iterators will separate and go on their separate ways. Given our need
for insert and lookup in the table, and for multiple iterators to pass over the same
point, perhaps a multimap seems appropriate. In Haskell, Data.Map provides all the
necessary operations (insertWith (++) merges a list to be inserted with any list already
stored at that entry). We can thus code sieve as follows:

sieve xs = sieve’ xs Map.empty
where

sieve’ [] table = []
sieve’ (x:xs) table =

case Map.lookup x table of
Nothing −> x : sieve’ xs (Map.insert (x*x) [x] table)
Just facts −> sieve’ xs (foldl reinsert (Map.delete x table) facts)

where
reinsert table prime = Map.insertWith (++) (x+prime) [prime] table

The time complexity of this algorithm appears slightly worse than typical im-
perative renditions of the sieve because of the Θ(log n) cost of using a a tree, thus
the performance for finding all primes less than n is Θ(n log n log log n), which is
nevertheless better than the Θ(n

√
n/(log n)2) performance of trial division or the

Θ(n2/(log n)2) performance of the unfaithful sieve. Moreover, if we assume that
arithmetic operations themselves have non-unit cost, all the algorithms require at
least a log n additional time factor, which can offset the cost of the tree (with a
cleverly structured tree, such as a Braun tree or binary trie (Paulson, 1996), tree ac-
cesses would not suffer this extra log n overhead). Thus, if we were concerned about
the complexity overheads of using a tree, we could easily address those concerns.

Figure 2(a) shows the time performance of this sieve implementation finding
the ith prime; the performance is much improved over that of the unfaithful sieve
algorithm. Despite being asymptotically better than trial division, the constant
factors are much higher—if you’re calculating more than about a million primes,
the sieve wins out. To definitively trounce trial division, we should look at bringing
those constant factors down a little.

3.1 Using a Better Data Structure

A multimap is actually overkill for this problem, because we only examine the table
looking for composites in increasing order. Thus we only need to check whether a
candidate prime is the least element in the table (thereby finding it to be composite)
or find that the least element in the table is greater than our candidate prime,
revealing that our candidate actually is prime. Given these needs, a priority queue
is an attractive choice, especially since this data structure natively supports multiple
items with the same priority (dequeuing in them arbitrary order).

Haskell does not provide a built-in priority queue type, but heap-based functional

The Genuine Sieve of Eratosthenes 7

0 10000 20000 30000 40000 50000
0

10

20

30

40

50

60

70

Problem Size

T
im

e
(R

ed
uc

tio
ns

)
—

 M
ill

io
ns U

nf
ai

th
fu

l

Data.M
ap

PriorityQueue

(a) Basic Algorithm.

0 10000 20000 30000 40000 50000
0

2

4

6

8

10

Problem Size

T
im

e
(R

ed
uc

tio
ns

)
—

 M
ill

io
ns D
at

a.
M

ap

Prio
rity

Queue

PriorityQueue on

Odd Numbers

PriorityQueue

with Wheel

Tr
ia

l D
iv

is
io

n

(b) Constant-Factor Improvements.

Fig. 2. Time Performance of the Actual Sieve of Eratosthenes

implementations are easy enough to find (Paulson, 1996). We will suppose a priority
queue type that includes the operations

empty :: PriorityQ k v
minKey :: PriorityQ k v −> k
minKeyValue :: PriorityQ k v −> (k,v)
insert :: Ord k => k −> v −> PriorityQ k v −> PriorityQ k v
deleteMinAndInsert :: Ord k => k −> v −> PriorityQ k v −> PriorityQ k v

(We provide deleteMinAndInsert because a heap-based implementation can support
this operation with considerably less rearrangement than a deleteMin followed by an
insert.)

We can adjust our previous sieve code to use to use the priority queue as follows:

sieve [] = []
sieve (x:xs) = x : sieve’ xs (insertprime x xs PQ.empty)

where
insertprime p xs table = PQ.insert (p*p) (map (* p) xs) table
sieve’ [] table = []
sieve’ (x:xs) table

| nextComposite <= x = sieve’ xs (adjust table)
| otherwise = x : sieve’ xs (insertprime x xs table)

where
nextComposite = PQ.minKey table
adjust table

| n <= x = adjust (PQ.deleteMinAndInsert n’ ns table)
| otherwise = table

where
(n, n’:ns) = PQ.minKeyValue table

Also, rather than represent our “iterators” as a simple increment, our table now
stores lazy lists, giving our iterators more flexibility. The iterator corresponding to
a prime p is a lazy list formed by multiplying our current input list by p. If the
input list advances by one, the iterator for a prime p advances by p as before, but

8 M. E. O’Neill

if the input list advances by twos, as happens below, our iterator will advance by
2× p as we would desire. Thus we can cut down the work for our sieve by skipping
the even numbers as follows:

primes = 2 : sieve [3,5..]

At this point, the benefits of a functional approach are becoming more apparent.
Most implementations of the Sieve of Eratosthenes avoid checking multiples of two,
but do so by judiciously adding a few 2*x and x+2s to the code. This implementation
merely requires a change to its input data.

Figure 2(b) shows the time performance of this improved implementation. The
top line shows the time to find the nth prime using the sieve applied to [2..], whereas
the second line uses the sieve on odd numbers (the bottom line is discussed in
Section 3.2). As we can see, using this optimization, we cut our execution time by
a factor of about three.

3.2 Using a Simple Wheel

Why stop at eliminating multiples of 2? More than a third of our composites are
divisible by 3, and more than a fifth of them are divisible by 5. If, say, we avoid
seeing multiples of 2, 3, 5, and 7, we can eliminate more than 77% of our work
for large n and even more for smaller n—in general, in the range 2–n, there are
n− π(n)− 1 composites, and about n

∏i
k=1(1− 1

pk
)− π(n)− 1 composites are not

divisible by the first i primes.
As we saw above, to produce numbers that are not multiples of 2, we simply

begin at 3 and then keep adding 2. To avoid multiples of both 2 and 3, we can
begin at 5 and alternately add 2 then 4. We can visualize this technique as a wheel
of circumference 6 with holes at a distance of 2 and 4 rolling up the number line.
In general, adding an additional prime p to the wheel multiplies the circumfer-
ence of the wheel by p, and removes every pth composite. Thus, there are usually
diminishing returns for large wheel sizes—our wheel for the first four primes has
circumference 210 (i.e., 2 × 3 × 5 × 7) with 48 holes, whereas the wheel for eight
primes has circumference 9,699,690 and 1,658,880 holes, but eliminates fewer than
7% of the remaining composites.

We can easily hardcode a small wheel and use it as follows:6

wheel2357 = 2:4:2:4:6:2:6:4:2:4:6:6:2:6:4:2:6:4:6:8:4:2:4:2:4:8
:6:4:6:2:4:6:2:6:6:4:2:4:6:2:6:4:2:4:2:10:2:10:wheel2357

spin (x:xs) n = n : spin xs (n + x)

primes = 2 : 3 : 5 : 7 : sieve (spin wheel2357 11)

Thus we can see that the common optimizations made to the sieve easily apply

6 Because this paper is mostly about implementing the sieve algorithm itself, rather than optimiz-
ing it, I will leave experimenting with larger wheels and writing code to generate those wheels
as a recreational exercise for the reader.

The Genuine Sieve of Eratosthenes 9

to our algorithm. In fact, the usual C language implementation of the sieve does
not support this optimization nearly as easily—changes to the core sieve algorithm
are usually required.

The lowest line in Figure 2(b) shows the performance of the algorithm sieving
numbers generated by the 2-3-5-7 wheel. We can see that this version runs more
than seven times faster than sieving all the composites, and three times faster than
sieving odd numbers.

Interestingly, using a wheel to provide the input for the unfaithful-sieve algorithm
makes little difference to its performance. For very small n there is some benefit, but
that benefit diminishes quickly as n increases, with less than a 4.5% time reduction
for n > 5000, and less than 1% for n > 36000. In fact, were we to draw a graph
for the performance of the unfaithful sieve with the wheel optimization, it would
be visually indistinguishable from the one in Figure 1(a). From Section 2.1, we
know that the poor performance of the unfaithful sieve is due entirely to the huge
amount of work it expends on primes, trying to divide each new prime, p, by every
previously discovered prime (all π(p) − 1 of them); as n increases there is little
difference between attempting π(n) − 1 divisions without the 2-3-5-7 wheel and
π(n) − 5 divisions with it.

4 Conclusion

A “one liner” to find a lazy list of prime numbers is a compelling example of the
power of laziness and the brevity that can be achieved with the powerful abstrac-
tions present in functional languages. But, despite fooling some of us for years, the
algorithm we began with isn’t the real sieve, nor is it even the most efficient one
liner that we can write.

An implementation of the actual sieve has its own elegance, showing the utility of
well-known data structures over the simplicity of lists. It also provides a compelling
example of why data structures such as heaps exist even when other data structures
have similar O(log n) time complexity—choosing the right data structure for the
problem at hand made an order of magnitude performance difference.

The unfaithful-sieve algorithm does have a place as an example. It is very short,
and it also serves as a good example of how elegance and simplicity can beguile
us. Although the name The Unfaithful Sieve has a certain ring to it, given that
the unfaithful algorithm is nearly a thousand times slower than our final version of
the real thing to find about 5000 primes, we should perhaps call it The Sleight on
Eratosthenes.

5 Related Work

Runciman (1997) suggests several enhancements to the basic unfaithful-sieve algo-
rithm, which he claims, as so many others have, to be the Sieve of Eratosthenes. His
enhancements do improve the running time dramatically, but the empirical evidence
from running his code seems to show that his changes merely affect the constant

10 M. E. O’Neill

factors in the approach, not its asymptotics. Thus, alas, at about the 125,000th

prime, his algorithm is overtaken by simple trial division.
Meertens (2004) presents some ways to make the behavior of the unfaithful sieve

easier for newcomers to functional programming to understand, but also improperly
describes it as being the Sieve of Eratosthenes.

The Sieve of Eratosthenes is a classic algorithm. It has inspired and been sur-
passed by more powerful algorithms and helped to spawn a rich literature (e.g.,
Pritchard, 1987). But while the current state of the art in prime-number sieves is
interesting, current techniques are largely tangential to the purposes of this pa-
per, which was merely to reproduce the original Sieve of Eratosthenes as faithfully
as possible in a lazy functional form. Incremental algorithms exist for perform-
ing sieving (Bengelloun, 1986; Pritchard, 1994), but these algorithms are typically
array-based. Crandall and Pomerance (2001) provide a good primer on the state of
prime computation in general.

Trial division is most often used not as an algorithm for finding primes, but as
a factoring algorithm. In that context, we do not stop when we successfully di-
vide the number, we keep dividing to find all of its factors, with time complexity
Θ(

√
n/ log n) for each integer we factor (c.f., the Θ(

√
n/(log n)2) per integer exam-

ine we found for our application of trial division, where we stop at the first divisor
we find).

Those wishing to use “industrial-strength number theory” to bound the perfor-
mance of trial division and the unfaithful sieve, instead of the techniques we used
in Section 2.1, will find the Φ function useful. Φ(n, p) is the number of integers ≤ n

not divisible by any prime < p. Using this function, the performance of the un-
faithful sieve is simply

∑π(n)
i=2 Φ(n, pi) and that of trial division is

∑π(
√

n)
i=2 Φ(n, pi).

Selberg (1946) showed that Φ(n, p) ∈ Θ(n/ log p). Φ is closely related to Legendre’s
Formula and Merten’s theorem.

6 Epilogue

In discussing earlier drafts of this paper with other members of the functional
programming community, I discovered that some functional programmers prefer to
work solely with lists whenever possible, despite the ease with which languages such
as Haskell and ML represent more advanced data structures. Thus a frequent ques-
tion from readers of earlier drafts whether a genuine Sieve of Eratosthenes could
be implemented using only lists. Some of those readers wrote their own implemen-
tations to show that you can indeed to so.

In a personal communication, Richard Bird suggested the following as a faithful
list-based implementation of the Sieve of Eratosthenes. This implementation maps
well to the key ideas of this paper, so with his permission I have reproduced it.
The composites structure is our “table of iterators”, but rather than using a tree
or heap to represent the table, he uses a simple list of lists. Each of the inner lazy
lists corresponds to our “iterators”. Removing elements from the front of the union
of this list corresponds to removing elements from our priority queue.

The Genuine Sieve of Eratosthenes 11

primes = 2:([3..] ‘minus‘ composites)
where

composites = union [multiples p | p <− primes]

multiples n = map (n*) [n..]

(x:xs) ‘minus‘ (y:ys) | x < y = x:(xs ‘minus‘ (y:ys))
| x == y = xs ‘minus‘ ys
| x > y = (x:xs) ‘minus‘ ys

union = foldr merge []
where

merge (x:xs) ys = x:merge’ xs ys
merge’ (x:xs) (y:ys) | x < y = x:merge’ xs (y:ys)

| x == y = x:merge’ xs ys
| x > y = y:merge’ (x:xs) ys

This code makes careful use of laziness. In particular, Bird remarks that “Taking
the union of the infinite list of infinite lists [[4,6,8,10,..], [9,12,15,18..], [25,30,35,40,...],...]
is tricky unless we exploit the fact that the first element of the result is the first
element of the first infinite list. That is why union is defined in the way it is in order
to be a productive function.”

While this incarnation of the Sieve of Eratosthenes does achieve the same ends as
our earlier implementations, its list-based implementation does not give the same
asymptotic performance. The structure of Bird’s table, in which the list of com-
posites generated by the kth prime is the kth element in the outer list, means that
when we are checking the ith number for primality, union requires

∑π(
√

i)
k=1 k/pk ∈

Θ(
√

i/(log i)2) time, resulting in a time complexity of Θ(n
√

n log log n/(log n)2),
making it asymptotically worse than trial division, but only by a factor of log log n.

In practice, Bird’s version is good enough for many purposes. His code is about
four times faster than our trial-division implementation for small n, and because
log log n grows very slowly, it is faster for all practical sizes of n. It is also faster than
our initial tree-based code for n < 108.5, and faster than the basic priority-queue
version for n < 275, 000, but never faster than the priority-queue version that uses
the wheel. Incidentally, Bird’s algorithm could be modified to support the wheel
optimizations, but the changes are nontrivial (in particular, multiples would need to
take account of the wheel).

For any problem, there is a certain challenge in trying to solve it elegantly using
only lists, but there are nevertheless good reasons to avoid too much of a fixation on
lists, particularly if a focus on seeking elegant list-based solutions induces a myopia
for elegant solutions that use other well-known data structures. For example, some
of the people with whom I discussed the ideas in this paper were not aware that a
solution using a heap was possible in a purely functional language because they had
never seen one used in a functional context. The vast majority of well-understood
standard data structures can be as available in a functional environment as they
are in an imperative one, and in my opinion, we should not be afraid to be seen to
use them.

12 M. E. O’Neill

7 Acknowledgments

My thanks to everyone who read earlier drafts of this paper. In particular, thanks
to Simon Peyton Jones for suggesting that I describe the time complexity of the
different algorithms in detail, and to Nick Pippenger, who told me about the Φ
function. Thanks also to Richard Bird for his thoughtful comments and his list-
based algorithm. Thanks also to my colleagues in the Computer Science department
at Harvey Mudd College, almost all of whom have listened to me describe one aspect
or another of this paper.

References

Bengelloun, S. A. (1986). An incremental primal sieve. Acta informatica, 23, 119–
125.

Crandall, Richard, & Pomerance, Carl. (2001). Prime numbers. A computational
perspective. New York: Springer-Verlag.

Hardy, G. H., & Wright, E. M. (1979). An introduction to the theory of numbers.
5th edn. Clarendon Press. Pages 354–358.

Meertens, Lambert. (2004). Calculating the Sieve of Eratosthenes. Journal of
functional programming, 14(6), 759–763.

Paulson, Lawrence C. (1996). ML for the working programmer. 2nd edn. Cambridge
University Press.

Pritchard, Paul. (1987). Linear prime-number sieves: A family tree. Science of
computer programming, 9, 17–35.

Pritchard, Paul. (1994). Improved incremental prime number sieves. Pages 280–
288 of: Proceedings of the first international symposium on algorithmic number
theory. London, UK: Springer-Verlag.

Runciman, Colin. (1997). Lazy wheel sieves and spirals of primes. Journal of
functional programming, 7(2), 219–225.

Selberg, Sigmund. (1946). An upper bound for the number of cancelled numbers
in the Sieve of Eratosthenes. Det kongelige Norske videnskabers selskabs forhan-
dlinger, Trondhjem, 19(2), 3–6.

Turner, David A. (1975). SASL language manual. Tech. rept. CS/75/1. Department
of Computational Science, University of St. Andrews.

