Information and Computatioh72 2—28 (2002) ®
doi:10.1006/inco0.2000.2925, available online at http://www.idealibrary.corl DE ,}l

Privacy via Subsumption

Jon G. Riecke

Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
and

Christopher A. Stone
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213

Received June 26, 1998

We describe an object calculus allowing object extension and structural subtyping. Each object has
a “dictionary” to mediate the connection between names and components. This extra indirection yields
the first object calculus combining both object extension and full width subtyping in a type-safe manner.
If class inheritance is modeled with object extension, private fields and methods can be achieved directly
by scoping restrictions: private fields or methods are those hidden by subsumption. We prove that the
type system is sound, discuss a variant allowing covariant self types, and give some examples of the
expressiveness of the calculuse 2002 Elsevier Science

1. INTRODUCTION

One of the most important principles of software engineering is information hiding: the abilit
build data or procedural abstractions in order to make programs more readable and maintainable.
oriented programming languages provide a number of primitives for information hiding. For exar
subsumption can restrict a client of an object to see only the relevant parts: a client expecting
methods than an object actually contains need not be aware of (and in most cases cannot invc
unknown methods and fields. Class-based languages like C++ and Java have another mechal
information hiding, namely private annotations on methods and fields. Private methods and field
be accessed only by other methods defined within the same class.

These two forms of information hiding—subtyping and privacy—appear to be related. In this
we give an elementary, unified account of both features, using an object calculus [1, 22] to cor
the concepts as much as possible. The primitives of our calculus also include object extension, r
override, and arbitrary width subtyping and subsumption (i.e., objects with more methods can &
be used in contexts expecting fewer methods). We also include an operation for renaming me
operations that can also be found in the class system of Eiffel [21]. We prove that our type sy
prevent run-time type errors.

The main novelty in the calculus is a separation between the components of objects and the na
which they are accessed. Fields and methods are given unique but otherwise arbitrary internal I
separate “dictionary” maps external names to the appropriate internal label. (Common implemen
of object-oriented languages already use a very similar idea: the internal names are simply offsets
the object or method table, and the mapping from names to offsets is kept separately.) A com|
whose external name has been lost (either through an explicit operation or implicitly by subsum
cannot be overridden; other methods refer to this method by its internal name and so are unaffe
the addition of new methods, whatever their external name.

The distinction between internal and external names allows us to avoid a well-known conflict bet
object extension and width subtyping. For instance, suppose we define anpbjettie expression

obj s.{x>3:Int, getx> s.x : Int]}.

1The second author was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Advanced Languages for Systems Software,” ARPA Order No. C533, issued by ESC/ENS under Contract F19628-95-C

2

0890-5401/02 $35.00
© 2002 Elsevier Science
All rights reserved.

PRIVACY VIA SUBSUMPTION 3

The variables stands for “self,” and is dynamically bound to the object upon method invocation.
object p contains two methods which returns 3, andetxwhich returns the value of the method.
The type ofp is {x : Int, getx: Int}. If we allow width subtyping,p can also have the less precis
type {getx: Int}. At this type, there is no reason to prevent the addition of a new methietlirning
the valueTrue of type Bool. In the dynamic semantics of [12, 20] where names are closely conne
with components and an object can have at mosbooemponent at a time, this would override th
earlierx method and causgetxto thereafter return the valugue despite statically having typiat.
Width subtyping then permits a program that treats a boolean value as an integer—a dynami
error.

To avoid such errors, the type systems of [13, 20] do not allow full width subtyping: either metl
may not be hidden at all, or components can be made “inaccessible”, i.e., they are visible and over
but cannot be invoked. These mechanisms do prevent two methods with the same name being
to the same object, but are unsatisfactory from a software-engineering standpoint: they requ
implementor to expose implementation details in interfaces, e.g., names and types of private fiel
methods. Moreover, when we use these calculi as a basis for classes, additions or changes to th
methods of a base class may require subclasses to be retypechecked and possibly recompiled.
this forced recompilation is called the “fragile base class” problem [18]. In the worst case, de
classes become ill-formed and large pieces of code must be rewritten.

Our solution is simple: instead of weakening subtyping, we change the dynamic semantic:
instance, when the above example has been translated into our systegetxinethod refers tx via
an internal name so thgetxcontinues to return 3, even when the newnethod is added. Becaus:t
the semantics of object extension gives the new method a new internal narmgetxirethod remains
unaffected. This forgetting of a method also allows us to give a meaning to private methods, lead
to adopt the slogan of “privacy via subsumption” for the calculus. There is another benefit to this cl
in dynamic semantics: when using our calculus as a basis for class-based languages, private r
can be changed in arbitrary ways without requiring subclasses to be retypechecked or recompi
other words, we can avoid the fragile base class problem.

2. FIRST-ORDER EXTENSIBLE OBJECTS

We begin with a first-order calculus in the sense of [1], i.e., the calculus without a notion of self1
For simplicity, we limit the calculus to a simple delegation-based system; the ability to extend ok
allows an elegant encoding of classes. Variants of the calculus have been carefully studied befor
[11-14, 20]). To keep the setting simple, all objects are immutable and objects have no fields; fiel
be encoded as methods which ignore their self argument.

TABLE 1

Syntax of the First-Order System

ti=Db base type
| (t—1) function type
| {7 ey object type
Fi=oe typing contexts
| I, xit
i=c constant
| X,v,8,0,... variables
| (Ax:t.€) abstraction
| objs.fl>g 7 '€, object
= value

| (e €) function application
| el method invocation
| e@¢ object renaming

| e<t+i(s)=¢€: 1 object extension

| e<I(s)=¢€¢

method override

4 RIECKE AND STONE

2.1. Syntax and Static Semantics

The language, whose syntax appears in Table 1, derives largely from the object calculi of .
and Cardelli [1], Fisher, Honsell, and Mitchell [12], and Liquori [20]. We include the standard larr
calculus primitives to avoid unnatural encodings [1]. The types of the language include base
function types, and object types, where object types draw their method names from an infinite
labels. Object types only mention the names by which methods are accessed (which must be ©
and the corresponding return types.

A dictionary ¢ is a finite partial function from labels to labels. Each object contains a dictior
mapping external names to internal names. For instance, the object

objs{me3:iInt,n>4 : Inthy—m

has the dictionaryq{— m]; whenx is invoked, the actual code invoked is the method internally labe
by m. Note that the code corresponding to the internal laliehs no external name, and so cannot |
invoked. We use(l) to denote the application of a dictionary to labgly o ¢) to denote the ordinary
functional composition of dictionarieg[l — n] to denote the partial function that behaves exactly
@ except for mapping to n, andid(S) to denote the identity function on a set of lab8ls

There are three primitive operations on objects besides method invocation. The ope@atioalters
the existing dictionary on an object: it evaluadés an object and composg@swith its internal dictionary.
In addition to renaming components, this operation can contract the number of methods visible
object when the range @f is smaller than the domain of the dictionary on the object. For example

objs{li>3:Int, I;>sl; : Int}, @[getx— gety

wherep =[x |1, getx— |,], evaluates to an object whose only visible methagkiswith dictionary
[getx— I5]. Similarly, one can increase the number of visible fields by mapping several external |
to the same internal label. (In this case, if one of these methods is overridden multiple methoc
appear to change.) The other two operations add or change the methods of objects. An existing
can be replaced within an object by the operaggr— [(s) = e. The operatiorey<«+I(s) =e : T adds
a new method to the object denoted bgy. The method expects a self parameteand when invoked
evaluates the bodyof typer. Because we do not have depth subtyping (it is unsound in the presen
the override operation), the new method in the extension operation is given an explicit type annc
so that all expressions will have most-specific types. Override does not change the type of an ob
no annotation is needed there.

We identify object expressions or types differing only in the order of their components, and expres
up to renaming of bound variables. Object expressions as well as lambda expressions bind va
Forinstance, in ok§.{l =g : 7'€' I, sis a bound variable whose scope includes all the method boc
Similarly,sis bound in the new method bod}in the extension and override operations shown in Table

The static semantics of the language is given in Appendix A. The novel aspects are the subsu
rule for nave width subtyping and the treatment of dictionaries. The rulesFM§E’) to denote the
variables occurring in the contekt

2.2. Dynamic Semantics

To give dynamic semantics to the language, we use Felleisen’s “evaluation context” formulatiol
of Plotkin’s SOS [24]. The syntax of evaluation contexts (a subset of those expressions contai
single hole, denoted) is given by the grammar

E:=e|(E®]|(vE)

| E.l
| E@¢p
| E<+i(s)=¢€¢: 1’

We write E[€] to denote the evaluation conteld with the hole replaced bg. The local reduction
relation~ is shown in Table 2. These rules use a syntactic substitution operation, wsitte][€e/,

PRIVACY VIA SUBSUMPTION 5

TABLE 2

Local Reduction Steps of First-Order System

[X—>v]e

objs.{mp> em : tm M oy

[s+> objsdme em : tm ™' Lian])

objs.{m> e : tm MO, o(1) > [s+> 5@ € : Ty
objs.{me e : tm ™' > [s> @] e Thy,

¢’ = p[l—~>1"] wherel’ = Fresh(l)

(Ax:t.e)v

(objs.{m> ey : T ™')@’
(objs.{m>em : mm mel Be)-1
(objs.Am>em : m M€ ,) < IU(s) =€
(objs{m>em : tm ™') <+i(s) =€ T

[A A

which denotes the capture-free substitutioredr s in €. The functionFresh, given a set of labels,
deterministically chooses a new label not in that set.

The most interesting operational rules are the rules for method invocation, override, and exte
During method invocation, the dictionary is stripped and replaced by an identity dictionary. Dt
method extension and override, the new method body is modified with the object’s current dictic
upon invocation it will restore this dictionary to the stripped self argument. The combination of t
two features gives method bodies an unchanging view of the object, even though arbitrary char
the object’s dictionary may happen later through other renamings or extensions.

The relation in Table 2 is extended to a one-step evaluation relation on programesiff there are
termsey, & such that = E[e;], e1~ &, andE[e;] = €. We can prove

ProposiTionl. (Determinacy)The relationw is a partial function.

We use--* to denote the reflexive, transitive closure-ef
The static semantics and dynamic semantics also agree. The key results are:

1. [Subject Reduction] I -e: o ande~ € thenT' € : 0.
2. [Progress] If--e: t then eitheris a value or else~ €.

The proofs for the first-order system appear in Appendix C.

2.3. Examples

The first example shows the behavior of the operational semanticg. Ee{F—11, M—1,] and
define the explicit subtyping coercian>t as shorthand for the termi:z.x) 0). Consider the terms

0:= (objs- {y)
0p := (0<+F(s)=5: Int)«<+M(s)=(s.F+1) : Int

0o : {F :Int, M : Int}

Og~*objs.{li>5:Int, [2> (s@y).F+1 : Intf,
01: =0« F(5)=7

o1 : {F :Int, M :Int}

op~*objs{li>7 :Int, [2 > (s@g).F+1 : Intf,
0y ;= 01:>{M : Int}

02 : {M :Int}

0x~*objs{li>7 1 Int, [2 > (s@g).F+1 : Intf,
03 .= 0<«+F(s) =True : Bool

03 : {F : Bool, M : Int}
03~*objs.{l1>7 :Int,Io> (S@¢).F+1 : Int,
[3>True : BOOI}[F 15 M1y

6 RIECKE AND STONE

Hereog has method$ and M. When a method is invoked, the self parametés replaced with an
object with an identity dictionary. Thus, it is easy to see thaF evaluates to 5 andy.M to 6. In
0, we overrideF with a method that returns 0;.F evaluates to 7 and;.M to 8. To obtaino,, we
use subsumption omto make methodr private, leaving only one visible methdd. Theno,.M still
evaluates to 8. The type system would reject any attempidoride Fin oy, sinceo, has no visible-
method. Itis legal, however, xtend g to o3 by adding a new method calléd(which here happens to
return a boolean value). The previoksnethod is still present in the underlying object, and evaluati
03.M still gives 8, whileos.F returnsTrue.

As this example shows, extending an object never changes the behavior of pre-existing me
When a method is added to an object, we arrange for its body to invoke methods in self using ir
labels. Its behavior does not change unless one of these is overridden, which cannot occur unle
is a corresponding external label.

This example also raises another point: object extension must be used carefully. One may alw:
extension in place of method override, but the consequences are different. For instance, consi
term

04 := 0g<+F(S)=7: Int

which resembles; except that we use extension rather than override. The term is typable becau
objectois implicitly forced (via subsumption) to have an object type with only one mekoAs such,
04.M returns 6 whileo;.M returns 8. The programmer must be careful to determine which of th
behaviors is correct and use the appropriate operation.

For a similar example, define the functigatf by

getf:= Ap:({F : Int}).(p.F)
Then define the objects

p1 1= objs.{ly
«~F(s)=4:Int
«~+Mjy(s)=s.F : Int
«~+My(s) =getfs) : Int

P2 = P2
«~F(s)=5:Int
«~+Njy(s)=s.F : Int
«~+Naz(s) =getfs) : Int

Then

p:: {F :Int, My : Int, M2 : Int}
p2 : {F :Int, My 2 Int, M2 @ Int, Ny @ Int, N @ Int]}

p]_F'\»*4 ng«»*S

p]_.Ml'w*4 pz.Mlv* 4

p1.M2~*4 p2.Mp~*4
P2.Ni~*5
p2.N2~*5

Although p,.M; and p..N; may appear to have the same code, they evaluate to different ve
because—ijust as in the preceding series of examples—these two methods refer to different
components by the namie. Slightly less obviously, the same effect occurspgnM, and p,.Ny;

although both methods believe that the self object has a mdthedurning an integer, they disagre:
on which component within the self object is tHamethod; dynamically the two methods will pass
to thegetffunction with different dictionaries attached, which causesgiécalls to return different
results. In the first-order system, this dictionary manipulation is hidden in the dynamic semantics.

PRIVACY VIA SUBSUMPTION 7

second-order system of the next section, we are forced to make such manipulations explicit and
will revisit this example.
For yet another example, consider the term

Ap:{x : Int}.(p<+getys) =s.x : Int)
This function can be given the type
({x : Int} — {x : Int, getx: Int}}).

In contrast to other formalisms, this function may be appliedrtgobject with anx method of type
Int, regardless of its other methods. On the other hand, there is some information loss: if we app
function to an object with (public) methods y, andz, the result has just two public methodsand
getx y andz are hidden in the act of subsumption. One would need an extension such as row var
[28] or bounded polymorphism [8] in order to avoid this behavior.

Classes can also be encoded in the system, where a class provides a way to create objects and
from the class. We encode classes as object-generating functions. This means that classes have
constructor function, as in Objective Caml [26]; more complex encodings with multiple constrt
functions are possible.

A very standard example of classes involves classes for “points” and “colored points.” The p
types of points and colored points are

PT := {getx: Int}
CPT := {getx: Int, getc: Color}}.

The classes are defined by

ptclass:= A(Xg : Int).
(objs.{ig
«~+X(S) = Xo : Int
<«~tgetxs) = s.x : Int
):>PT

cptclass:= A(Xp:Int). A(cy:Color).
(pt_clasgxo)
<«+c(s) = ¢p : Color
«~tgetds) = s.c: Int) ;> CPT

Note that objects created by classhave afieldk which is used bgetx but will be hidden from external
view by subsumption. Clients can invoke this class to create point objects, but by the static typin
cannot directly access thecomponent. Furthermore, the functiopt classinherits from the point
class, but the color-point class methods also cannot invoke or overridectmponent. We have addec
a private fieldc to the class of colored points, accessible only bygate method. To typecheck and
compilecpt_class we need only know the typént — PT) of pt.class which does not mentior. The
cptclassfunction could choose to add a method nameaf any type, which would not interfere with
the private fieldx inherited frompt_class

We could expand on this example to encqaetectedcomponents (fields and methods only visibl
to subclasses). In this case, a class becomes two functions, one to be invoked by subclasses
other to be invoked by clients. The first function generates the object and restricts it to a “prote
interface, hiding the private components. The second function further restricts the type of the
to expose only the public components. This “protection via subtyping” encoding has been disc
elsewhere [1, 15].

8 RIECKE AND STONE
3. SECOND-ORDER EXTENSIBLE OBJECTS

In a calculus of immutable objects, it is natural to consider objects that can return updated coy
themselves. For example, we might define a type of movable points, which could be defined (u
recursive type definition) as

MPT := {getx: Int, move: (Int — MPT)|}

where thanoveoperation takes an amount to offset the position of the returned point. Now suppo:
extendpt’ : MPT to a colored point by adding getcmethod returning a color. The resulting objec
would have type

MCPT := {igetx: Int, move: (Int— MPT), getc: color|}

Unfortunately, ifcpt : MCPT thencpt.moveis a function which still returns a value of typ&PT’; the
color is lost.

A “second-order calculus,” in the parlance of [1], can repair the problem. In a second-order cals
method types can refer to “the type of the object whose method is being invoked”. This type is u:
called a “self type”. When the object is extended, the self type changes correspondingly. Thus we

MPT := Obj «.{getx: Int, move: (Int— «)}}

wherea represents the type of self, and is bound within the object type. Then the extension to
color would have type

MCPT := Obj«.{getx: Int, move: (Int — «), getc: color|}

Assumingpt : MPT andcpt: MCPT, the method invocatiopt.movehas typeg — MPT] (Int— «) =
(Int— MPT), and the method invocatiapt movehas type & — MCPT] (Int - «) = (Int— MCPT)
as desired.

Because our objects carry dictionaries, there is a complication. In the above exaropéeeturns
an updated version of the self object, with the same type as the point being moved. The oper
semantics for method invocation, howewdigcardsthe dictionary attached to the object and replace:
with the identity dictionary. Furthermore, the code fioovemust work in all extensions and renaming
of the object; there is no static means of determining what the dictionary will be mbgas invoked.

The solution is to make dictionary manipulations much more explicit. Dictionaries become v
and method invocation involves binding a dictionary as well as self. Using that mechanism, a m
can reattach a dictionary to the self object. To preserve typing information, the method invocatic
method override operations are parameterized by an extra dictionary. This dictionary is used as ¢
indirection in specifying the component intended by the given method name; the first-order oper
correspond to the case in which this dictionary is the identity mapping. This allows us to loca
object’'s component using a given dictionary without modifying the dictionary carried by the obje

3.1. Syntax and Static Semantics

Inthe second-order system, dictionaries are values and thus must have types. Thetypeenotes
dictionaries that can be used to rename an object of tyge an object of typer,. We distinguish
dictionary types from function types because only dictionaries (and variables bound to diction
may appear as the extra parameter for method invocation and method override. A dictiaidype
71 = T2 can be coerced to a functiohX:71.(Xx@g)) of type (1 — 12).

As with the first-order system, object values have a binding representing self. In the second
system, however, self has two types: the external type (usually deadtece), and the internal type
(usually denoted), which is the type of self during method invocation. This idea is not new;
typesa andp closely resemble thigyType andSelfType constructs from TOOPL [6]. The dictionary
(usually denoted) on an object map8 to «, and is instantiated to the current dictionary during meth

PRIVACY VIA SUBSUMPTION 9
invocation. Thus, the syntax of an object in the second-order system is
obj(a, B,s, d).{m> € : Tm ™'},

wherea, 8, s, andd are all bound within the body of the object.

In the typing rules for objects, the methods are checked under the assumptioths #hat o and
s : B. We can only guarantee that the dictionarys correctfor the object at the time the method i
invoked and which may not be applicable for the current object. All we know statically gbmuthat
it will be a subtype of the current internal representation, gés,a partially abstract type. In the typing
rules,8 must not appear free in the types of the methods—anthay appear free—which also reflect
the concept of an “existential” or abstract type [23].

Similar modifications must be made to the method override and extension operations. These ope
are further parameterized by a dictionakywhich is the dictionanat the time the method is added o
overridden (Recall thad represents a dictionary in place when the method is later invoked.) Sinc
do not know statically the internal type of the object being altered, the new method body can as
nothing aboup except that it is an object type. What we do know is an object tyfoe the object, and
that the current dictionary when attached to the object gives the object this type; thus the new n
is typechecked under the assumptibn g = .

Finally, as noted above both method invocation and method override are additionally paramet
by a valuev, which will be a constant dictionary or a variable with a dictionary type.

Table 3 gives the syntax of the second-order system. There is one technical constraint: in objec
the typex of self must appear covariantly inside object types. We saytlagipears covariantly in if
any of the following is true:

e ¢ isnotfree int;

® Tisq;

e 7is (11— 12) Or 11 = 12, Wherew appears contravariantly in and covariantly ine;
Similarly, @ appears contravariantly inif any of the following is true:

e ¢ isnotfreeinr;
e tis (11— 12) Or 11 = 12, Wherex appears covariantly iy and contravariantly ino;

We would need more restrictive width subtyping to avoid unsoundnessdf tere allowed to appear

TABLE 3

Syntax of the Second-Order System

ti=b base type
| o type variable
| (—7) function type
lt=7 dictionary type
| Objafl: ') object type
Fi=e typing contexts
| T, xit
| T, a=<t
vi=_C constant
| X,s,d,... variable
| AX:T.€ function
7 dictionary
| obj(a, B, s, d).{l > : 7 '], object
erl=v value
el e application
| e@v object renaming
| eyl method invocation
| @< l(a, B,5,d,d)=¢ method override

| e<+l(a, B,s,d,d)=€¢:7 object extension

10 RIECKE AND STONE

non-covariantly (see [1] for examples). As such, this system does not handle binary methods (¢
for a thorough discussion).

The static semantics of the second-order calculus appears in Appendix B. The rules use the a
ation

T := Obja.{]

for the object type conveying the least information. In addition to the changes discussed abo
must handle type variables and bounded quantification in the typing context. Typing cdntases
finite, partial functions from variables to types and from type variables to upper bounds. Fc
stance, the conteXt = (X:t, «<t’) denotes a typing context with domai) «, and states that
is assumed to have typeand« has an upper bound af. The domain of a context is denoted
Dom(T").

3.2. Dynamic Semantics

The dynamic semantics for the second-order calculus uses evaluation contexts of the form
E:= e|(E€|(vE)
| E@v
| E-l
| E<«,l(a, B,s,d,d)=¢
| E<+l(a, B,s,d,d)=¢€:7

The rules for reducing redexes appear in Table 4, and these rules are extended to arelation on exp
via evaluation contexts in the same way as the first-order system.

As in the first-order system, the difficult rules are the rules for method invocation, override,
extension. In method invocation, the self parameter is replaced by the object with the identity dictic
the parameted is bound to the current dictionary. The typeandg are bound to the appropriate type:
a matches the external type of the object (with the dictionaig place), and3 matches the internal
type of the object (with the identity dictionary). In method override and extendias,bound in the
body to the dictionary at the time of the operation. Like in the first-order system, this gives the
the ability to use the object in the way it could be used at the time of override or extension. Th
parameter in the body is not changed, however.

As with the first-order system, the static and dynamic semantics agree in the following ways:

1. [Subject Reduction] If-e: r ande~ €, thent-e: 7.
2. [Progress] Ift-e: r, theneis a value oe~- € for some expressiod.

The proofs appear in Appendix D.

TABLE 4

Local Reduction Steps for Second-Order System

(Ax:t.€) v ~ [x—>v]e
(obj(e, . 5. d).{m> em : T ™' |},) @¢’ ~ obj(a, 8,5, d). M em : Tm ™! oy
(obj(a, B, s, d).{m> ey : tm mel lo)rl ~ [dr ¢][sr> selfl[a > Al[B 1+ B] ey)

where A = Obja.{l : 7,q) '€Pom®))
B = Obja.{m: 7, ™!}
self = obj(e, 8. s, d).{m>em : Tm ™' Pigq)
(obj(e, . 5. d).m> €m : T ™') <y U, B.5.d.d) =€
~ obj(, B,s,d).AM> e : tm MDD 4" (1) > [d - gl e Tyl
(obj(, B, s, d).{M> em : tm ™') <+, B.5.d.d)=e: 7
~ obj(e, B, s, d).AM>en 1t M U > [d > ¢le Thy
whereA = Obja.{l : 7,q) '€P°M@), 17|}, Fresh(1) = I/, ¢’ = ¢[l>1]

PRIVACY VIA SUBSUMPTION 11

3.3. Examples

We first revisit the simple examples from Section 2.3. Agaiplet [F—I11, M—1,]. The equivalent
terms are then

0 := (obj(e, B,s,d).{p)

Op:=0
«~+F(o, 8,s,d,d)=5:Int
«~+M(e, B,s,d,d)=(s.¢ F+1) : Int

01 = 00 < [F~F] F(Ol, ﬁ, S, d, d/) =7
Note thatog, 01 : Obj .{F : Int, M : Int}, and

0o ~* obj(a, B,s,d).{li=5:Int, Ir>s,F + 1 :Int},

01 ~* obj(a, B,s,d).{l1>7 :Int, Io >, F + 1 :Int},
The objecto; could also be defined as
01 '= 00 <—[G~F] G(Ol, ,3, s, d, d,) =7

which would evaluate to exactly the same object value.
We next recast thgetf example into the second-order system. We define the fungédiby

getf := Ap:(Obj.{F : Int}).(p.F)
and the objectp,; and p, by

p1 := obj(x, B, s, d)-{l
“~+F(o,8,s,d,d)=4":Int
~+Mi(e, B,5,d,d)=sqF :Int
«~+My(e, B,s,d,d)=getf(s@d’) : Int
P2 = p1
“~—+F(a, B,s,d,d)=5:Int
«~+Ni(a, 8,5, d,d)=s¢F :Int
«~+Nz(a, B8, s,d,d)=getf(s@d) : Int

Invoking methods in these two objects yields the same integer values as in the first-order exampl
p1-[r—F1 F ~* 4. In this presentation, it is more clear that the callgéaf in M, and N, are passed
objects with different dictionaries, @b is instantiated to different values in the two methods.

The expressions y F in the M; andN; methods above could have been written in the operatione
equivalent form

(s@d)-(r-r1 F
so that all method invocation operations would be annotated with identity dictionaries, mimickin

behavior of the first-order system. However, there are cases where these two forms have different
behavior. Consider the object

th := obj(e, B,s,d).{M >3 : Inthmem

of type Objo.{M : Int}. Then G@[N— M])-(n—njN andas-n—mjN are operationally equivalent;
both expressions have typ& and evaluate to 3.

12 RIECKE AND STONE
In constrast, for the object
02 = obj(, B, s, d).{M >s@d : a[}{mm)

of type Obja.{M : «f}, the two corresponding expressions are differeptin..mjN has type
Obja.{M : «ff and evaluates tp, while (Gx@[N+— M])-[nnj N has typeDbje.{N : «f} and evaluates
to

obj(a, B, s,d).{M>s@d : afjinism]-

We now revisit the class example from Section 2.3 to create classes for movable points and ¢
points.

mptclass:= A(Xp : Int).
(Obj(()l, :3’ S, d){”}[l
“~+X(a, B,5,d,d) =Xxg : Int
«~tget{w, B,s,d,d) =s¢x :Int
«~t+movéa, 8,s,d,d) =
Ay:Int.(let z = s-g getx
in s<—g'X(a1, B1, S1, d1, d)
=z+Y)
@d : (Int— «)
) :> MPT

mcptclass:= A(Xp:Int). A(co:Color).
(ptclasgxg)
<«~+c(e, B,S,d,d") =cp: Color
«~tgetde, B, s,d, d) =s-¢c: Color
) :> MCPT

In the movemethod, the use of the dictionady to parameterize the method override is essential
allows us to usas as an object value while statically preserving the dictionary attache(stmthat the
updated object retains typgieand can be coerced to the external self type

4. CONCLUSIONS

4.1. Implementation Issues

There is a tradeoff in using explicit dictionaries: dictionary manipulation may induce a run-time «
In a setting where our object calculus is used directly, there are ways for modestly reducing the ru
costs of dictionaries. For example, in compiling the dictionary composition opee@er, one can ei-
ther choose to calculate the compositioe'sfdictionaryg with ¢’ directly, or calculate the compositior
lazily as the new object gets requests for methods. The former may be more efficient when there
guent compositions and method invocations, the latter more efficient when there are fewer compo:

Similarly, though it is certainly unsound to drop components from an object when they are hi
by subsumption, it is possible to drop these components frorditi@nary. By turning subsumption
into a run-time coercion on dictionaries, an implementation can ensure that the order and posi
entries in an object’s dictionary always matches the static type; then dictionary lookups are guar
to take constant time. Whether this is a good idea depends on the frequency of subsumptions,
cost of searching a dictionary of unknown size.

If one knows more about the style of programming in the calculus, more efficiencies can be gaine
instance, the calculus could be used as a compilation target for single-inheritance class-based lan
In these languages, each class determines a “method table” that can be shared among all objec
class (the fields of each object, of course, must be maintained separately). The mapping of methoc
to indices in the method table is the dictionary. Since the method table can be statically deterr

PRIVACY VIA SUBSUMPTION 13

method calls through self need not be matched to a slot in the method table: they can immediatel
to the method. That is, whep is statically determinable, the compiler can do dictionary lookups
compile-time and not generate code involving this dictionary é@¢).! in the first-order calculus or
e.,| inthe second-order calculus. We also know that the self vargakitin an object refers to an object
with the identity dictionary, so tha@g can be implemented as a dictionary replacement operatiol

Calls to methods fromutsidethe method suite may still need to go through the dictionary, howe
The situation is familiar from existing object-oriented languages. In Java, for instance, suppo:
define two classe& andB and an interfacévia the definitions interfacke{public int m (int x);} class
A implements I{ public int m (int x){ ... }; } class B implements { public int k (int x) { ... }; public
intm (intx) { ... }; } In a context where a variable is known only to have tmemethod invocation of
m must go through the dictionary: the variable could be an object from the&l@ssvhich casem is
the first method in the method table) or from the clBd&n which casan is the second method in the
method table).

In class-based languages, the only operations that create objects are constructor functions
when compiling such a language into our calculus, all of the object operatxarptmethod invocation
can be confined to the constructor functions. Constructor functions first call their superclass cons
functions, which return a partially constructed object, and then add or override methods. If the supe
constructor is known—as it is in a language like Java—the dictionaries are known, and so substit
and compositions of dictionaries can be done at compile time. Even in a language with paramet
classes, one can imagine doing much of the manipulation of dictionarlesg dime when the base
classes of parameterized classes become instantiated.

Any of the optimizations valid for untyped object-oriented languages should apply here as wel

The dynamic semantics does do much more dictionary manipulation (stripping and replacing ¢
naries) than one would like to see in an implementation. We have previously described a seconc
system whose direct implementation should avoid these, at the cost of more (though individually
pler) language constructs and a more complex type system [27].

4.2. Related Work

Our calculi embody solutions to two problems: it provides a characterization of private methods
supports both subtyping and object extension. Previous work has attempted to address these pr
and it is worth comparing these solutions to ours.

In the context of modeling private components in objects, Fisher and Mitchell [15] give an accol
private (as well as protected) methods and fields using abstract types. Abstract types can be usec
the representations of objects from clients, even though the objects themselves have access to the
representations. Information about the names of private fields and methods, however, is still ex
Their account is in some sense more fundamental than ours: our calculus directly supports hidir
does not attempt to describe it in more basic concemsiyRand Vouillon [26] consider a more direc
account of private data in classes, but only as inlined constant values. In addition to not matcl
standard implementation, their approach does not extend well to mutable fields in the presence o
cloning or functional update of objects. Eiffel [21] has operations for redefining and “undefining’
methods of a class, much like our single renaming operation does in the first-order calculus. We ¢
aware, however, of any formal accounts that establish the soundness of the Eiffel type system. |
and Lindstrom [5] define a coercive operation for hiding components of objects; this appearsto b
similarly to our subsumption operation, at least for first-order objects. They formalize this oper
within an untyped.-calculus.

More work has addressed the problems with object extension and subtyping. Fisher and M
[14], for instance, discuss the unsoundness of width subtyping in the presence of object exte
Their solution is to distinguish the types of objects which support either method override and ¢
extension (but no subtyping) from those which support width and depth subtyping but not me
override or object extension. Later work has looked at other ways of combining width subtyping
object extension without losing soundness. Liquori [19, 20] gives first- and second-order syste
which the types of extensible objects list the names and types of (a superset of) methods hid
subsumption; the types must match if the object is extended by a new method with the same nar
hidden method. The ideais related to an old idea: Jategaonkar and Mitchell [17¢anyd B5] use types

14 RIECKE AND STONE

that keep track of which methods must be “absent” from an object. Bono, Bugliesi, Dezani, and Li
[2, 3, 4] take a different approach: object types contain a conservative approximation of which me
each method invokes via self. A collection of methods can be forgotten via subsumption if no rem¢
methods might invoke a member of this collection. This is not useful, however, for the purpos
modeling private methods (which exist for the sole purpose of being used by public methods).

It should be noted that even though we allow width-subtyping for objects, the rule for typing ol
values in a language without object extension can still be more liberal than our Rule 40 [1]. In part
without object extension the typg of the self variable can be knowexactlywithin object methods
because this cannot be changed by future operations. In contrast, we can only assisnveiltiost a
subtype of the object’s current type.

If there is no object extension, we may type the method bodies in an object with the selfagpal
to an object type, rather than merely being a subtype of an object type. This permits type-correct c
with “backup” and “restore” methods, where “restore” returns an older copy of the object and has |
type «. Since in our system the internal type of the object may change (through object exten
allowing this sort of code in our system would lead to unsoundness.

Finally, in many conventional object-oriented languages, subclassing determines the type |
chy. Therefore, each method can be associated with the class where it was defined. This allo
co-existing components with the same name to be defined in different classes. The guarant
related classes will have distinct names guarantees that all references to components can be
biguated. This does mean that inheritance requires static knowledge about all superclasses, bt
commonly required for implementation efficiency anyway. Java “binary compatibility” allows (am
other changes) new methods to be added to an existing class without recompilation of subcla:
other clients; Drossopoulou, Wragg, and Eisenbach [9] give a semantics for this where class nar
used to qualify references to object and class components so as to prevent conflicts.

4.3. Discussion and Future Work

We have shown that there is a calculus with width subtyping and object extension, one that all
general notion of strong privacy for fields and methods within classes. Our object calculus does :
to be useful; Fisher and Reppy have been using a variant for the design of an extension to SM
classes and objects [16].

Itis notdifficultto see how the first-order system embeds in the second-order system. To see how
bed types, afirst-order object type: 7; ‘' | can be represented as second-order®&fpiex.{[: 7; '<'|)
simply by treating the self type as a dummy variable. All of the other types embed straightforwarc
To embed the terms, we rewrite method bodies in override and extension so that all occurrence:
self variables are replaced withg@d’), and we annotate the invocation and override methods w
identity dictionaries.

Type-checking for both the first-order and second-order systems is decidable. This fact hinge
proof that any term in the two systems can be given a minimal typing, i.e., least in the sense of subi
What remains open, however, is whether one can build a type inference system that does not fc
programmer to write in any types. Type annotations on method bodies are required for minimal t
in the absence of depth subtyping, and depth subtyping is unsound in the presence of method o

Whether we have chosen the best set of primitives is open to debate. Nevertheless, many ext
should be possible. For instance, it should be possible to add mutable fields and methods an
imperative update rather than functional update. Variance annotations should also be simple to
the calculus to support richer forms of subtyping. Finally, it would be interesting to extend the lang
with bounded polymorphism, which would make the calculus more expressive. We do not anti
any major difficulties in these directions.

It appears that the systems presented here may be instances of a more general setting il
objects do not carry dictionaries, but rather renamed values are considered values. Thus the fir:
object valueobjs.{i > & : 7 <™}, corresponds to the renamed objeajs.{i > & : 7 <"} @gp.
The dynamic semantics for the first-order system might be

(v@¢).1 ~v.(p(1))

(objs{i>g 7 '€'}).l ~[s>objsfice 7 €] e

PRIVACY VIA SUBSUMPTION 15

with additional rules such as

(v@p)@¢" ~v@(p © ¢)

if desired. Then our first-order calculus can be viewed as the special case where we require
object value to be renamed exactly once (by inserting the identity renaming or composing rena
as necessary). It appears possible to view the second-order calculus in a similar way, though wit|
complicated rules because we must still do substitutions of dictionaries.

Some other, more difficult problems arise, the most important of which is to find a better sema
framework for the calculus. Our proofs of type soundness were purely operational; what wou
better is a deeper understanding of the calculus that would make the static semantic rules obvi
translation of the calculus into a typéecalculus might shed some light, or a denotational framewc
might provide a better setting to evaluate different choices of static rules.

APPENDIX A: STATIC SEMANTICS OF FIRST-ORDER SYSTEM

Well-Formed Contexts

oo 1)
o x & Dom(T")
T)
Xtk o
Well-Formed Types
ko
3
b 3)
'+ 1 | T2
4)
I'E (11— 1)
ko
Viel: | i
_ 5
CH{l:z) ©)
Width Subtyping
| Il
_ 6
'Lt <+t)
ko
7
P {lin E9) <l g =))
FHFr<n FFn=<1 ®)
FF(mi—1n) 2 (g—>1)
Well-Formed Expressions
ko
S et 9)
'k c: typeof(c)
e D r
o x € Dbom(T") (10)
F'Ex:T(x)
'x:the: 7 (11)

rE(x:te):(rt —> 1)

16 RIECKE AND STONE

F'ke:(t —> 1)) re:z
F'H(ee€): 1/

rt=<7 'e:t
kFe:t

e {l:t}
el:t

Fte:{l:n '} Range(p) C |
F'Ee@g : {1 : 1, '€POM@)]

Range(p) < |
Viel: I,sfm:tm ™' e 1

I'objs{dmeen : tm M}, 1 {11 7,0 €POM@))

mel s ¢ Dom(I")
Fke:{l:g '} rosfl:n €' he,
F'Fe<m(s)=¢,:{l:7 <}

me¢l s ¢ Dom(I")

Cke:{l:g €'} Osfl:o e mig b€, 1,

H(em(s)=¢,: 1) {l:7 €' m:]

APPENDIX B: STATIC SEMANTICS OF SECOND-ORDER SYSTEM

Well-Formed Contexts

oo
| x ¢ Dom(T")
'xtkEo
-t a & Dom(T")
o<tk <¢

Well-Formed Types

ko
kb
ko a € bom(T")
'Fa
'-n | D
I'E (11— 1)
Fl—‘L’l F"‘L’z
'-n1=>mon
'-o
Viel: T axThkr1
'+ Obja.{l: 1 ')

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)
(23)
(24)

(25)

(26)

PRIVACY VIA SUBSUMPTION 17

Width Subtyping

T Obja.fl: 7 €Y

27
I+ Obja.fl:t 'Y} < Obja.fl: 1 '} 27)
I+
_re (28)
't =<x1
=T axt, T’ 7 <t (29)
IN'Fa=<rt
'kt =<n FI—/rzjrz’ (30)
FF(ni—=>m) 2 (g—1)
FrCr=<n Fll—rzjlrz’ (31)
l'Fo=>n1y=r1
Well-Formed Expressions
l'ke:t |
T T X7 (32)
He:
'+
e (33)
'+ c: typeof(c)
rk+ Dom(I"
o X € () (34)
M'Ex:T(x)
Ixtke: v (35)
F'E(xte):(r—>1)
ke :(t2— 1) e (36)
F-(e1e):t
A r-B Range(p) C |
B = Obja.{m: ty, ™'}
A= Obja.{l: IeDom(y)
Jo{l T Tp0) I (37)
'Fp:B=A
'Fe: v 'v:t'=r1
38
'e@vu:t (38)
ke: 7 'Fv:t'=0bjal:] (39)
kel fa—1]7t
Vmel: B¢&FV(ty)
B = Obja.{m: tm ™'}
A = Obja.{l : 7,q) <P}
'Fp:B=A
Vmel: T,B8<xB,axT,df=a,SBFen:Tm (40)
I'Fobj(a, B,s, d).{meen:m M), : A
B & FV(tm)
ke :t 'kv:t=0bja.{m: tml
[LB<T,axT,d:B=r1,dB=a SBF& m (41)

ke <, M, B,s,d,d)=6:1

18 RIECKE AND STONE

B &€ FV(r) m¢ |
FHe :Obja.fl:g €'}
A=O0bjafl: 7 " m: 1]
[LB<T,axT,d:B=> A dB=a,s e T
F'E(ep<m(e, 8,8,d, d)=e:17): A

(42)

APPENDIX C: CORRECTNESS OF FIRST-ORDER SYSTEM

We first give a series of lemmas. The proofs are omitted because they are largely similar t
simpler than) the corresponding lemmas in the second-order system, which appear in Appendix
use the notatio for the right-hand side of a judgement in the system.

Lemva C.1 (Well-Formedness).If T, TV F ¢ thenT + ©.

Lemva C.2. If ' = J thenl | o.

Lemma C.3. If I, IV + o thenDom(I") N Dom(I™’) = @.

Lemva C.4 (Context Weakening).If I', ' + 7 andI, I'', I’ + o thenD, I/, TV + 7.

Lemma C.5 (Bound Weakening).If 'y, X : 7o, o = J andT'y - 13 X 1o thenly, X i 1q, T - J.
Lemva C.6 (Transitivity). f Tt <7’andl"' -t < ¢”thenl' -t < t”.

Lemva C.7 (Subtyping Inversion).

i. fTE(yy—>) (n—>1)thenl 15 <7.
i fDF{l:g ety <{l: 7] Y thenl € Landr] =7, forall I e L.

Lemma C.8 (Value Substitution). If ', x:t =€ : ¢/ andl", Ve 7, thenl, " - [X+— €] € : T’.

Lemva C.9 (Decomposition and Replacement)f ' E[€] : 7 then[' e : ¢’ for some type’.
Furthermore, iflC -¢€ : ¢t/ thenl' - E[€] : t.

Treorem C.10 (Subject Reduction).If T'He: o and e € thenT'-€ : 0.

Proof. By cases depending on the operational rule used. Because of the transitivity and syn
of subtyping, without loss of generality we may assume that in the prodftoé : o, uses of the
Subsumption Rule 13 alternate with uses of the remaining typing rules, and that the proof does r
with a use of subsumption. By Lemma C.9 we need only consider the local reduction steps.

1. Therule usedis
(AX:t.€) v~ [X1H>v] e
Then the proof of - (AX:7.€) v : o must contain sub-proofs of the following judgments:
I''xtkFe:n
'kE(t—1) =X (2—0)

I'Fv:t

By Lemma C.7, we hav& + 1, < tr andI" + 7, < o. Therefore' v : t by subsumption,
I'H[x— v]e: r; by Lemma C.8, and the desired result follows by subsumption.

2. Therule usedis

objs.{me en : tm ™'}, @p’ ~
objs.{moem : Tm ™' fyop

PRIVACY VIA SUBSUMPTION 19

The typing proof of the hypothesis must include the following judgments:

Viel: I,sim:tm™'jtq 1
Range(p) C |

T =M tym MO < fm: 7, Mk
Range(¢’) € L

where

o={m: r(;,(m) meDom(¢)p.

By Lemma C.7L < Dom(y) andt,, = t,m) for all m e L. ThenRange(¢ o ¢’) € Range(p) < |
andDom(y o ¢') = Dom(g'). Thereforel" k- objs- {m>em : m ™'}, M & Ty((my ML)
and this type is equal te.

3. Therule used is

(objs.{meen : tm ™' },). 1~
[sr> objs{msen : tm ™ Fiam)] €0

The typing proof of the hypothesis must include the following judgments:
Viel: I,sfim:ty ™ kg1
Range(y) < |
[{m: 7y(m ™M) <l 1 o)
By Lemma C.7, we havé € Dom(¢) ando = t,q). Further,T'-objs.{mw ey : mel Biay -

{im: ty ™'} Finally, by Lemma C.8, it follows that - [s— objs.{men : tm ™' Fia)] €0 & o)
as desired.

4. Therule used is

(objs{me en : m ™' },) < () =e~
objs.{mw ey : 7y Me\eD),
(p(l) > [S'_) S@(p] e To(l) |}<p
The typing proof of the hypothesis must include the following judgments:
Viel: I,sfym:tm ™' }Fe 1
Range(p) < |
L {m: gyem ™PM@) < m: ¢, Mt}

Isim:t, ™t pe: g
lel

whereo = {m: 7, ™t}}. By Lemma C.7L € Dom(p) andt/, = t,m forallm e L. Then
T, s{m: om ™'} Fs@g : {m: t,m) MPOM@))
which is a subtype ofm : 7,m) M-} = {m: ¢}, ™t }}. Thus, by subsumption,
T, s{m: o ™'} Fs@g : {m: 7, ™)
By Lemma C.8, therefore,
r,s{m: o ™'} -[srs@g]e: 1]

and so we have all the pieces to construct the typing proof for the reduced term.

20 RIECKE AND STONE
5. The rule used is

(objs{me en : tm ™' },)<+i(s)=e: T~
objs{msen : tm ™' ' [s@g'l e Tl

whereg’ = ¢[l+1']. The typing proof of the hypothesis must include the following judgments:

Viel: Is{m:zm ™' [te 1
Range(y) < |

T FAm: ym MPM@) < m: ¢, ™t
r,sm:z, ™te: ¢

I4L

whereo = {m: ¢/, ™t }. Again Lemma C.7 gives us € Dom(g) andt}, = t,m) forallm € L. By
Lemma C.5 we can show that

Viel: D,sim:ta ™', 0 :t)Fe 1

In a similar way, the conclusion then follows the same outline as the previous case, inifiace ofy.

This completes the case analysis and hence the praof.

Lemma C.11 (Canonical Forms).If Fv : (z — t’) thenv is a lambda expression. ¥ v : {m :
™' |} thenw is an object value.

THeEOREM C.12 (Progress). If e : t then either e is a value or else-e€'.

APPENDIX D: CORRECTNESS OF SECOND-ORDER SYSTEM

The proof requires a number of simple lemmas. We use the notatifam the right-hand side of a
judgement in the system.

Lemva D.12 (Well-Formedness).If I', IV + ¢ thenI F ©.

Proof. By Rules 20 and 21, we can drop the last entry in a well-formed context and still ha
well-formed context. By a simple inductive argument, we can therefore drop an arbitrary end pe
of a context and retain well-formednesss

Lemva D.13. If ' - J thenT F o.

Proof. By induction on the proof of the premisen

Lemma D.14. If I, IV + o thenDom(I") N Dom(I™’) = .

Proof. By induction on the proofof’, " o¢. =

Lemma D.15 (Transitivity). fI'~7 <t andl"' 1’ < t”thenl' -t < 7”.

Proof. By cases on the final rules of the two derivations.

e 27& 27. By transitivity of set inclusion.
e 28&* or *&28. Trivial.

e 29&*. Thenl' -« < 7,wherel' =TI, a<o, ' andl' F o < t’. By the inductive hypothesis,
'to <xt”.Thus, by Rule 29T -+ o < 7”.

e 30&30, 31&31. These cases follow directly from the inductive hypothesis.

This completes the case analysis and hence the praof.

PRIVACY VIA SUBSUMPTION 21

Lemma D.16 (Subtyping Inversion).
i. fTH(g—>n)X(n—t)thenl -1 < 7.
i. IfCk+ ‘L’i=> T2 < 'L’1=>‘L'2’ thenI' - 7 < ‘L’i/.

Proof. Follows from the fact that the proofs of the hypotheses must end with Rule 28 or Rule
and with Rule 28 or Rule 31, respectivelym

Lemma D.17 (Context Weakening).If I, I + 7 andI, I/, T I o then[', I/, T I 7.

Proof. By induction on proof of first premise, and cases on the last rule used. We give a
representative cases and leave the others to the reader.

e 29.Thenl, '+« < t,wherel', ' = I';,a<xt’, T andl’, ' I 7’ < 7. By the inductive
hypothesisI', I, T'” - ' < . Note also thal’, I'", " = I'}, a<7’, I';. Thus, by Rule 29,

L I"rFa=<rzt

as desired.

e 34. Thenl, I'"Fx : (T, I'")(X), wherel', T F ¢. By Lemma D.14, we hav®om(I"") N
(Dom(I") U Dom(I'")) = @. Thereforex ¢ Dom(I""), so [, I'")(x) = ([, I/, I'”)(x). The conclusion
follows from the second premise.

e 35. Bya-conversion, we may assurrez Dom(I™’). The conclusion follows from the inductive
hypothesis.

This completes the case analysis and hence the praof.
Lemma D.18 (Bound Weakening).If 'y, B <1, 2 Jandl'y - 11 X rpthenly, B <1y, 2 H J.

Proof. By induction on proof of first premise, and cases on the last rule used. The only difficult
is when the last rule used is Rule 29; we give this case and leave the others to the reader. We kn
', Bt IkFa=xt,wherel', <1, o =T, a<t,I"andl', B <15, ', - v/ < 1. There are
two cases:

e B =«a.Thent, = t’. By Context Weakening applied to the second hypothesis we have
ML=t IokFnn<n="1.
By the inductive hypothesis,
M, B=<t, okt <1
so by Transitivity'1, 8 <11, 2 - 71 < 7. Thus, by Rule 29,
', B=t,IFa=<rt

as desired.
e S # «. Then the bindingd < t’) appears in either; or I',. By the inductive hypothesis,

M, B=xn, T2kt <1
and so by Rule 29,
M, Bxn,IkFa=xrt

as desired.

This completes the case analysis and hence the praof.

22 RIECKE AND STONE

Lemvwa D.19 (Covariant Substitution).If « appears covariantly irr andI'" - o < ¢/, thenl"
[a—>o]lt X [a—0']T.

Proof. We prove the statement above and the following statement

If @ appears contravariantly mandl' - o < o/, thenl' - [e 0]t < [~ o] 7.
The proof goes by simultaneous inductionman

e To see the first statement, df does not appear free in then the conclusion follows from
Rule 28. Ift = « then the conclusion is exactly the second assumption. Otherwise(t; — 1)
or t; = 1, wherea appears contravariantly iy and covariantly inr,. In either case the inductive
hypothesis gives UB - [a +— ¢'] 11 X [a > o] 1y andT + [@ +— o] 12 < [— o] 12; the conclusion
follows by rule 30 or 31 respectively.

e To see the second statementyifloes not appear free in then the conclusion follows from
Rule 28. Otherwise = (11 — 12) Oof 11 = 7, Wherex appears covariantly in and contravariantly im,.
In either case the inductive hypothesis giveg'us [a+— o] 11 < [a > o]ty andl’ F [a > o'] 10 <
[a — o] 12; the conclusion follows by rule 30 or 31 respectively.

This completes the proof.m

Lemma D.20 (Type Substitution). If T, 8 <7/, I+ J,andT - 7 <t andg ¢ FV(r) U FV(z')
thenl, [B—>t]["F [~ 1]J.

Proof. By induction on proof of first premise, and cases on the rule used for the conclusion
give two of the more difficult cases and leave the others to the reader.

e 21. There are two cases.
-I,B=xt,I,axt" F ¢, wherel', <7/, TV + o anda ¢ Dom(T', 8 <7/, T"'). By the
inductive hypothesig;, [+ t] T F ¢. Thus, sincee ¢ Dom(T", [8 +— 7] '), itfollows by Rule 21 that
OBt T, ax[B>1]t" Fo

as desired.
- I,8=<7, "+ ¢o,wherel' - ¢ anda ¢ Dom(I") andB = «. ThenI'” = e. It follows that
[B>1]T" =T =6, s0

T[] o

as desired.

e 20.Thenl', <7/, I"Fa <1, where (', <7, 1) = (,a X1y,) andl’, B <7/, " I
71 < Tp. By the inductive hypothesis,

=tV F[B—=]t < [B— 1] 10

There are two cases. f = «, thent’ = t;. By Context Weakening, [+~ t]T" Ft < 7.
Sinceg ¢ FV(r) U FV(t'), we know that B +— 1] 71 = 11. Thus,

Lt [Bt]lax[B>1]n
and so by Transitivity,
L[t [Btlax[f1]n
as desired.
For the other case, wheh # «, note that B — t] ¢ = «. Also, the binding ¢ < t;) appears

eitherin" orin I, If it appears i, theng ¢ FV(z1). Thus, B — t] 11 = 11, S0 therefore

LB T F 1 < [B> 1] 10,

PRIVACY VIA SUBSUMPTION 23
Thus, by Rule 29, it follows that
C[B—=tITF[B—t]la < [B+ 1] 10

If, on the other hand, the binding < 7;) appears il”, then the bindingd < [8 +— t] 1) appears in
[B+ t] . Thus, by Rule 29, it follows that

OBt [t]la <[1] T2

as desired.
This completes the case analysis and hence the praof.
Lemma D.21 (Value Substitution). If ', x:z, V=€ : t’andl, [V +~e: tthenl, I~ [x— €] € : 7'.

Proof. By induction on proof of first premise, and cases on the rule used for the conclusion
give a few representative cases and leave the others to the reader.

e 34, Thenl',x:t, Iy : ¢/, wherel', x:t, I + ¢ and (", x:t, ['')(y) = t’. There are two
cases. Ify # x, then a bindingy:t’) appears i, I''. Thus, since—ely =y

OLIVF[x—>€y:T.
If y =X, thent = 7" and x> €] y = e. Thus, by the second hypothesis,
OLI'E[x—¢ey:t

as desired.

e 35.Them, x:t, " Ay:1y.€1 : (11 — 12),Wherel', X:t, IV, y:ity €1 : pandy ¢ dom(T, X:t,
I'). Thus, we know that # y. By the inductive hypothesis,

LI,y [x—e€le 1
so by Rule 35,
[, T - [x— €]l (Ay:t1.€1) : (11— T2)

as desired.
This completes the case analysis and hence the praof.

Lemma D.22 (Decomposition and Replacement)f I' - E[e] : T then e : ¢’ for some type’'.
Furthermore, if-¢€ : 7’ thent+ E[€] : 7.

Proof. By induction on the proof of HE[€] : 7. =
Treorem D.23 (Subject Reduction).If T'-e: r and e~ € thenl' € : 7.

Proof. By cases depending on the operational rule used. Because of the transitivity and sym
of subtyping, without loss of generality we may assume that in the pro®dfteé : z, uses of the
Subsumption Rule 32 alternate with uses of the remaining typing rules, and that the proof does r
with a use of subsumption. By Lemma D.22 we need only consider the local reduction steps.

1. The lastrule usedis
e= (AX:10.€61) v~ [X > v] € = €.

This case is unchanged from the proof of Theorem C.10.

24 RIECKE AND STONE

2. Therule usedis

(obj(a, B, s, d).{Mr € : Tm ™' },) @¢’
~ obj(e, B, s, d).{mwen : tm ™! oy

The proof of the first assumption must end in a use of rule 38. By inspection, the proof must in
the Object Rule 40 and the Dictionary Rule 37 and subsumption, so there must exist derivations

I'obj(a, B, s, d).{moen : m ™'}, 1 A
IB=<xB,axT,d:B=a,sBFen:tm (Ymel)
r-A=<r1t’

ke :t"=1"”

"=t <1=1

where

A = Obja.{l : 7,q) '€P°M@)
B = Obja.{m: tm ™'}

By Subtyping Inversion, we know that - ¢’ < t”, and hence” = Obja.{l : 7,q) ']} where
J € Dom(gp). By the Dictionary Rule 37, we know that

t” = Obja.{n : tyumy "<
for someK C Dom(¢’). SinceDom(g’) = Dom(y o ¢'), by the Object Rule 40 and Subsumption,
I'Fobj(a, B, S, d).dmM>en : tm ™' Jyoy : T
By Subtyping Inversionl” + t” < t, so by Subsumption,

' obj(e, B, s, d).{m>en : T ™ Bpog : T

as desired.
3. Therule usedis

(obj(e, B, s, d).{Me €n : Tm ™' P,)-o !
~[d ¢][s selfl [a— Al [~ Bl e,

where
A=0bja.fl: Ty(l) IeDom(g:)'}
B = Obja.{m: 7, ™'}
Self = Obj(O{, ﬂ9 S, d){|m> €m : Tm mel |}1d(|)
By hypothesis,

T+ (obj(a, B, s, d).{Me€m = tm ™').l : 7.

The derivation for the first premise must end with a use of rule 39. By inspection of the rule, there
derivations for

't obj(a, B, s, d).{m>en: m ™'}, @ 74
¢ 1= 0bjafl: 5}

PRIVACY VIA SUBSUMPTION 25
wheret = [— 1] 75. Hencel' - A < 77 and there is a derivation
'+ obj(e, 8, s, d).{me m ey ™'}, A
whose last rule is the Object Rule 40. Thus, fomalE |, there is a derivation
IB=<xB,axT,d:B=a,SBF€n: T

Now, T ¢ : 7y = Obja.{l : 5l implies thatr,,) = 15. Lett” = [a+— A][B — B] 1, (). By the
Type Substitution Lemma,

Id:B= A sBr[ar— Al[B Bleyy) : t”

Note that by the Object Rule 40, self : B, and by the Dictionary Rule 3T, ¢ : B= A. Thus, by
the Substitution Lemma,

I'H[d— ¢][s self][a— Al[B Bleywuy : t”
Sincex occurs only covariantly imy) andI’ = A < 77, andg does not occur ity (y),
T la Al[B = Bl) = o 71l Toay
Putting this together with the fact that= [« — 77] 7, (1)), We obtain
FH[de>] [s> self] [Al Bl ey : T

as desired.
4. The rule used is the override rule, i.e.,

0y N, B,s,d, d)=e~0
where
0 = obj(a, B, s, d).dm> ey : ™' [},
0 = obj(e, B, s, d)AM> & : ™" WD) o(p'(n) > [d'>gle:],
' = 1,(¢'(n))

By inspection the derivation of the first premise must end with the Override Rule 41, and involve
of the Object Rule 40. Thus, there must be derivations

I'obj(a, B, s, d).{meen: m ™'}, 1 A
IBxB,axT,df=a,sBFen:tm (Ymel)
rA<r

I'k¢' :7=0bja.{n: 7'}

LT, axT,d:=1,df=asBFe: 1

where

A = Obja.{l : 7,q) '<Pom@)}
B = Obja.{m: tm, ™'}

26 RIECKE AND STONE
By bound weakening,
ILB=<B,axT,dB=>r,df=asple: T
Note thatl", 8 < B+ B= A < 8= 1, so by Subsumption,
I'B=<xBlre:=r1
Thus, by Substitution,
ILB<B,a<xT,d=a sp-[d—g¢le: 1

Therefore, the desired conclusion follows from the Object Rule 40.
5. Theruleusedis

o<«+n(a, B,s,d,d)=e: v’
~0bj(e, B, s, d).fm>en: v ™!,
ne[dee¢le:thy

wheren’ = Fresh(l) and

0= Obj(aa ,3, S, d){]m|> €n Tm mel |}zp

¢ =g¢[n—n]

The derivation must end with a use of the Extension Rule 42, from which it follows that there must
derivations

' +obj(, B, s, d) M Tm : € ™', 1 A
LxB,axT,d:B=a,sFen:tm(Vmel)
r-A=<rt
CLAxT,axT,d:=> A, d=a,se: 1

where

A = Obja.{l : 7,q) '€P°M@)

leJ<Dom(yp) |}

T = Ob](:({“)
A = Obja.{l : Ty(l) IeDom(w)’ n:t'p
B = Obja.{m: t, ™'}

Let B’ = Obja.{m: ,, ™', n’: 7’}}. By Bound Weakening,
ILB=<xB,axT,d:B=a,s.BFen:mm
and
[LB=<xB,axT,d8=>A,df=a spre: 7
Note thatl’, 8 < B'+ B’ = A’ < 8 = A/, so by Subsumption,

LB<BF¢ : B=A

PRIVACY VIA SUBSUMPTION 27
Thus by substitution,
LB=xB,a<xT,df=aspH[d— ¢le: 7

Therefore, the desired conclusion follows from the Object Rule 40.

This completes the case analysis and hence the praof.

Lemma D.24 (Canonical Forms).If = v : (t — ') thenv is a lambda expression. If v :
Obja.{|m: ™' |} thenwv is an object. If- v : T = 7’ thenv is a dictionary.

Proof. Direct from the typing rule for terms, given that subtyping in an empty context preserve:
“shape” of types. =

TrHeorem D.25 (Progress). If - e: t then either e is a value or else-e€'.

Proof. The proof follows from Lemma D.24 and a comparison of expression forms with evalua
contexts. m

ACKNOWLEDGMENTS

We thank Kathleen Fisher for several helpful conversations, Martin Odersky for pointing out the connections with Eiffe
Viviana Bono, Perry Cheng, Gary Lindstrom, Joe Vanderwaart, and the anonymous referees for comments on drafts.

REFERENCES

1. Abadi, M., and Cardelli, L. (1996), “A Theory of Objects,” Springer-Verlag, New York/Berlin.

2. Bono, V., Bugliesi, M., Dezani, M., and Liquori, L. (1997), Subtyping constraints for incomplete objetEHAP,” Lecture
Notes in Computer Science, Springer-Verlag, New York/Berlin.

3. Bono, V., Bugliesi, M., and Liquori, L. (1996), A lambda calculus of incomplete objéct®roceedings, Mathematical
Foundations of Computer Science,” Lecture Notes in Computer Science, Vol. 1113, pp. 218-229. Springer-Verlag
York/Berlin.

4. Bono, V., and Liquori, L. (1995), A subtyping for the Fisher—Honsell-Mitchell calculus of obje¢Broceedings, Computer
Science Logic 1994, Lecture Notes in Computer Science, Vol. 933, pp. 1630, Springer-Verlag, New York/Berlin.

5. Bracha, G., and Lindstrom, G. (1992), Modularity meets inheritanc®roceedings of the IEEE Computer Society Inter
national Conference on Computer Languages,” pp. 282-290, IEEE Computer Society, Washington, D.C.

6. Bruce, K. B. (1994), A paradigmatic object-oriented language: Design, static typing, and senjahticgtional Program-
ming4(2), 127-206.

7. Bruce, K. B., Cardelli, L., Castagna, G., The Hopkins Object Group, Leavens, G., and Pierce, B. C. (1995), On
methodsTheory and Practice of Object Systef(8), 217-238.

8. Cardelli, L., and Wegner, P. (1985), On understanding types, data abstraction and parametric polymGquhisating
Surveysl7(4), 471-522.

9. Drossopoulou, S., Wragg, D., and Eisenbach, S. (1998), Whiava binary compatibility? —\Version 2, available fron
http://www-dse.doc.ic.ac.uk in the file projects/slurp/papers.html#bchuge.

10. Felleisen, M. (1988), The theory and practice of first-class pronmpt€onference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages,” pp. 180-190, ACM.

11. Fisher, K. (1996), “Type Systems for Object-Oriented Programming Languages,” Ph.D. thesis, Department of Co
Science, Stanford University, 1996.

12. Fisher, K., Honsell, F., and Mitchell, J. C. (1994), A lambda calculus of objects and method specialtiin,). Comput.
(formerly BIT), 1, 3-37 [1993, a preliminary version appeared in “Proc. IEEE Symposium on Logic in Computer Sciel
pp. 26-38, IEEE].

13. Fisher, K., and Mitchell, J. C. (1995), A delegation-based object calculus with subtypifgndamentals of Computation
Theory (FCT'95),” Lecture Notes in Computer Science, Vol. 965, pp. 42—61, Springer-Verlag, New York/Berlin.

14. Fisher, K., and Mitchell, J. C. (1996), The development of type systems for object-oriented langhagegand Practice
of Object Systemg, 189-220 [1994, a preliminary version appeared in “Proc. Theoretical Aspects of Computer Softw
Lecture Notes in Computer Science, Vol. 789, pp. 844-885].

15. Fisher, K., and Mitchell, J. C. (1997), On the relationship between classes, objects, and data ab#traetiocgeedings
of the International Summer School on Mathematics of Program Construction, Marktoberdorf, Germany,” Lecture Nc
Computer Science. Springer-Verlag, New York/Berlin to appear [revised version to appear in “Theory and Practice of !
Systems”].

16. Fisher, K., and Reppy, S. H.,ddv objects and classes, unpublished manuscript, 1998.

28

17.
18.
19.
20.
21.
22.
23.
24.

25.

26.
27.

28.

RIECKE AND STONE

Jategaonkar, L., and Mitchell, J. C. (1993), Type inference with extended pattern matching and s&biygasienta
Informaticae19, 127-166 [1988, a preliminary version appeared in “Proceedings of the ACM Symposium on Lisg
Functional Programming”].

Lakos, J. (1996), “Large-Scale C++ Software Design,” Addison—Wesley, Reading, MA, 1996.

Liquori, L. (1996), An extended theory of primitive objects: First and second order systems, Tech. Rep. CS-23-96, [
mento di Informatica, Universatdi Torino.

Liquori, L. (1997), An extended theory of primitive objects: First order sysitesuoka, editors, “Proceedings of ECOOP-97
International European Conference on Object Oriented Programming” (M. Aksit and S. Matsuoka, Eds.), Lecture N
Computer Science, Vol. 1241, Springer-Verlag, New York/Berlin.

Meyer, B. (1992), “Eiffel: The Language,” Prentice—Hall, Englewood Cliffs, NJ.

Mitchell, J. C. (1990), Toward a typed foundation for method specialization and inheritariCenference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages,” pp. 109-124. ACM.

Mitchell, J. C., and Plotkin, G. D. (1988), Abstract types have existential A@b| Trans. Programming Languages anc
System4((3), 470-502.

Plotkin, G. D. (1981), A structural approach to operational semantics, Tech. Rep. DAIMI FN-19, Computer Science
Aarhus Univ., Denmark.

Rémy, D. (1994), Type inference for records in a natural extension of iMLTheoretical Aspects of Object-Oriented
Programming” (C. A. Gunter and J. C. Mitchell, Eds.), pp. 67-95, MIT Press, Cambridge, MA [1989, an earlier ve
appearedn “Proceedings of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,” ACM
Rémy, D., and Vouillon, J. (1997), Objective ML: A simple object-oriented extension ofiMLProceedings of the 24th
ACM Symposium on Principles of Programming Languages,” pp. 40-53, ACM Press.

Riecke, J. G., and Stone, C. A. (1998), Privacy via subsumptidinformal Workshop Record of the Fifth Workshop on
Foundations of Object-Oriented Languages.”

Wand, M. (1987), Complete type inference for simple objéct®roceedings, Symposium on Logic in Computer Science
pp. 37-44, IEEE.

	1. INTRODUCTION
	2. FIRST-ORDER EXTENSIBLE OBJECTS
	TABLE 1
	TABLE 2

	3. SECOND-ORDER EXTENSIBLE OBJECTS
	TABLE 3
	TABLE 4

	4. CONCLUSIONS
	APPENDIX A: STATIC SEMANTICS OF FIRST-ORDER SYSTEM
	APPENDIX B: STATIC SEMANTICS OF SECOND-ORDER SYSTEM
	APPENDIX C: CORRECTNESS OF FIRST-ORDER SYSTEM
	APPENDIX D: CORRECTNESS OF SECOND-ORDER SYSTEM
	ACKNOWLEDGMENTS
	REFERENCES

