
Information and Computation172, 2–28 (2002)
doi:10.1006/inco.2000.2925, available online at http://www.idealibrary.com on

Privacy via Subsumption

Jon G. Riecke

Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974

and

Christopher A. Stone1

School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213

Received June 26, 1998

We describe an object calculus allowing object extension and structural subtyping. Each object has
a “dictionary” to mediate the connection between names and components. This extra indirection yields
the first object calculus combining both object extension and full width subtyping in a type-safe manner.
If class inheritance is modeled with object extension, private fields and methods can be achieved directly
by scoping restrictions: private fields or methods are those hidden by subsumption. We prove that the
type system is sound, discuss a variant allowing covariant self types, and give some examples of the
expressiveness of the calculus.C© 2002 Elsevier Science

1. INTRODUCTION

One of the most important principles of software engineering is information hiding: the ability to
build data or procedural abstractions in order to make programs more readable and maintainable. Object-
oriented programming languages provide a number of primitives for information hiding. For example,
subsumption can restrict a client of an object to see only the relevant parts: a client expecting fewer
methods than an object actually contains need not be aware of (and in most cases cannot invoke) the
unknown methods and fields. Class-based languages like C++ and Java have another mechanism for
information hiding, namely private annotations on methods and fields. Private methods and fields may
be accessed only by other methods defined within the same class.

These two forms of information hiding—subtyping and privacy—appear to be related. In this paper
we give an elementary, unified account of both features, using an object calculus [1, 22] to condense
the concepts as much as possible. The primitives of our calculus also include object extension, method
override, and arbitrary width subtyping and subsumption (i.e., objects with more methods can always
be used in contexts expecting fewer methods). We also include an operation for renaming methods,
operations that can also be found in the class system of Eiffel [21]. We prove that our type systems
prevent run-time type errors.

The main novelty in the calculus is a separation between the components of objects and the names by
which they are accessed. Fields and methods are given unique but otherwise arbitrary internal labels; a
separate “dictionary” maps external names to the appropriate internal label. (Common implementations
of object-oriented languages already use a very similar idea: the internal names are simply offsets within
the object or method table, and the mapping from names to offsets is kept separately.) A component
whose external name has been lost (either through an explicit operation or implicitly by subsumption)
cannot be overridden; other methods refer to this method by its internal name and so are unaffected by
the addition of new methods, whatever their external name.

The distinction between internal and external names allows us to avoid a well-known conflict between
object extension and width subtyping. For instance, suppose we define an objectp by the expression

obj s.{|x � 3 : Int, getx� s.x : Int|}.
1The second author was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox Project:

Advanced Languages for Systems Software,” ARPA Order No. C533, issued by ESC/ENS under Contract F19628-95-C-0050.

2

0890-5401/02 $35.00
C© 2002 Elsevier Science
All rights reserved.

PRIVACY VIA SUBSUMPTION 3

The variables stands for “self,” and is dynamically bound to the object upon method invocation. The
object p contains two methods,x which returns 3, andgetxwhich returns the value of thex method.
The type ofp is {|x : Int, getx: Int|}. If we allow width subtyping,p can also have the less precise
type {|getx: Int|}. At this type, there is no reason to prevent the addition of a new methodx returning
the valueTrue of typeBool. In the dynamic semantics of [12, 20] where names are closely connected
with components and an object can have at most onex component at a time, this would override the
earlierx method and causegetxto thereafter return the valueTrue despite statically having typeInt.
Width subtyping then permits a program that treats a boolean value as an integer—a dynamic type
error.

To avoid such errors, the type systems of [13, 20] do not allow full width subtyping: either methods
may not be hidden at all, or components can be made “inaccessible”, i.e., they are visible and overridable
but cannot be invoked. These mechanisms do prevent two methods with the same name being added
to the same object, but are unsatisfactory from a software-engineering standpoint: they require the
implementor to expose implementation details in interfaces, e.g., names and types of private fields and
methods. Moreover, when we use these calculi as a basis for classes, additions or changes to the private
methods of a base class may require subclasses to be retypechecked and possibly recompiled. In C++,
this forced recompilation is called the “fragile base class” problem [18]. In the worst case, derived
classes become ill-formed and large pieces of code must be rewritten.

Our solution is simple: instead of weakening subtyping, we change the dynamic semantics. For
instance, when the above example has been translated into our system, thegetxmethod refers tox via
an internal name so thatgetxcontinues to return 3, even when the newx method is added. Because
the semantics of object extension gives the new method a new internal name, thegetxmethod remains
unaffected. This forgetting of a method also allows us to give a meaning to private methods, leading us
to adopt the slogan of “privacy via subsumption” for the calculus. There is another benefit to this change
in dynamic semantics: when using our calculus as a basis for class-based languages, private methods
can be changed in arbitrary ways without requiring subclasses to be retypechecked or recompiled. In
other words, we can avoid the fragile base class problem.

2. FIRST-ORDER EXTENSIBLE OBJECTS

We begin with a first-order calculus in the sense of [1], i.e., the calculus without a notion of self type.
For simplicity, we limit the calculus to a simple delegation-based system; the ability to extend objects
allows an elegant encoding of classes. Variants of the calculus have been carefully studied before (e.g.,
[11–14, 20]). To keep the setting simple, all objects are immutable and objects have no fields; fields can
be encoded as methods which ignore their self argument.

TABLE 1

Syntax of the First-Order System

τ ::= b base type
| (τ→ τ ′) function type
| {|l : τl l∈I |} object type

0 ::= • typing contexts
| 0, x:τ

v ::= c constant
| x, y, s, o, . . . variables
| (λx:τ.e) abstraction
| obj s.{|l � el : τl l∈I |}ϕ object

e ::= v value
| (e e′) function application
| e.l method invocation
| e@ϕ object renaming
| e←+l(s)= e′ : τ object extension
| e← l(s)= e′ method override

4 RIECKE AND STONE

2.1. Syntax and Static Semantics

The language, whose syntax appears in Table 1, derives largely from the object calculi of Abadi
and Cardelli [1], Fisher, Honsell, and Mitchell [12], and Liquori [20]. We include the standard lambda
calculus primitives to avoid unnatural encodings [1]. The types of the language include base types,
function types, and object types, where object types draw their method names from an infinite set of
labels. Object types only mention the names by which methods are accessed (which must be distinct)
and the corresponding return types.

A dictionaryϕ is a finite partial function from labels to labels. Each object contains a dictionary
mapping external names to internal names. For instance, the object

obj s.{|m� 3 : Int, n � 4 : Int|}[x 7→m]

has the dictionary [x 7→m]; whenx is invoked, the actual code invoked is the method internally labeled
by m. Note that the code corresponding to the internal labeln has no external name, and so cannot be
invoked. We useϕ(l) to denote the application of a dictionary to labell , (ϕ ◦ ϕ′) to denote the ordinary
functional composition of dictionaries,ϕ[l 7→ n] to denote the partial function that behaves exactly as
ϕ except for mappingl to n, andid (S) to denote the identity function on a set of labelsS.

There are three primitive operations on objects besides method invocation. The operatione@ϕ′, alters
the existing dictionary on an object: it evaluateseto an object and composesϕ′with its internal dictionary.
In addition to renaming components, this operation can contract the number of methods visible in the
object when the range ofϕ′ is smaller than the domain of the dictionary on the object. For example,

obj s.{|l1 � 3 : Int, l2 � s.l1 : Int|}ϕ@[getx 7→ getx]

whereϕ = [x 7→ l1, getx7→ l2], evaluates to an object whose only visible method isgetxwith dictionary
[getx7→ l2]. Similarly, one can increase the number of visible fields by mapping several external labels
to the same internal label. (In this case, if one of these methods is overridden multiple methods will
appear to change.) The other two operations add or change the methods of objects. An existing method
can be replaced within an object by the operatione0← l (s) = e. The operatione0←+l (s)= e : τ adds
a new methodl to the object denoted bye0. The method expects a self parameters, and when invoked
evaluates the bodyeof typeτ . Because we do not have depth subtyping (it is unsound in the presence of
the override operation), the new method in the extension operation is given an explicit type annotation
so that all expressions will have most-specific types. Override does not change the type of an object, so
no annotation is needed there.

We identify object expressions or types differing only in the order of their components, and expressions
up to renaming of bound variables. Object expressions as well as lambda expressions bind variables.
For instance, in objs.{|l � el : τl l∈I |}ϕ , s is a bound variable whose scope includes all the method bodies.
Similarly,s is bound in the new method bodye′ in the extension and override operations shown in Table 1.

The static semantics of the language is given in Appendix A. The novel aspects are the subsumption
rule for na¨ıve width subtyping and the treatment of dictionaries. The rules useFV(0) to denote the
variables occurring in the context0.

2.2. Dynamic Semantics

To give dynamic semantics to the language, we use Felleisen’s “evaluation context” formulation [10]
of Plotkin’s SOS [24]. The syntax of evaluation contexts (a subset of those expressions containing a
single hole, denoted•) is given by the grammar

E ::= • | (E e) | (v E)
| E.l
| E@ϕ
| E← l (s)= e′

| E←+l (s)= e′ : τ ′

We write E[e] to denote the evaluation contextE with the hole replaced bye. The local reduction
relation; is shown in Table 2. These rules use a syntactic substitution operation, written [s 7→ e] e′,

PRIVACY VIA SUBSUMPTION 5

TABLE 2

Local Reduction Steps of First-Order System

(λx:τ.e) v ; [x 7→ v] e

(obj s.{|m� em : τm m∈I |}ϕ)@ϕ′ ; obj s.{|m� em : τm m∈I |}ϕ◦ϕ′
(obj s.{|m� em : τm m∈I |}ϕ).l ; [s 7→ obj s.{|m� em : τm m∈I |}id(I)] eϕ(l)

(obj s.{|m� em : τm m∈I |}ϕ)← l(s)= e ; obj s.{|m� em : τm m∈I \ϕ(l), ϕ(l) � [s 7→ s@ϕ] e : τϕ(l)|}ϕ
(obj s.{|m� em : τm m∈I |}ϕ)←+l(s)= e : τ ; obj s.{|m� em : τm m∈I , l ′� [s 7→ s@ϕ′] e : τ |}ϕ′

ϕ′ = ϕ[l 7→l ′] wherel ′ = Fresh(I)

which denotes the capture-free substitution ofe for s in e′. The functionFresh, given a set of labels,
deterministically chooses a new label not in that set.

The most interesting operational rules are the rules for method invocation, override, and extension.
During method invocation, the dictionary is stripped and replaced by an identity dictionary. During
method extension and override, the new method body is modified with the object’s current dictionary;
upon invocation it will restore this dictionary to the stripped self argument. The combination of these
two features gives method bodies an unchanging view of the object, even though arbitrary changes to
the object’s dictionary may happen later through other renamings or extensions.

The relation in Table 2 is extended to a one-step evaluation relation on programs:e; e′ iff there are
termse1, e2 such thate= E[e1], e1 ; e2, andE[e2] = e′. We can prove

PROPOSITION1. (Determinacy).The relation; is a partial function.

We use;
∗ to denote the reflexive, transitive closure of;.

The static semantics and dynamic semantics also agree. The key results are:

1. [Subject Reduction] If0 ` e : σ ande; e′ then0 ` e′ : σ .

2. [Progress] If` e : τ then eithere is a value or elsee; e′.

The proofs for the first-order system appear in Appendix C.

2.3. Examples

The first example shows the behavior of the operational semantics. Letϕ = [F 7→l1,M 7→l2] and
define the explicit subtyping coerciono:>τ as shorthand for the term ((λx:τ.x) o). Consider the terms

o := (obj s · {||}[])
o0 := (o←+F(s)= 5 : Int)←+M(s)= (s.F+1) : Int

o0 : {|F : Int,M : Int|}
o0 ;

∗ obj s.{|l1 � 5 : Int, l2 � (s@ϕ).F+1 : Int|}ϕ
o1 := o0← F(s)= 7

o1 : {|F : Int,M : Int|}
o1 ;

∗ obj s.{|l1 � 7 : Int, l2 � (s@ϕ).F+1 : Int|}ϕ
o2 := o1:>{|M : Int|}

o2 : {|M : Int|}
o2 ;

∗ obj s.{|l1 � 7 : Int, l2 � (s@ϕ).F+1 : Int|}ϕ
o3 := o2←+F(s)=True : Bool

o3 : {|F : Bool,M : Int|}
o3 ;

∗ obj s.{|l1 � 7 : Int, l2 � (s@ϕ).F+1 : Int,
l3 � True : Bool|}[F 7→l3,M 7→l2]

6 RIECKE AND STONE

Hereo0 has methodsF and M . When a method is invoked, the self parameters is replaced with an
object with an identity dictionary. Thus, it is easy to see thato0.F evaluates to 5 ando0.M to 6. In
o1 we overrideF with a method that returns 7;o1.F evaluates to 7 ando1.M to 8. To obtaino2, we
use subsumption ono to make methodF private, leaving only one visible methodM . Theno2.M still
evaluates to 8. The type system would reject any attempt tooverride F in o2, sinceo2 has no visibleF
method. It is legal, however, toextend o2 to o3 by adding a new method calledF (which here happens to
return a boolean value). The previousF method is still present in the underlying object, and evaluating
o3.M still gives 8, whileo3.F returnsTrue.

As this example shows, extending an object never changes the behavior of pre-existing methods.
When a method is added to an object, we arrange for its body to invoke methods in self using internal
labels. Its behavior does not change unless one of these is overridden, which cannot occur unless there
is a corresponding external label.

This example also raises another point: object extension must be used carefully. One may always use
extension in place of method override, but the consequences are different. For instance, consider the
term

o4 := o0←+F(s)= 7 : Int

which resembleso1 except that we use extension rather than override. The term is typable because the
objecto is implicitly forced (via subsumption) to have an object type with only one methodM . As such,
o4.M returns 6 whileo1.M returns 8. The programmer must be careful to determine which of these
behaviors is correct and use the appropriate operation.

For a similar example, define the functiongetf by

getf := λp:({|F : Int|}).(p.F)

Then define the objects

p1 := obj s.{||}[]
←+F (s)= 4 : Int
←+M1(s)= s.F : Int
←+M2(s)= getf(s) : Int

p2 := p1

←+F (s)= 5 : Int
←+N1(s)= s.F : Int
←+N2(s)= getf(s) : Int

Then

p1 : {|F : Int,M1 : Int,M2 : Int|}
p2 : {|F : Int,M1 : Int,M2 : Int, N1 : Int, N2 : Int|}

p1.F ;
∗ 4 p2.F ;

∗ 5
p1.M1 ;

∗ 4 p2.M1 ;
∗ 4

p1.M2 ;
∗ 4 p2.M2 ;

∗ 4
p2.N1 ;

∗ 5
p2.N2 ;

∗ 5

Although p2.M1 and p2.N1 may appear to have the same code, they evaluate to different values
because—just as in the preceding series of examples—these two methods refer to different object
components by the nameF . Slightly less obviously, the same effect occurs inp2.M2 and p2.N2;
although both methods believe that the self object has a methodF returning an integer, they disagree
on which component within the self object is thatF method; dynamically the two methods will passs
to thegetf function with different dictionaries attached, which causes thegetfcalls to return different
results. In the first-order system, this dictionary manipulation is hidden in the dynamic semantics. In the

PRIVACY VIA SUBSUMPTION 7

second-order system of the next section, we are forced to make such manipulations explicit and hence
will revisit this example.

For yet another example, consider the term

λp:{|x : Int|}.(p←+getx(s)= s.x : Int)

This function can be given the type

({|x : Int|} → {|x : Int, getx: Int|}).

In contrast to other formalisms, this function may be applied toanyobject with anx method of type
Int, regardless of its other methods. On the other hand, there is some information loss: if we apply this
function to an object with (public) methodsx, y, andz, the result has just two public methodsx and
getx; y andz are hidden in the act of subsumption. One would need an extension such as row variables
[28] or bounded polymorphism [8] in order to avoid this behavior.

Classes can also be encoded in the system, where a class provides a way to create objects and to inherit
from the class. We encode classes as object-generating functions. This means that classes have a single
constructor function, as in Objective Caml [26]; more complex encodings with multiple constructor
functions are possible.

A very standard example of classes involves classes for “points” and “colored points.” The public
types of points and colored points are

PT := {|getx: Int|}
CPT := {|getx: Int, getc: Color|}.

The classes are defined by

pt class:= λ(x0 : Int).
(obj s.{||}[]
←+x(s) = x0 : Int
←+getx(s) = s.x : Int
) :> PT

cpt class:= λ(x0:Int). λ(c0:Color).
(pt class(x0)
←+c(s) = c0 : Color
←+getc(s) = s.c : Int) :> CPT

Note that objects created bypt classhave a fieldx which is used bygetx, but will be hidden from external
view by subsumption. Clients can invoke this class to create point objects, but by the static typing they
cannot directly access thex component. Furthermore, the functioncpt classinherits from the point
class, but the color-point class methods also cannot invoke or override thex component. We have added
a private fieldc to the class of colored points, accessible only by thegetcmethod. To typecheck and
compilecpt class, we need only know the type (Int→PT) of pt class, which does not mentionx. The
cpt classfunction could choose to add a method namedx of any type, which would not interfere with
the private fieldx inherited frompt class.

We could expand on this example to encodeprotectedcomponents (fields and methods only visible
to subclasses). In this case, a class becomes two functions, one to be invoked by subclasses and the
other to be invoked by clients. The first function generates the object and restricts it to a “protected”
interface, hiding the private components. The second function further restricts the type of the object
to expose only the public components. This “protection via subtyping” encoding has been discussed
elsewhere [1, 15].

8 RIECKE AND STONE

3. SECOND-ORDER EXTENSIBLE OBJECTS

In a calculus of immutable objects, it is natural to consider objects that can return updated copies of
themselves. For example, we might define a type of movable points, which could be defined (using a
recursive type definition) as

MPT′ := {|getx: Int,move: (Int→MPT′)|}

where themoveoperation takes an amount to offset the position of the returned point. Now suppose we
extendpt′ : MPT′ to a colored point by adding agetcmethod returning a color. The resulting object
would have type

MCPT′ := {|getx: Int,move: (Int→MPT′), getc: color|}

Unfortunately, ifcpt′ : MCPT′ thencpt′.moveis a function which still returns a value of typeMPT′; the
color is lost.

A “second-order calculus,” in the parlance of [1], can repair the problem. In a second-order calculus,
method types can refer to “the type of the object whose method is being invoked”. This type is usually
called a “self type”. When the object is extended, the self type changes correspondingly. Thus we define

MPT := Objα.{|getx: Int,move: (Int→α)|}

whereα represents the type of self, and is bound within the object type. Then the extension to add a
color would have type

MCPT := Objα.{|getx: Int,move: (Int→α), getc: color|}

Assumingpt : MPT andcpt : MCPT, the method invocationpt.movehas type [α 7→MPT] (Int→α) =
(Int→MPT), and the method invocationcpt.movehas type [α 7→MCPT] (Int→α) = (Int→MCPT)
as desired.

Because our objects carry dictionaries, there is a complication. In the above example,movereturns
an updated version of the self object, with the same type as the point being moved. The operational
semantics for method invocation, however,discardsthe dictionary attached to the object and replaces it
with the identity dictionary. Furthermore, the code formovemust work in all extensions and renamings
of the object; there is no static means of determining what the dictionary will be whenmoveis invoked.

The solution is to make dictionary manipulations much more explicit. Dictionaries become values,
and method invocation involves binding a dictionary as well as self. Using that mechanism, a method
can reattach a dictionary to the self object. To preserve typing information, the method invocation and
method override operations are parameterized by an extra dictionary. This dictionary is used as an extra
indirection in specifying the component intended by the given method name; the first-order operations
correspond to the case in which this dictionary is the identity mapping. This allows us to locate an
object’s component using a given dictionary without modifying the dictionary carried by the object.

3.1. Syntax and Static Semantics

In the second-order system, dictionaries are values and thus must have types. The typeτ1⇒ τ2 denotes
dictionaries that can be used to rename an object of typeτ1 to an object of typeτ2. We distinguish
dictionary types from function types because only dictionaries (and variables bound to dictionaries)
may appear as the extra parameter for method invocation and method override. A dictionaryϕ of type
τ1⇒ τ2 can be coerced to a function (λx:τ1.(x@ϕ)) of type (τ1→ τ2).

As with the first-order system, object values have a binding representing self. In the second-order
system, however, self has two types: the external type (usually denotedα here), and the internal type
(usually denotedβ), which is the type of self during method invocation. This idea is not new; the
typesα andβ closely resemble theMyType andSelfType constructs from TOOPL [6]. The dictionary
(usually denotedd) on an object mapsβ toα, and is instantiated to the current dictionary during method

PRIVACY VIA SUBSUMPTION 9

invocation. Thus, the syntax of an object in the second-order system is

obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ

whereα, β, s, andd are all bound within the body of the object.
In the typing rules for objects, the methods are checked under the assumptions thatd : β⇒α and

s : β. We can only guarantee that the dictionaryd is correctfor the object at the time the method is
invoked, and which may not be applicable for the current object. All we know statically aboutβ is that
it will be a subtype of the current internal representation, i.e.,β is a partially abstract type. In the typing
rules,β must not appear free in the types of the methods—onlyα may appear free—which also reflects
the concept of an “existential” or abstract type [23].

Similar modifications must be made to the method override and extension operations. These operations
are further parameterized by a dictionaryd′ which is the dictionaryat the time the method is added or
overridden. (Recall thatd represents a dictionary in place when the method is later invoked.) Since we
do not know statically the internal type of the object being altered, the new method body can assume
nothing aboutβ except that it is an object type. What we do know is an object typeτ for the object, and
that the current dictionary when attached to the object gives the object this type; thus the new method
is typechecked under the assumptiond′ : β⇒ τ .

Finally, as noted above both method invocation and method override are additionally parameterized
by a valuev, which will be a constant dictionary or a variable with a dictionary type.

Table 3 gives the syntax of the second-order system. There is one technical constraint: in object types,
the typeα of self must appear covariantly inside object types. We say thatα appears covariantly inτ if
any of the following is true:

• α is not free inτ ;

• τ is α;

• τ is (τ1→ τ2) or τ1⇒ τ2, whereα appears contravariantly inτ1 and covariantly inτ2;

Similarly,α appears contravariantly inτ if any of the following is true:

• α is not free inτ ;

• τ is (τ1→ τ2) or τ1⇒ τ2, whereα appears covariantly inτ1 and contravariantly inτ2;

We would need more restrictive width subtyping to avoid unsoundness if theα were allowed to appear

TABLE 3

Syntax of the Second-Order System

τ ::= b base type
| α type variable
| (τ→ τ ′) function type
| τ⇒ τ ′ dictionary type
| Objα.{|l : τl l∈I |} object type

0 ::= • typing contexts
| 0, x:τ
| 0, α¹τ

v ::= c constant
| x, s, d, . . . variable
| λx:τ.e function
| ϕ dictionary
| obj(α, β, s, d).{|l � el : τ ′l

l∈I |}ϕ object

e ::= v value
| e1 e2 application
| e@v object renaming
| e·v l method invocation
| e←v l(α, β, s, d, d′)= e′ method override
| e←+l(α, β, s, d, d′)= e′ : τ object extension

10 RIECKE AND STONE

non-covariantly (see [1] for examples). As such, this system does not handle binary methods (see [7]
for a thorough discussion).

The static semantics of the second-order calculus appears in Appendix B. The rules use the abbrevi-
ation

> := Objα.{||}

for the object type conveying the least information. In addition to the changes discussed above, we
must handle type variables and bounded quantification in the typing context. Typing contexts0 are
finite, partial functions from variables to types and from type variables to upper bounds. For in-
stance, the context0 = (x:τ, α¹τ ′) denotes a typing context with domainx, α, and states thatx
is assumed to have typeτ andα has an upper bound ofτ ′. The domain of a context0 is denoted
Dom(0).

3.2. Dynamic Semantics

The dynamic semantics for the second-order calculus uses evaluation contexts of the form

E ::= • | (E e) | (v E)
| E@v
| E·v l
| E←v l (α, β, s, d, d′)= e′

| E←+l (α, β, s, d, d′)= e′ : τ ′

The rules for reducing redexes appear in Table 4, and these rules are extended to a relation on expressions
via evaluation contexts in the same way as the first-order system.

As in the first-order system, the difficult rules are the rules for method invocation, override, and
extension. In method invocation, the self parameter is replaced by the object with the identity dictionary;
the parameterd is bound to the current dictionary. The typesα andβ are bound to the appropriate types:
α matches the external type of the object (with the dictionaryϕ in place), andβ matches the internal
type of the object (with the identity dictionary). In method override and extension,d′ is bound in the
body to the dictionary at the time of the operation. Like in the first-order system, this gives the body
the ability to use the object in the way it could be used at the time of override or extension. The self
parameter in the body is not changed, however.

As with the first-order system, the static and dynamic semantics agree in the following ways:

1. [Subject Reduction] If̀ e : τ ande; e′, then` e : τ .

2. [Progress] If` e : τ , thene is a value ore; e′ for some expressione′.

The proofs appear in Appendix D.

TABLE 4

Local Reduction Steps for Second-Order System

(λx:τ.e) v ; [x 7→ v] e
(obj(α, β, s, d).{|m� em : τm

m∈I |}ϕ)@ϕ′ ; obj(α, β, s, d).{|m� em : τm m∈I |}ϕ◦ϕ′
(obj(α, β, s, d).{|m� em : τm

m∈I |}ϕ)·ϕ′ l ; [d 7→ϕ] [s 7→ self] [α 7→ A] [β 7→ B] eϕ(ϕ′(l))
where A = Objα.{|l : τϕ(l)

l∈Dom(ϕ)|}
B = Objα.{|m : τm m∈I |}

self= obj(α, β, s, d).{|m� em : τm m∈I |}id(I)

(obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ)←ϕ′ l(α, β, s, d, d

′)= e

; obj(α, β, s, d).{|m� em : τm m∈I \ϕ(ϕ′(l)), ϕ(ϕ′(l)) � [d′ 7→ϕ] e : τϕ(ϕ′(l))|}ϕ
(obj(α, β, s, d).{|m� em : τm

m∈I |}ϕ)←+l(α, β, s, d, d′)= e : τ

; obj(α, β, s, d).{|m� em : τm m∈I , l ′� [d′ 7→ϕ′] e : τ |}ϕ′
whereA = Objα.{|l : τϕ(l)

l∈Dom(ϕ), l :τ |}, Fresh(I) = l ′, ϕ′ = ϕ[l 7→l ′]

PRIVACY VIA SUBSUMPTION 11

3.3. Examples

We first revisit the simple examples from Section 2.3. Again letϕ = [F 7→l1,M 7→l2]. The equivalent
terms are then

o := (obj(α, β, s, d).{||}[])
o0 := o

←+F(α, β, s, d, d′)= 5 : Int
←+M(α, β, s, d, d′)= (s.d′F+1) : Int

o1 := o0←[F 7→F] F(α, β, s, d, d′)= 7

Note thato0, o1 : Obj α.{|F : Int,M : Int|}, and

o0 ;
∗ obj(α, β, s, d).{|l1 � 5 : Int, l2 � s·ϕF + 1 : Int|}ϕ

o1 ;
∗ obj(α, β, s, d).{|l1 � 7 : Int, l2 � s·ϕF + 1 : Int|}ϕ

The objecto1 could also be defined as

o1 := o0←[G 7→F] G(α, β, s, d, d′)= 7

which would evaluate to exactly the same object value.
We next recast theget f example into the second-order system. We define the functiongetfby

get f := λp:(Objα.{|F : Int|}).(p.F)

and the objectsp1 and p2 by

p1 := obj(α, β, s, d).{||}[]
←+F(α, β, s, d, d′)= 4 : Int
←+M1(α, β, s, d, d′)= s·d′F : Int
←+M2(α, β, s, d, d′)= get f(s@d′) : Int

p2 := p1

←+F(α, β, s, d, d′)= 5 : Int
←+N1(α, β, s, d, d′)= s·d′F : Int
←+N2(α, β, s, d, d′)= get f(s@d′) : Int

Invoking methods in these two objects yields the same integer values as in the first-order example, e.g.,
p1·[F 7→F] F ;

∗ 4. In this presentation, it is more clear that the calls toget f in M2 and N2 are passed
objects with different dictionaries, asd′ is instantiated to different values in the two methods.

The expressionss·d′F in theM1 andN1 methods above could have been written in the operationally
equivalent form

(s@d′)·[F 7→F] F

so that all method invocation operations would be annotated with identity dictionaries, mimicking the
behavior of the first-order system. However, there are cases where these two forms have different typing
behavior. Consider the object

q1 := obj(α, β, s, d).{|M � 3 : Int|}[M 7→M]

of type Objα.{|M : Int|}. Then (q1@[N 7→M])·[N 7→N] N andq1·[N 7→M] N are operationally equivalent;
both expressions have typeInt and evaluate to 3.

12 RIECKE AND STONE

In constrast, for the object

q2 := obj(α, β, s, d).{|M � s@d : α|}[M 7→M]

of type Objα.{|M : α|}, the two corresponding expressions are different:q2·[N 7→M] N has type
Objα.{|M : α|} and evaluates toq2, while (q2@[N 7→M])·[N 7→N] N has typeObjα.{|N : α|} and evaluates
to

obj(α, β, s, d).{|M � s@d : α|}[N 7→M] .

We now revisit the class example from Section 2.3 to create classes for movable points and colored
points.

mpt class:= λ(x0 : Int).
(obj(α, β, s, d).{||}[]
←+x(α, β, s, d, d′) = x0 : Int
←+getx(α, β, s, d, d′) = s·d′x : Int
←+move(α, β, s, d, d′) =
λy:Int.(let z= s·d′getx

in s←d′x(α1, β1, s1, d1, d′1)
= z+ y)

@d : (Int→α)
) :> MPT

mcptclass:= λ(x0:Int). λ(c0:Color).
(pt class(x0)
←+c(α, β, s, d, d′) = c0 : Color
←+getc(α, β, s, d, d′) = s·d′c : Color
) :> MCPT

In the movemethod, the use of the dictionaryd′ to parameterize the method override is essential; it
allows us to uses as an object value while statically preserving the dictionary attached tos (so that the
updated object retains typeβ and can be coerced to the external self typeα).

4. CONCLUSIONS

4.1. Implementation Issues

There is a tradeoff in using explicit dictionaries: dictionary manipulation may induce a run-time cost.
In a setting where our object calculus is used directly, there are ways for modestly reducing the run-time
costs of dictionaries. For example, in compiling the dictionary composition operatione@ϕ′, one can ei-
ther choose to calculate the composition ofe’s dictionaryϕ with ϕ′ directly, or calculate the composition
lazily as the new object gets requests for methods. The former may be more efficient when there are fre-
quent compositions and method invocations, the latter more efficient when there are fewer compositions.

Similarly, though it is certainly unsound to drop components from an object when they are hidden
by subsumption, it is possible to drop these components from thedictionary. By turning subsumption
into a run-time coercion on dictionaries, an implementation can ensure that the order and position of
entries in an object’s dictionary always matches the static type; then dictionary lookups are guaranteed
to take constant time. Whether this is a good idea depends on the frequency of subsumptions, and the
cost of searching a dictionary of unknown size.

If one knows more about the style of programming in the calculus, more efficiencies can be gained. For
instance, the calculus could be used as a compilation target for single-inheritance class-based languages.
In these languages, each class determines a “method table” that can be shared among all objects of the
class (the fields of each object, of course, must be maintained separately). The mapping of method names
to indices in the method table is the dictionary. Since the method table can be statically determined,

PRIVACY VIA SUBSUMPTION 13

method calls through self need not be matched to a slot in the method table: they can immediately jump
to the method. That is, whenϕ is statically determinable, the compiler can do dictionary lookups at
compile-time and not generate code involving this dictionary for (e@ϕ).l in the first-order calculus or
e.ϕl in the second-order calculus. We also know that the self variableswithin an object refers to an object
with the identity dictionary, so thats@ϕ can be implemented as a dictionary replacement operation.

Calls to methods fromoutsidethe method suite may still need to go through the dictionary, however.
The situation is familiar from existing object-oriented languages. In Java, for instance, suppose we
define two classesA andB and an interfaceI via the definitions interfaceI {public int m (int x);} class
A implements I{ public int m (int x) { ... }; } class B implements I{ public int k (int x) { ... }; public
int m (int x) { ... }; } In a context where a variable is known only to have typeI, a method invocation of
m must go through the dictionary: the variable could be an object from the classA (in which casem is
the first method in the method table) or from the classB (in which casem is the second method in the
method table).

In class-based languages, the only operations that create objects are constructor functions. Thus,
when compiling such a language into our calculus, all of the object operationsexceptmethod invocation
can be confined to the constructor functions. Constructor functions first call their superclass constructor
functions, which return a partially constructed object, and then add or override methods. If the superclass
constructor is known—as it is in a language like Java—the dictionaries are known, and so substitutions
and compositions of dictionaries can be done at compile time. Even in a language with parameterized
classes, one can imagine doing much of the manipulation of dictionaries atlink time when the base
classes of parameterized classes become instantiated.

Any of the optimizations valid for untyped object-oriented languages should apply here as well.
The dynamic semantics does do much more dictionary manipulation (stripping and replacing dictio-

naries) than one would like to see in an implementation. We have previously described a second-order
system whose direct implementation should avoid these, at the cost of more (though individually sim-
pler) language constructs and a more complex type system [27].

4.2. Related Work

Our calculi embody solutions to two problems: it provides a characterization of private methods, and
supports both subtyping and object extension. Previous work has attempted to address these problems,
and it is worth comparing these solutions to ours.

In the context of modeling private components in objects, Fisher and Mitchell [15] give an account of
private (as well as protected) methods and fields using abstract types. Abstract types can be used to hide
the representations of objects from clients, even though the objects themselves have access to the internal
representations. Information about the names of private fields and methods, however, is still exposed.
Their account is in some sense more fundamental than ours: our calculus directly supports hiding, and
does not attempt to describe it in more basic concepts. R´emy and Vouillon [26] consider a more direct
account of private data in classes, but only as inlined constant values. In addition to not matching a
standard implementation, their approach does not extend well to mutable fields in the presence of object
cloning or functional update of objects. Eiffel [21] has operations for redefining and “undefining” the
methods of a class, much like our single renaming operation does in the first-order calculus. We are not
aware, however, of any formal accounts that establish the soundness of the Eiffel type system. Bracha
and Lindstrom [5] define a coercive operation for hiding components of objects; this appears to behave
similarly to our subsumption operation, at least for first-order objects. They formalize this operation
within an untypedλ-calculus.

More work has addressed the problems with object extension and subtyping. Fisher and Mitchell
[14], for instance, discuss the unsoundness of width subtyping in the presence of object extension.
Their solution is to distinguish the types of objects which support either method override and object
extension (but no subtyping) from those which support width and depth subtyping but not method
override or object extension. Later work has looked at other ways of combining width subtyping with
object extension without losing soundness. Liquori [19, 20] gives first- and second-order systems in
which the types of extensible objects list the names and types of (a superset of) methods hidden by
subsumption; the types must match if the object is extended by a new method with the same name as a
hidden method. The idea is related to an old idea: Jategaonkar and Mitchell [17] and R´emy [25] use types

14 RIECKE AND STONE

that keep track of which methods must be “absent” from an object. Bono, Bugliesi, Dezani, and Liquori
[2, 3, 4] take a different approach: object types contain a conservative approximation of which methods
each method invokes via self. A collection of methods can be forgotten via subsumption if no remaining
methods might invoke a member of this collection. This is not useful, however, for the purposes of
modeling private methods (which exist for the sole purpose of being used by public methods).

It should be noted that even though we allow width-subtyping for objects, the rule for typing object
values in a language without object extension can still be more liberal than our Rule 40 [1]. In particular
without object extension the typeβ of the self variable can be knownexactlywithin object methods
because this cannot be changed by future operations. In contrast, we can only assume thatβ will be a
subtype of the object’s current type.

If there is no object extension, we may type the method bodies in an object with the self-typeα equal
to an object type, rather than merely being a subtype of an object type. This permits type-correct objects
with “backup” and “restore” methods, where “restore” returns an older copy of the object and has return
type α. Since in our system the internal type of the object may change (through object extension),
allowing this sort of code in our system would lead to unsoundness.

Finally, in many conventional object-oriented languages, subclassing determines the type hierar-
chy. Therefore, each method can be associated with the class where it was defined. This allows two
co-existing components with the same name to be defined in different classes. The guarantee that
related classes will have distinct names guarantees that all references to components can be disam-
biguated. This does mean that inheritance requires static knowledge about all superclasses, but this is
commonly required for implementation efficiency anyway. Java “binary compatibility” allows (among
other changes) new methods to be added to an existing class without recompilation of subclasses or
other clients; Drossopoulou, Wragg, and Eisenbach [9] give a semantics for this where class names are
used to qualify references to object and class components so as to prevent conflicts.

4.3. Discussion and Future Work

We have shown that there is a calculus with width subtyping and object extension, one that allows a
general notion of strong privacy for fields and methods within classes. Our object calculus does appear
to be useful; Fisher and Reppy have been using a variant for the design of an extension to SML with
classes and objects [16].

It is not difficult to see how the first-order system embeds in the second-order system. To see how to em-
bed types, a first-order object type{|l : τl l∈I |} can be represented as second-order typeObjα.{|l : τl l∈I |}
simply by treating the self typeα as a dummy variable. All of the other types embed straightforwardly.
To embed the terms, we rewrite method bodies in override and extension so that all occurrences of the
self variables are replaced with (s@d′), and we annotate the invocation and override methods with
identity dictionaries.

Type-checking for both the first-order and second-order systems is decidable. This fact hinges on a
proof that any term in the two systems can be given a minimal typing, i.e., least in the sense of subtyping.
What remains open, however, is whether one can build a type inference system that does not force the
programmer to write in any types. Type annotations on method bodies are required for minimal typing
in the absence of depth subtyping, and depth subtyping is unsound in the presence of method override.

Whether we have chosen the best set of primitives is open to debate. Nevertheless, many extensions
should be possible. For instance, it should be possible to add mutable fields and methods and allow
imperative update rather than functional update. Variance annotations should also be simple to add to
the calculus to support richer forms of subtyping. Finally, it would be interesting to extend the language
with bounded polymorphism, which would make the calculus more expressive. We do not anticipate
any major difficulties in these directions.

It appears that the systems presented here may be instances of a more general setting in which
objects do not carry dictionaries, but rather renamed values are considered values. Thus the first-order
object valueobj s.{|i � ei : τi

i∈1..n|}ϕ corresponds to the renamed object (obj s.{|i � ei : τi
i∈1..n|})@ϕ.

The dynamic semantics for the first-order system might be

(v@ϕ).l ; v.(ϕ(l))
(obj s.{|i � ei : τi

i∈I |}).l ; [s 7→ obj s.{|i � ei : τi
i∈I |}] el

PRIVACY VIA SUBSUMPTION 15

with additional rules such as

(v@ϕ)@ϕ′ ; v@(ϕ ◦ ϕ′)

if desired. Then our first-order calculus can be viewed as the special case where we require every
object value to be renamed exactly once (by inserting the identity renaming or composing renamings
as necessary). It appears possible to view the second-order calculus in a similar way, though with more
complicated rules because we must still do substitutions of dictionaries.

Some other, more difficult problems arise, the most important of which is to find a better semantical
framework for the calculus. Our proofs of type soundness were purely operational; what would be
better is a deeper understanding of the calculus that would make the static semantic rules obvious. A
translation of the calculus into a typedλ-calculus might shed some light, or a denotational framework
might provide a better setting to evaluate different choices of static rules.

APPENDIX A: STATIC SEMANTICS OF FIRST-ORDER SYSTEM

Well-Formed Contexts 0 ` ¦

• ` ¦ (1)

0 ` ¦ x 6∈ Dom(0)

0, x:τ ` ¦ (2)

Well-Formed Types 0 ` τ

0 ` ¦
0 ` b

(3)

0 ` τ1 0 ` τ2

0 ` (τ1→ τ2)
(4)

0 ` ¦
∀l ∈ I : 0 ` τl
0 ` {|l : τl l∈I |} (5)

Width Subtyping 0 ` τ1 ¹ τ2

0 ` τ
0 ` τ ¹ τ (6)

0 ` ¦
0 ` {|l : τl l∈I∪J |} ¹ {|l : τl l∈I |} (7)

0 ` τ ′1 ¹ τ1 0 ` τ2 ¹ τ ′2
0 ` (τ1→ τ2) ¹ (τ ′1→ τ ′2)

(8)

Well-Formed Expressions 0 ` e : τ

0 ` ¦
0 ` c : typeof(c)

(9)

0 ` ¦ x ∈ Dom(0)

0 ` x : 0(x)
(10)

0, x : τ ` e : τ ′

0 ` (λx:τ.e) : (τ → τ ′)
(11)

16 RIECKE AND STONE

0 ` e : (τ → τ ′) 0 ` e′ : τ
0 ` (e e′) : τ ′

(12)

0 ` τ ¹ τ ′ 0 ` e : τ

0 ` e : τ ′
(13)

0 ` e : {|l : τ |}
0 ` e.l : τ

(14)

0 ` e : {|l : τl l∈I |} Range(ϕ) ⊆ I

0 ` e@ϕ : {|l : τϕ(l)
l∈Dom(ϕ)|} (15)

Range(ϕ) ⊆ I
∀i ∈ I : 0, s:{|m : τm

m∈I |} ` ei : τi

0 ` obj s.{|mBem : τm
m∈I |}ϕ : {|l : τϕ(l)

l∈Dom(ϕ)|} (16)

m ∈ I s 6∈ Dom(0)
0 ` e : {|l : τl l∈I |} 0, s:{|l : τl l∈I |} ` e′m : τm

0 ` e←m(s)= e′m : {|l : τl l∈I |} (17)

m 6∈ I s 6∈ Dom(0)
0 ` e : {|l : τl l∈I |} 0, s:{|l : τl l∈I ,m : τ ′m|} ` e′m : τ ′m

0 ` (e←+m(s)= e′m : τ ′m) : {|l : τl l∈I ,m : τ ′m|}
(18)

APPENDIX B: STATIC SEMANTICS OF SECOND-ORDER SYSTEM

Well-Formed Contexts 0 ` ¦

• ` ¦ (19)

0 ` ¦ x 6∈ Dom(0)

0, x:τ ` ¦ (20)

0 ` τ α 6∈ Dom(0)

0, α¹τ ` ¦ (21)

Well-Formed Types 0 ` τ

0 ` ¦
0 ` b

(22)

0 ` ¦ α ∈ Dom(0)

0 ` α (23)

0 ` τ1 0 ` τ2

0 ` (τ1→ τ2)
(24)

0 ` τ1 0 ` τ2

0 ` τ1⇒ τ2
(25)

0 ` ¦
∀l ∈ I : 0, α¹> ` τl
0 ` Objα.{|l : τl l∈I |} (26)

PRIVACY VIA SUBSUMPTION 17

Width Subtyping 0 ` τ1 ¹ τ2

0 ` Objα.{|l : τl l∈I∪J |}
0 ` Objα.{|l : τl l∈I∪J |} ¹ Objα.{|l : τl l∈I |} (27)

0 ` ¦
0 ` τ ¹ τ (28)

0 = 0′, α¹τ ′, 0′′ 0 ` τ ′ ¹ τ
0 ` α ¹ τ (29)

0 ` τ ′1 ¹ τ1 0 ` τ2 ¹ τ ′2
0 ` (τ1→ τ2) ¹ (τ ′1→ τ ′2)

(30)

0 ` τ ′1 ¹ τ1 0 ` τ2 ¹ τ ′2
0 ` τ1⇒ τ2 ¹ τ ′1⇒ τ ′2

(31)

Well-Formed Expressions 0 ` e : τ

0 ` e : τ ′ 0 ` τ ′ ¹ τ
0 ` e : τ

(32)

0 ` ¦
0 ` c : typeof(c)

(33)

0 ` ¦ x ∈ Dom(0)

0 ` x : 0(x)
(34)

0, x:τ ` e : τ ′

0 ` (λx:τ.e) : (τ→ τ ′)
(35)

0 ` e1 : (τ2→ τ) 0 ` e2 : τ2

0 ` (e1 e2) : τ
(36)

0 ` A 0 ` B Range(ϕ) ⊆ I
B = Objα.{|m : τm

m∈I |}
A = Objα.{|l : τϕ(l)

l∈Dom(ϕ)|}
0 `ϕ : B⇒ A

(37)

0 ` e : τ ′ 0 ` v : τ ′ ⇒ τ

0 ` e@v : τ
(38)

0 ` e : τ ′ 0 ` v : τ ′ ⇒Objα.{|l : τ |}
0 ` e.v l : [α 7→ τ ′] τ

(39)

∀m ∈ I : β 6∈ FV(τm)

B = Objα.{|m : τm
m∈I |}

A = Objα.{|l : τϕ(l)
l∈Dom(ϕ)|}

0 `ϕ : B⇒ A
∀m ∈ I : 0, β¹B, α¹>, d:β⇒α, s:β ` em : τm

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ : A

(40)

β 6∈ FV(τm)

0 ` e1 : τ 0 ` v : τ⇒Objα.{|m : τm|}
0, β¹>, α¹>, d′:β⇒ τ, d:β⇒α, s:β ` e2 : τm

0 ` e1←v m(α, β, s, d, d′)= e2 : τ
(41)

18 RIECKE AND STONE

β 6∈ FV(τ) m 6∈ I

0 ` e1 : Objα.{|l : τl
l∈I |}

A = Objα.{|l : τl
l∈I ,m : τ |}

0, β¹>, α¹>, d′:β⇒ A, d:β⇒α, s:β ` e2 : τ

0 ` (e1←+m(α, β, s, d, d′)= e2 : τ) : A
(42)

APPENDIX C: CORRECTNESS OF FIRST-ORDER SYSTEM

We first give a series of lemmas. The proofs are omitted because they are largely similar to (but
simpler than) the corresponding lemmas in the second-order system, which appear in Appendix D. We
use the notationJ for the right-hand side of a judgement in the system.

LEMMA C.1 (Well-Formedness).If 0,0′ ` ¦ then0 ` ¦.
LEMMA C.2. If 0 ` J then0 ` ¦.
LEMMA C.3. If 0,0′ ` ¦ thenDom(0) ∩ Dom(0′) = ∅.
LEMMA C.4 (Context Weakening).If 0,0′′ ` J and0,0′, 0′′ ` ¦ then0,0′, 0′′ ` J .

LEMMA C.5 (Bound Weakening). If 01, x : τ2, 02 ` J and01 ` τ1 ¹ τ2 then01, x : τ1, 02 ` J .

LEMMA C.6 (Transitivity). If 0 ` τ ¹ τ ′ and0 ` τ ′ ¹ τ ′′ then0 ` τ ¹ τ ′′.
LEMMA C.7 (Subtyping Inversion).

i. If 0 ` (τ ′1→ τ2) ¹ (τ1→ τ ′2) then0 ` τi ¹ τ ′i .
ii. If 0 ` {|l : τl l∈L |} ¹ {|l : τ ′l

l∈L ′ |} then L′ ⊆ L andτ ′l = τl for all l ∈ L ′.

LEMMA C.8 (Value Substitution). If 0, x:τ ` e′ : τ ′ and0,0′ ` e : τ , then0,0′ ` [x 7→ e] e′ : τ ′.

LEMMA C.9 (Decomposition and Replacement).If 0 ` E[e] : τ then0 ` e : τ ′ for some typeτ ′.
Furthermore, if0 ` e′ : τ ′ then0 ` E[e′] : τ .

THEOREM C.10 (Subject Reduction).If 0 ` e : σ and e; e′ then0 ` e′ : σ .

Proof. By cases depending on the operational rule used. Because of the transitivity and symmetry
of subtyping, without loss of generality we may assume that in the proof of0 ` e : σ , uses of the
Subsumption Rule 13 alternate with uses of the remaining typing rules, and that the proof does not end
with a use of subsumption. By Lemma C.9 we need only consider the local reduction steps.

1. The rule used is

(λx:τ.e) v; [x 7→ v] e.

Then the proof of0 ` (λx:τ.e) v : σ must contain sub-proofs of the following judgments:

0, x:τ ` e : τ1

0 ` (τ→ τ1) ¹ (τ2→ σ)
0 ` v : τ2

By Lemma C.7, we have0 ` τ2 ¹ τ and0 ` τ1 ¹ σ . Therefore0 ` v : τ by subsumption,
0 ` [x 7→ v] e : τ1 by Lemma C.8, and the desired result follows by subsumption.

2. The rule used is

obj s.{|m� em : τm
m∈I |}ϕ@ϕ′;

obj s.{|m� em : τm
m∈I |}ϕ◦ϕ′

PRIVACY VIA SUBSUMPTION 19

The typing proof of the hypothesis must include the following judgments:

∀i ∈ I : 0, s:{|m : τm
m∈I |} ` ei : τi

Range(ϕ) ⊆ I
0 ` {|m : τϕ(m)

m∈Dom(ϕ)|} ¹ {|m : τ ′m
m∈L |}

Range(ϕ′) ⊆ L

where

σ = {|m : τ ′ϕ′(m)
m∈Dom(ϕ′)|}.

By Lemma C.7,L ⊆ Dom(ϕ) andτ ′m = τϕ(m) for all m ∈ L. ThenRange(ϕ ◦ ϕ′) ⊆ Range(ϕ) ⊆ I
andDom(ϕ ◦ ϕ′) = Dom(ϕ′). Therefore,0 ` obj s· {|mBem : τm

m∈I |}ϕ◦ϕ′ : {|m : τϕ(ϕ′(m))
m∈Dom(ϕ◦ϕ′)|}

and this type is equal toσ .

3. The rule used is

(obj s.{|m� em : τm
m∈I |}ϕ).l ;

[s 7→ obj s.{|m� em : τm
m∈I |}id(I)] eϕ(l)

The typing proof of the hypothesis must include the following judgments:

∀i ∈ I : 0, s:{|m : τm
m∈I |} ` ei : τi

Range(ϕ) ⊆ I
0 ` {|m : τϕ(m)

m∈Dom(ϕ)|} ¹ {|l : σ |}

By Lemma C.7, we havel ∈ Dom(ϕ) and σ = τϕ(l). Further,0 ` obj s.{|m� em : τm
m∈I |}id(I) :

{|m : τm
m∈I |}. Finally, by Lemma C.8, it follows that0 ` [s 7→ obj s.{|m� em : τm

m∈I |}id(I)] eϕ(l) : τϕ(l)

as desired.

4. The rule used is

(obj s.{|m� em : τm
m∈I |}ϕ)← l (s)= e;

obj s.{|m� em : τm
m∈I \ϕ(l),

ϕ(l) � [s 7→ s@ϕ] e : τϕ(l)|}ϕ

The typing proof of the hypothesis must include the following judgments:

∀i ∈ I : 0, s:{|m : τm
m∈I |} ` ei : τi

Range(ϕ) ⊆ I
0 ` {|m : τϕ(m)

m∈Dom(ϕ)|} ¹ {|m : τ ′m
m∈L |}

0, s:{|m : τ ′m
m∈L |} ` e : τ ′l

l ∈ L

whereσ = {|m : τ ′m
m∈L |}. By Lemma C.7,L ⊆ Dom(ϕ) andτ ′m = τϕ(m) for all m ∈ L. Then

0, s:{|m : τm
m∈I |} ` s@ϕ : {|m : τϕ(m)

m∈Dom(ϕ)|}

which is a subtype of{|m : τϕ(m)
m∈L |} = {|m : τ ′m

m∈L |}. Thus, by subsumption,

0, s:{|m : τm
m∈I |} ` s@ϕ : {|m : τ ′m

m∈L |}

By Lemma C.8, therefore,

0, s:{|m : τm
m∈I |} ` [s 7→ s@ϕ] e : τ ′l

and so we have all the pieces to construct the typing proof for the reduced term.

20 RIECKE AND STONE

5. The rule used is

(obj s.{|m� em : τm
m∈I |}ϕ)←+l (s)= e : τ ;

obj s.{|m� em : τm
m∈I , l ′ � [s 7→ s@ϕ′] e : τ |}ϕ′

whereϕ′ = ϕ[l 7→ l ′]. The typing proof of the hypothesis must include the following judgments:

∀i ∈ I : 0, s:{|m : τm
m∈I |} ` ei : τi

Range(ϕ) ⊆ I
0 ` {|m : τϕ(m)

m∈Dom(ϕ)|} ¹ {|m : τ ′m
m∈L |}

0, s:{|m : τ ′m
m∈L |} ` e : τ

l 6∈ L

whereσ = {|m : τ ′m
m∈L |}. Again Lemma C.7 gives usL ⊆ Dom(ϕ) andτ ′m = τϕ(m) for all m ∈ L. By

Lemma C.5 we can show that

∀i ∈ I : 0, s:{|m : τm
m∈I , l ′ : τ |} ` ei : τi

In a similar way, the conclusion then follows the same outline as the previous case, withϕ′ in place ofϕ.

This completes the case analysis and hence the proof.■

LEMMA C.11 (Canonical Forms).If ` v : (τ→ τ ′) thenv is a lambda expression. If̀ v : {|m :
τm

m∈I |} thenv is an object value.

THEOREM C.12 (Progress). If ` e : τ then either e is a value or else e; e′.

APPENDIX D: CORRECTNESS OF SECOND-ORDER SYSTEM

The proof requires a number of simple lemmas. We use the notationJ for the right-hand side of a
judgement in the system.

LEMMA D.12 (Well-Formedness).If 0,0′ ` ¦ then0 ` ¦.
Proof. By Rules 20 and 21, we can drop the last entry in a well-formed context and still have a

well-formed context. By a simple inductive argument, we can therefore drop an arbitrary end portion
of a context and retain well-formedness.■

LEMMA D.13. If 0 ` J then0 ` ¦.
Proof. By induction on the proof of the premise.■

LEMMA D.14. If 0,0′ ` ¦ thenDom(0) ∩ Dom(0′) = ∅.
Proof. By induction on the proof of0,0′ ` ¦. ■

LEMMA D.15 (Transitivity). If 0 ` τ ¹ τ ′ and0 ` τ ′ ¹ τ ′′ then0 ` τ ¹ τ ′′.
Proof. By cases on the final rules of the two derivations.

• 27& 27. By transitivity of set inclusion.

• 28&* or *&28. Trivial.

• 29&*. Then0 ` α ¹ τ , where0 = 0′, α¹σ, 0′′ and0 ` σ ¹ τ ′. By the inductive hypothesis,
0 ` σ ¹ τ ′′. Thus, by Rule 29,0 ` α ¹ τ ′′.
• 30&30, 31&31. These cases follow directly from the inductive hypothesis.

This completes the case analysis and hence the proof.■

PRIVACY VIA SUBSUMPTION 21

LEMMA D.16 (Subtyping Inversion).

i. If 0 ` (τ ′1→ τ2) ¹ (τ1→ τ ′2) then0 ` τi ¹ τ ′i .
ii. If 0 ` τ ′1⇒ τ2 ¹ τ1⇒ τ ′2 then0 ` τi ¹ τ ′i .

Proof. Follows from the fact that the proofs of the hypotheses must end with Rule 28 or Rule 30,
and with Rule 28 or Rule 31, respectively.■

LEMMA D.17 (Context Weakening).If 0,0′′ ` J and0,0′, 0′′ ` ¦ then0,0′, 0′′ ` J .

Proof. By induction on proof of first premise, and cases on the last rule used. We give a few
representative cases and leave the others to the reader.

• 29. Then0,0′′ ` α ¹ τ , where0,0′′ = 01, α¹τ ′, 02 and0,0′′ ` τ ′ ¹ τ . By the inductive
hypothesis,0,0′, 0′′ ` τ ′ ¹ τ . Note also that0,0′, 0′′ = 0′1, α¹τ ′, 0′2. Thus, by Rule 29,

0,0′, 0′′ ` α ¹ τ

as desired.

• 34. Then0,0′′ ` x : (0,0′′)(x), where0,0′′ ` ¦. By Lemma D.14, we haveDom(0′) ∩
(Dom(0) ∪ Dom(0′′)) = ∅. Thereforex 6∈ Dom(0′), so (0,0′′)(x) = (0,0′, 0′′)(x). The conclusion
follows from the second premise.

• 35. Byα-conversion, we may assumex 6∈ Dom(0′). The conclusion follows from the inductive
hypothesis.

This completes the case analysis and hence the proof.■

LEMMA D.18 (Bound Weakening). If 01, β ¹ τ2, 02 ` J and01 ` τ1 ¹ τ2 then01, β ¹ τ1, 02 ` J .

Proof. By induction on proof of first premise, and cases on the last rule used. The only difficult case
is when the last rule used is Rule 29; we give this case and leave the others to the reader. We know that
01, β ¹ τ2, 02 ` α ¹ τ , where01, β ¹ τ2, 02 = 0, α¹ τ ′, 0′ and01, β ¹ τ2, 02 ` τ ′ ¹ τ . There are
two cases:

• β = α. Thenτ2 = τ ′. By Context Weakening applied to the second hypothesis we have

01, β ¹ τ1, 02 ` τ1 ¹ τ2 = τ ′.

By the inductive hypothesis,

01, β ¹ τ1, 02 ` τ ′ ¹ τ

so by Transitivity,01, β ¹ τ1, 02 ` τ1 ¹ τ . Thus, by Rule 29,

01, β ¹ τ1, 02 ` α ¹ τ

as desired.

• β 6= α. Then the binding (α¹ τ ′) appears in either01 or 02. By the inductive hypothesis,

01, β ¹ τ1, 02 ` τ ′ ¹ τ

and so by Rule 29,

01, β ¹ τ1, 02 ` α ¹ τ

as desired.

This completes the case analysis and hence the proof.■

22 RIECKE AND STONE

LEMMA D.19 (Covariant Substitution).If α appears covariantly inτ and0 ` σ ¹ σ ′, then0 `
[α 7→ σ] τ ¹ [α 7→ σ ′] τ .

Proof. We prove the statement above and the following statement

If α appears contravariantly inτ and0 ` σ ¹ σ ′, then0 ` [α 7→ σ ′] τ ¹ [α 7→ σ] τ .

The proof goes by simultaneous induction onτ .

• To see the first statement, ifα does not appear free inτ , then the conclusion follows from
Rule 28. If τ = α then the conclusion is exactly the second assumption. Otherwiseτ = (τ1→ τ2)
or τ1⇒ τ2 whereα appears contravariantly inτ1 and covariantly inτ2. In either case the inductive
hypothesis gives us0 ` [α 7→ σ ′] τ1 ¹ [α 7→ σ] τ1 and0 ` [α 7→ σ] τ2 ¹ [α 7→ σ ′] τ2; the conclusion
follows by rule 30 or 31 respectively.

• To see the second statement, ifα does not appear free inτ , then the conclusion follows from
Rule 28. Otherwiseτ = (τ1→ τ2) orτ1⇒ τ2 whereα appears covariantly inτ1 and contravariantly inτ2.
In either case the inductive hypothesis gives us0 ` [α 7→ σ] τ1 ¹ [α 7→ σ ′] τ1 and0 ` [α 7→ σ ′] τ2 ¹
[α 7→ σ] τ2; the conclusion follows by rule 30 or 31 respectively.

This completes the proof.■

LEMMA D.20 (Type Substitution). If 0, β ¹ τ ′, 0′ ` J , and0 ` τ ¹ τ ′ andβ 6∈ FV(τ) ∪ FV(τ ′)
then0, [β 7→ τ] 0′ ` [β 7→ τ] J .

Proof. By induction on proof of first premise, and cases on the rule used for the conclusion. We
give two of the more difficult cases and leave the others to the reader.

• 21. There are two cases.
– 0, β ¹ τ ′, 0′, α¹ τ ′′ ` ¦, where0, β ¹ τ ′, 0′ ` ¦ andα 6∈ Dom(0, β ¹ τ ′, 0′). By the

inductive hypothesis,0, [β 7→ τ] 0′ ` ¦. Thus, sinceα 6∈ Dom(0, [β 7→ τ] 0′), it follows by Rule 21 that

0, [β 7→ τ] 0′, α¹ [β 7→ τ] τ ′′ ` ¦

as desired.
– 0, β ¹ τ ′, 0′ ` ¦, where0 ` ¦ andα 6∈ Dom(0) andβ = α. Then0′ = •. It follows that

[β 7→ τ] 0′ = 0′ = •, so

0, [β 7→ τ] 0′ ` ¦
as desired.

• 29. Then0, β ¹ τ ′, 0′ ` α ¹ τ2, where (0, β ¹ τ ′, 0′) = (01, α¹ τ1, 02) and0, β ¹ τ ′, 0′ `
τ1 ¹ τ2. By the inductive hypothesis,

0, [β 7→ τ] 0′ ` [β 7→ τ] τ1 ¹ [β 7→ τ] τ2.

There are two cases. Ifβ = α, thenτ ′ = τ1. By Context Weakening0, [β 7→ τ] 0′ ` τ ¹ τ ′.
Sinceβ 6∈ FV(τ) ∪ FV(τ ′), we know that [β 7→ τ] τ1 = τ1. Thus,

0, [β 7→ τ] 0′ ` [β 7→ τ] α ¹ [β 7→ τ] τ1

and so by Transitivity,

0, [β 7→ τ] 0′ ` [β 7→ τ] α ¹ [β 7→ τ] τ2

as desired.
For the other case, whenβ 6= α, note that [β 7→ τ] α = α. Also, the binding (α¹ τ1) appears

either in0 or in 0′. If it appears in0, thenβ 6∈ FV(τ1). Thus, [β 7→ τ] τ1 = τ1, so therefore

0, [β 7→ τ] 0′ ` τ1 ¹ [β 7→ τ] τ2.

PRIVACY VIA SUBSUMPTION 23

Thus, by Rule 29, it follows that

0, [β 7→ τ] 0′ ` [β 7→ τ] α ¹ [β 7→ τ] τ2.

If, on the other hand, the binding (α¹ τ1) appears in0′, then the binding (α¹ [β 7→ τ] τ1) appears in
[β 7→ τ] 0′. Thus, by Rule 29, it follows that

0, [β 7→ τ] 0′ ` [β 7→ τ] α ¹ [β 7→ τ] τ2

as desired.

This completes the case analysis and hence the proof.■

LEMMA D.21 (Value Substitution). If 0, x:τ, 0′ ` e′ : τ ′ and0,0′ ` e : τ then0,0′ ` [x 7→ e] e′ : τ ′.

Proof. By induction on proof of first premise, and cases on the rule used for the conclusion. We
give a few representative cases and leave the others to the reader.

• 34. Then0, x:τ, 0′ ` y : τ ′, where0, x:τ, 0′ ` ¦ and (0, x:τ, 0′)(y) = τ ′. There are two
cases. Ify 6= x, then a binding (y:τ ′) appears in0,0′. Thus, since [x 7→ e] y = y

0,0′ ` [x 7→ e] y : τ ′.

If y = x, thenτ = τ ′ and [x 7→ e] y = e. Thus, by the second hypothesis,

0,0′ ` [x 7→ e] y : τ ′

as desired.

• 35. Then0, x:τ, 0′ ` λy:τ1.e1 : (τ1→ τ2), where0, x:τ, 0′, y:τ1` e1 : τ2 andy 6∈ dom(0, x:τ ,
0′). Thus, we know thatx 6= y. By the inductive hypothesis,

0,0′, y:τ1` [x 7→ e] e1 : τ2

so by Rule 35,

0,0′ ` [x 7→ e] (λy:τ1.e1) : (τ1→ τ2)

as desired.

This completes the case analysis and hence the proof.■

LEMMA D.22 (Decomposition and Replacement).If 0 ` E[e] : τ then ` e : τ ′ for some typeτ ′.
Furthermore, if` e′ : τ ′ then` E[e′] : τ .

Proof. By induction on the proof of0 ` E[e] : τ . ■

THEOREM D.23 (Subject Reduction).If 0 ` e : τ and e; e′ then0 ` e′ : τ .

Proof. By cases depending on the operational rule used. Because of the transitivity and symmetry
of subtyping, without loss of generality we may assume that in the proof of0 ` e : τ , uses of the
Subsumption Rule 32 alternate with uses of the remaining typing rules, and that the proof does not end
with a use of subsumption. By Lemma D.22 we need only consider the local reduction steps.

1. The last rule used is

e= (λx:τ0.e1) v; [x 7→ v] e1 = e′.

This case is unchanged from the proof of Theorem C.10.

24 RIECKE AND STONE

2. The rule used is

(obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ)@ϕ′

; obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ◦ϕ′

The proof of the first assumption must end in a use of rule 38. By inspection, the proof must involve
the Object Rule 40 and the Dictionary Rule 37 and subsumption, so there must exist derivations:

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ : A

0, β ¹ B, α¹>, d : β⇒α, s:β ` em : τm, (∀m ∈ I)
0 ` A ¹ τ ′
0 `ϕ′ : τ ′′ ⇒ τ ′′′

0 ` τ ′′ ⇒ τ ′′′ ¹ τ ′ ⇒ τ

where

A = Objα.{|l : τϕ(l)
l∈Dom(ϕ)|}

B = Objα.{|m : τm
m∈I |}

By Subtyping Inversion, we know that0 ` τ ′ ¹ τ ′′, and henceτ ′′ = Objα.{|l : τϕ(l)
l∈J |} where

J ⊆ Dom(ϕ). By the Dictionary Rule 37, we know that

τ ′′′ = Objα.{|n : τϕ(ϕ′(n))
n∈K |}

for someK ⊆ Dom(ϕ′). SinceDom(ϕ′) = Dom(ϕ ◦ ϕ′), by the Object Rule 40 and Subsumption,

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ◦ϕ′ : τ ′′′

By Subtyping Inversion,0 ` τ ′′′ ¹ τ , so by Subsumption,

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ◦ϕ′ : τ

as desired.

3. The rule used is

(obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ)·ϕ′ l

; [d 7→ϕ] [s 7→ self] [α 7→ A] [β 7→ B] eϕ(ϕ′(l))

where

A = Objα.{|l : τϕ(l)
l∈Dom(ϕ)|}

B = Objα.{|m : τm
m∈I |}

self = obj(α, β, s, d).{|m� em : τm
m∈I |}id(I)

By hypothesis,

0 ` (obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ).ϕ′ l : τ.

The derivation for the first premise must end with a use of rule 39. By inspection of the rule, there exist
derivations for

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ : τ ′1

0 `ϕ′ : τ ′1⇒Objα.{|l : τ ′2|}

PRIVACY VIA SUBSUMPTION 25

whereτ = [α 7→ τ ′1] τ ′2. Hence0 ` A ¹ τ ′1 and there is a derivation

0 ` obj(α, β, s, d).{|m� τm : em
m∈I |}ϕ : A

whose last rule is the Object Rule 40. Thus, for allm ∈ I , there is a derivation

0, β ¹ B, α¹>, d : β⇒α, s:β ` em : τm

Now,0 `ϕ′ : τ ′1⇒Objα.{|l : τ ′2|} implies thatτϕ(ϕ′(l)) = τ ′2. Letτ ′′ = [α 7→ A] [β 7→ B] τϕ(ϕ′(l)). By the
Type Substitution Lemma,

0, d : B⇒ A, s:B` [α 7→ A] [β 7→ B] eϕ(ϕ′(l)) : τ ′′

Note that by the Object Rule 40,0 ` self : B, and by the Dictionary Rule 37,0 `ϕ : B⇒ A. Thus, by
the Substitution Lemma,

0 ` [d 7→ϕ] [s 7→ self] [α 7→ A] [β 7→ B] eϕ(ϕ′(l)) : τ ′′

Sinceα occurs only covariantly inτϕ(ϕ′(l)) and0 ` A ¹ τ ′1, andβ does not occur inτϕ(ϕ′(l)),

0 ` [α 7→ A] [β 7→ B] τϕ(ϕ′(l)) ¹ [α 7→ τ ′1] τϕ(ϕ′(l))

Putting this together with the fact thatτ = [α 7→ τ ′1] τϕ(ϕ′(l)), we obtain

0 ` [d 7→ϕ] [s 7→ self] [α 7→ A] [β 7→ B] eϕ(ϕ′(l)) : τ

as desired.

4. The rule used is the override rule, i.e.,

o←ϕ′ n(α, β, s, d, d′)= e; o′

where

o = obj(α, β, s, d).{|mBem : τm
m∈I |}ϕ

o′ = obj(α, β, s, d).{|mBem : τm
m∈I \ϕ(ϕ′(n)), ϕ(ϕ′(n))B [d′ 7→ϕ]e : τ ′|}ϕ

τ ′ = τϕ(ϕ′(n))

By inspection the derivation of the first premise must end with the Override Rule 41, and involve a use
of the Object Rule 40. Thus, there must be derivations

0 ` obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ : A

0, β ¹ B, α¹>, d:β⇒α, s:β ` em : τm, (∀m ∈ I)

0 ` A ¹ τ
0 `ϕ′ : τ⇒Objα.{|n : τ ′|}
0, β ¹>, α¹>, d′:β⇒ τ, d:β⇒α, s:β ` e : τ ′

where

A = Objα.{|l : τϕ(l)
l∈Dom(ϕ)|}

B = Objα.{|m : τm
m∈I |}

26 RIECKE AND STONE

By bound weakening,

0, β ¹ B, α¹>, d′:β⇒ τ, d:β⇒α, s:β ` e : τ ′

Note that0, β ¹ B ` B⇒ A ¹ β⇒ τ , so by Subsumption,

0, β ¹ B`ϕ : β⇒ τ

Thus, by Substitution,

0, β ¹ B, α¹>, d:β⇒α, s:β ` [d 7→ϕ] e : τ ′

Therefore, the desired conclusion follows from the Object Rule 40.

5. The rule used is

o←+n(α, β, s, d, d′)= e : τ ′

; obj(α, β, s, d).{|m� em : τ m∈I ,

n′ � [d′ 7→ϕ′] e : τ |}ϕ′

wheren′ = Fresh(I) and

o = obj(α, β, s, d).{|m� em : τm
m∈I |}ϕ

ϕ′ = ϕ[n 7→ n′]

The derivation must end with a use of the Extension Rule 42, from which it follows that there must exist
derivations

0 ` obj(α, β, s, d).{|m� τm : em
m∈I |}ϕ : A

0, β ¹ B, α¹>, d : β⇒α, s:β ` em : τm (∀m ∈ I)

0 ` A ¹ τ
0, β ¹>, α¹>, d′:β⇒ A′, d:β⇒α, s:β ` e : τ ′

where

A = Objα.{|l : τϕ(l)
l∈Dom(ϕ)|}

τ = Objα.{|l : τϕ(l)
l∈J⊆Dom(ϕ)|}

A′ = Objα.{|l : τϕ(l)
l∈Dom(ϕ), n : τ ′|}

B = Objα.{|m : τm
m∈I |}

Let B′ = Objα.{|m : τm
m∈I , n′ : τ ′|}. By Bound Weakening,

0, β ¹ B′, α¹>, d : β⇒α, s:β ` em : τm

and

0, β ¹ B′, α¹>, d′:β⇒ A′, d:β⇒α, s:β ` e : τ ′

Note that0, β ¹ B′ ` B′ ⇒ A′ ¹ β ⇒ A′, so by Subsumption,

0, β ¹ B′ ` ϕ′ : β ⇒ A′

PRIVACY VIA SUBSUMPTION 27

Thus by substitution,

0, β ¹ B′, α ¹ T, d:β ⇒ α, s:β ` [d 7→ ϕ′]e : τ ′

Therefore, the desired conclusion follows from the Object Rule 40.

This completes the case analysis and hence the proof.■

LEMMA D.24 (Canonical Forms). If ` v : (τ → τ ′) then v is a lambda expression. If̀ v :
Objα.{|m : τm

m∈I |} thenv is an object. If` v : τ⇒ τ ′ thenv is a dictionary.

Proof. Direct from the typing rule for terms, given that subtyping in an empty context preserves the
“shape” of types. ■

THEOREM D.25 (Progress). If ` e : τ then either e is a value or else e; e′.

Proof. The proof follows from Lemma D.24 and a comparison of expression forms with evaluation
contexts. ■

ACKNOWLEDGMENTS

We thank Kathleen Fisher for several helpful conversations, Martin Odersky for pointing out the connections with Eiffel, and
Viviana Bono, Perry Cheng, Gary Lindstrom, Joe Vanderwaart, and the anonymous referees for comments on drafts.

REFERENCES

1. Abadi, M., and Cardelli, L. (1996), “A Theory of Objects,” Springer-Verlag, New York/Berlin.
2. Bono, V., Bugliesi, M., Dezani, M., and Liquori, L. (1997), Subtyping constraints for incomplete objects,in “CAAP,” Lecture

Notes in Computer Science, Springer-Verlag, New York/Berlin.
3. Bono, V., Bugliesi, M., and Liquori, L. (1996), A lambda calculus of incomplete objects,in “Proceedings, Mathematical

Foundations of Computer Science,” Lecture Notes in Computer Science, Vol. 1113, pp. 218–229. Springer-Verlag, New
York/Berlin.

4. Bono, V., and Liquori, L. (1995), A subtyping for the Fisher–Honsell–Mitchell calculus of objects,in “Proceedings, Computer
Science Logic 1994,” Lecture Notes in Computer Science, Vol. 933, pp. 16–30, Springer-Verlag, New York/Berlin.

5. Bracha, G., and Lindstrom, G. (1992), Modularity meets inheritance,in “Proceedings of the IEEE Computer Society Inter-
national Conference on Computer Languages,” pp. 282–290, IEEE Computer Society, Washington, D.C.

6. Bruce, K. B. (1994), A paradigmatic object-oriented language: Design, static typing, and semantics,J. Functional Program-
ming4(2), 127–206.

7. Bruce, K. B., Cardelli, L., Castagna, G., The Hopkins Object Group, Leavens, G., and Pierce, B. C. (1995), On binary
methods,Theory and Practice of Object Systems1(3), 217–238.

8. Cardelli, L., and Wegner, P. (1985), On understanding types, data abstraction and parametric polymorphism,Computing
Surveys17(4), 471–522.

9. Drossopoulou, S., Wragg, D., and Eisenbach, S. (1998), Whatis Java binary compatibility? —Version 2, available from
http://www-dse.doc.ic.ac.uk in the file projects/slurp/papers.html#bchuge.

10. Felleisen, M. (1988), The theory and practice of first-class prompts,in “Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages,” pp. 180–190, ACM.

11. Fisher, K. (1996), “Type Systems for Object-Oriented Programming Languages,” Ph.D. thesis, Department of Computer
Science, Stanford University, 1996.

12. Fisher, K., Honsell, F., and Mitchell, J. C. (1994), A lambda calculus of objects and method specialization,Nordic J. Comput.
(formerly BIT), 1, 3–37 [1993, a preliminary version appeared in “Proc. IEEE Symposium on Logic in Computer Science,”
pp. 26–38, IEEE].

13. Fisher, K., and Mitchell, J. C. (1995), A delegation-based object calculus with subtyping,in “Fundamentals of Computation
Theory (FCT’95),” Lecture Notes in Computer Science, Vol. 965, pp. 42–61, Springer-Verlag, New York/Berlin.

14. Fisher, K., and Mitchell, J. C. (1996), The development of type systems for object-oriented languages,Theory and Practice
of Object Systems, 1, 189–220 [1994, a preliminary version appeared in “Proc. Theoretical Aspects of Computer Software,”
Lecture Notes in Computer Science, Vol. 789, pp. 844–885].

15. Fisher, K., and Mitchell, J. C. (1997), On the relationship between classes, objects, and data abstraction,in “Proceedings
of the International Summer School on Mathematics of Program Construction, Marktoberdorf, Germany,” Lecture Notes in
Computer Science. Springer-Verlag, New York/Berlin to appear [revised version to appear in “Theory and Practice of Object
Systems”].

16. Fisher, K., and Reppy, S. H., MOBY objects and classes, unpublished manuscript, 1998.

28 RIECKE AND STONE

17. Jategaonkar, L., and Mitchell, J. C. (1993), Type inference with extended pattern matching and subtypes,Fundamenta
Informaticae19, 127–166 [1988, a preliminary version appeared in “Proceedings of the ACM Symposium on Lisp and
Functional Programming”].

18. Lakos, J. (1996), “Large-Scale C++ Software Design,” Addison–Wesley, Reading, MA, 1996.
19. Liquori, L. (1996), An extended theory of primitive objects: First and second order systems, Tech. Rep. CS-23-96, Diparti-

mento di Informatica, Universit`a di Torino.
20. Liquori, L. (1997), An extended theory of primitive objects: First order system,in suoka, editors, “Proceedings of ECOOP-97,

International European Conference on Object Oriented Programming” (M. Aksit and S. Matsuoka, Eds.), Lecture Notes in
Computer Science, Vol. 1241, Springer-Verlag, New York/Berlin.

21. Meyer, B. (1992), “Eiffel: The Language,” Prentice–Hall, Englewood Cliffs, NJ.
22. Mitchell, J. C. (1990), Toward a typed foundation for method specialization and inheritance,in “Conference Record of the

Seventeenth Annual ACM Symposium on Principles of Programming Languages,” pp. 109–124. ACM.
23. Mitchell, J. C., and Plotkin, G. D. (1988), Abstract types have existential type,ACM Trans. Programming Languages and

Systems10(3), 470–502.
24. Plotkin, G. D. (1981), A structural approach to operational semantics, Tech. Rep. DAIMI FN-19, Computer Science Dept.,

Aarhus Univ., Denmark.
25. Rémy, D. (1994), Type inference for records in a natural extension of ML,in “Theoretical Aspects of Object-Oriented

Programming” (C. A. Gunter and J. C. Mitchell, Eds.), pp. 67–95, MIT Press, Cambridge, MA [1989, an earlier version
appearedin “Proceedings of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,” ACM].

26. Rémy, D., and Vouillon, J. (1997), Objective ML: A simple object-oriented extension of ML,in “Proceedings of the 24th
ACM Symposium on Principles of Programming Languages,” pp. 40–53, ACM Press.

27. Riecke, J. G., and Stone, C. A. (1998), Privacy via subsumption,in “Informal Workshop Record of the Fifth Workshop on
Foundations of Object-Oriented Languages.”

28. Wand, M. (1987), Complete type inference for simple objects,in “Proceedings, Symposium on Logic in Computer Science,”
pp. 37–44, IEEE.

	1. INTRODUCTION
	2. FIRST-ORDER EXTENSIBLE OBJECTS
	TABLE 1
	TABLE 2

	3. SECOND-ORDER EXTENSIBLE OBJECTS
	TABLE 3
	TABLE 4

	4. CONCLUSIONS
	APPENDIX A: STATIC SEMANTICS OF FIRST-ORDER SYSTEM
	APPENDIX B: STATIC SEMANTICS OF SECOND-ORDER SYSTEM
	APPENDIX C: CORRECTNESS OF FIRST-ORDER SYSTEM
	APPENDIX D: CORRECTNESS OF SECOND-ORDER SYSTEM
	ACKNOWLEDGMENTS
	REFERENCES

