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Localization: “Where am I?”
In many robot applications it is useful 
for the robot to know where it is 
relative to features in the world

Machine locations in a manufacturing 
shop
A kitchen in a home
Known mines in a battlefield
Prized flowers on a lawn
Battery charging stations

How does a robot localize in the world?

Some options:
GPS 
(Global Positioning System)
Odometry
Landmarks/sensors
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Global Positioning (GPS)

(from Dana, UTAustin and Frankel, GT)

Varying levels of 
accuracy, size, cost

Not suitable for small, 
mobile, low-cost robots

Factory workspaceFactory workspace

TransmittersTransmitters
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Odometry

Given:
Starting point
Motor commands, sensor values
Model of robot drive system and geometry

Compute:
Current point using kinematics

Problems: 
Predicted movement varies from observed movement

• Calibration errors, uncertain robot geometry
• Friction, wheel slippage

Errors grow without bound unless periodic absolute 
position corrections from other sensors used

(From Borenstein et. al.)
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Building Maps With Odometry

(From Thrun et. al.)

Bad odometry
Good odometry
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Landmarks
Artificial: distinctive 
landmarks placed at 
known locations in 
environment
Natural: distinctive 
features already in 
environment (known in 
advance or learned)
First recognize 
landmark, then use with 
map to localize

Problems:
Requires modified 
environment or unique 
features in 
environment
Noisy sensors have 
difficulty finding 
landmarks
Natural landmarks may 
be ambiguous

(From Borenstein et. al.)
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The Challenge: Simplified 
Localization

Given: 
Known map (with coordinates)
(Un)known initial position (x,y) and   orientation (θ) - pose

Implement:
Find and align with wall
Move along wall
Determine location
Go to known goal point (x,y)

wallwallwall doordoor

Adapted from:
“Adapting the sample size in particle filters 
through KLD-sampling” by Dieter Fox. 
International Journal of Robotics Research 
(IJRR), 22(12), p 985-1004,  December 2003
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Potential Solutions

Accurate GPS too expensive
Encoders not accurate enough for 
localization via odometry (even if initial pose 
is known)
Sensors too noisy and landmarks too 
ambiguous for landmark-based localization

Combine both encoders and sensors with 
smart algorithms: probabilistic localization

wallwallwall doordoor
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Teaching Probabilistic Localization

Instructions

Background material

Implementation details 
and tips
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Probabilistic Localization with 
Particle Filtering

Given:
Initial pose (optional)
Map of environment features/landmarks
Sequence of movement actions, over time
Sequence of sensor readings, over time
Model of movement uncertainty
Model of sensor reading-landmark associations

Compute:
Probability distribution over possible current poses 
(belief state)

wallwallwall doordoor
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Probabilistic Localization with 
Particle Filtering: Steps

Implementation details:
1. Find and align with wall (optional)
2. Move along wall
3. Recognize ends of course
4. Recognize doors/walls
5. Calculate odometry estimates of movement (using 

encoders or timing)
6. Maintain orientation using closed-loop feedback, either 

sonar or encoders (optional – or use single drivetrain)
7. Use particle filtering to update probability distribution 

over locations
Evaluation: 

Continuously display most likely position (or display full 
distribution off-board)
Go to known goal point (x,y)  (optional)
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Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for 
probabilistic 
localization

Implementation details 
and tips
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Odometry

Given:
Starting point
Motor commands, sensor values
Model of robot drive system and geometry

Compute:
Current point using kinematics

Problems: 
Predicted movement varies from observed movement

• Calibration errors, uncertain robot geometry
• Friction, wheel slippage

Errors grow without bound unless periodic absolute 
position corrections from other sensors used

(From Borenstein et. al.)
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Odometry Examples

Good line, poor line, squares
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Differential Drive
Two motors and driven 
wheels
Robot pivots around center 
point
Casters support weight at 
edges
Odometry tips:

Larger wheelbases are less 
prone to orientation 
errors
Castor wheels that bear 
significant weight induce 
slippage
Limit speed during turning 
to reduce slippage
Limit accelerations

(From Borenstein et. al.)
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Calculating Kinematics
Assume encoders mounted on drive motors 
Let

Cm = encoder count to linear displacement conversion factor
Dn = wheel diameter
Ce = encoder pulses per revolution
N = gear ratio

Cm = π Dn / N Ce
Incremental travel distance for left wheel 
∆L = Cm NL (NL = encoder counts on left wheel)

Incremental travel distance for right wheel 
∆R = Cm NR (NR = encoder counts on right wheel)

That’s all we need for determining horizontal 
displacement and rotation from encoder counts

16 counts per revolution
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Differential Drive 
Odometry/Kinematics

∆L = distance traveled by left 
wheel
∆R = distance traveled by 
right wheel

Distance D traveled by center 
point of robot is
D = (∆R+∆L)/2

Change in orientation ∆θ is 
∆θ = (∆R – ∆L)/base

Given: Starting pose (x,y,θ), 
D and ∆θ
Compute: Ending pose 
(x’,y’,θ’)

New orientation is now 
θ’ ≈ θ + ∆θ

New position is now
x’ ≈ x + D cos θ’
y’ ≈ y + D sin θ’

VR(t)

VL (t)

starting position

ending position

x

y
∆L

∆R
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Inverse Kinematics for Waypoint 
Navigation

Given (sequence of): 
Initial pose (x, y, theta) 
Target pose (x’, y’, theta’)

Decompose movement: 
1. Rotate robot to face toward (x’,y’)
2. Move in straight line to (x’,y’)
3. Rotate robot to orientation theta’
Determine target NR and NL (right and left 
encoder counts), for each movement:

Rotation: 
1. Determine desired angle
2. Determine encoder counts
Straight line movement
1. Determine desired distance
2. Determine encoder counts
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Closed-Loop Control for 
Orientation Adjustment

Given target right and left encoder counts (from inverse 
kinematics)
Program: guide robot toward target counts

Begin movement with initial motor speeds
Monitor feedback from encoders
Adjust motor speeds in small increments so that encoder 
ratios are maintained and the robot achieves the encoder 
targets with minimal delay

Loop (while targets not reached)
Compute current ratio and set state =
• Below_target_ratio or above_target_ratio or at_target_ratio 

(note: target ratio is 1:1 if you are always going straight)
Adjust motor velocities to stay in at_target_ratio state  
(could use proportional derivative control here)



Probabilistic Localization with the RCX, Greenwald 21

Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for 
probabilistic 
localization

Implementation details 
and tips
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Ultrasonic Distance Sensing (SONAR)
Ultrasonic burst, or “chirp,”

travels out to an object
reflected back into a 

receiver circuit ( tuned to 
detect the specific frequency 
of sound) 

Measures time-of-flight of 
“chirp”

Sound travels about 0.89 ms per 
foot (1.12 feet per ms) -- 1.78 ms 
for round trip

Distance to the target object (in 
feet) is round trip time (ms) divided 
by 1.78

Greater accuracy than with IR
Bats use form of ultrasonic 

ranging to navigate
(copyright Prentice Hall 2001)
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Hitechnic Ultrasonic Sensor

40kHz sound 
bursts
On-board circuit 
to time echo and 
return calculated 
range to RCX
Range: 6in-56in in 
½ inch units (0-
100 as light 
sensor on RCX)

(from hitechnic.com)
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Mindsensors Sonar 
Details
Freq: 24kHz
Range: 30 cm to 1.5meters
Accuracy: 4-5 cm
Pinging and timing inside sonar package 
Programming:
int a; 
Sensor.S2.setTypeAndMode(3,0x80); 
Sensor.S2.activate(); 
for(;;) { 

a=Sensor.S2.readValue(); 
LCD.showNumber(a); 
// add sleep here 

} 

a is number from 1 to 100
Empirical mapping = (12+.53*a) inches
dist = inchesToCm((float)(12f+.53*(float)a));

(from http://www.mindsensors.com/uspd.htm)
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Sonar Beam Pattern

Distance is not a point 
distance
Sonar beam has angular 
“spread” (about 30 degree 
dispersion)
Closest point of object is 
somewhere within that arc
Need multiple readings to 
disambiguate – but 
readings take time

?

cone width

(Courtesy of Dodds)
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Sonar Effects

(d)   Specular reflections 
cause walls to disappear

(e)   Open corners produce a 
weak spherical wavefront

(f)   Closed corners measure to the 
corner itself because of multiple 
reflections 

(a)   Sonar providing an 
accurate range measurement  

(b-c)   Lateral resolution is not very 
precise; the closest object in the 
beam’s cone provides the response  

(Courtesy of Dodds)
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Recognize Doors 
with Sonar

Side-facing sonar
No need for pivoting 
or multiple sonar

Learn door 
probability model

(from Thrun 2002)
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Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for 
probabilistic 
localization

Implementation details 
and tips
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Probabilistic Localization with 
Particle Filtering

Given:
Initial pose (optional)
Map of environment features/landmarks
Sequence of movement actions, over time
Sequence of sensor readings, over time
Model of movement uncertainty
Model of sensor reading-landmark associations

Compute:
Probability distribution over possible current 
poses (belief state)
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Implement Particle Filtering
Update location distribution incrementally
Inputs: movement actions, encoder feedback (optional), and 
sonar signal

(from  Fox 2003)
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General Problem: Tracking Change 
over Time

(from Russell and Norvig)

In localization 
unobservable state is pose (x, y, θ)
sensor readings and movement actions are evidence
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Localization over Time

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1
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Movement Model

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Move forward 1 second

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)
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Sensor/Landmark Model

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Known map

Pr(sonart-1 | (xt-1, yt-1, θt-1), known map)
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Dynamic Bayesian Network/Hidden 
Markov Model for Localization

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Pr(sonart-1 | (xt-1, yt-1, θt-1), known map)
Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move)

Filtering: Compute current belief state
given history of observations/actions
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Filtering: Compute Current Belief 
State

Dividing the evidence
Bayes’ rule
Markov property

Update with
new 
evidence
(sensor 
model)

Transition model Current belief state

Markov property

(from Russell and Norvig)
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Dynamic Bayesian networks ARE Bayesian networks

with variables in temporal order

This is not good news.  
Variable elimination is not efficient for 
inference because the factors grow to include
all state variables

(from Russell and Norvig)
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Weighted by conditional 
probabilities

(from Russell and Norvig)
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Resort to approximate inference

Samples generated 
“upstream” from 
evidence
Weight of sample 
depends on evidence but, 
actual samples have no 
relation to evidence

(from Russell and Norvig)



Probabilistic Localization with the RCX, Greenwald 40

Particle Filtering
Given: a constant set of “particles” (samples)
Distribute: particles over possible states at time t
Re-distribute: particles given new evidence to 
track belief state – where is the robot?

wallwall door

Could be anywhere

wallwall door

Just saw a wall (maybe)
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Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles 

with very low weights  given evidence

wallwall door

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

wallwall door
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Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles 

with very low weights  given evidence

wallwall door

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

wallwall door
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Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles 

with very low weights  given evidence

wallwall door

Pr(sonart-1 = wall | (xt-1, yt-1, θt-1), known map)

wallwall door
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Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights (weighted random selection)
Result: track high probability states and throw away particles 

with very low weights  given evidence

wallwall door wallwall door



Probabilistic Localization with the RCX, Greenwald 45

Particle Filtering Summary
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights (weighted random selection)

Result: track high probability states and throw away particles with 
very low weights  given evidence

Widely used for tracking 
nonlinear systems

Can handle high-dimensional 
state spaces

Simple to implement

Consistent approximations with 
bounded computation (from Russell and Norvig)

pf
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Teaching Probabilistic Localization

Instructions

Background material

Implementation details 
and tips
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The Challenge: Simplified 
Localization

Given: 
Known map (with coordinates)
(Un)known initial position (x,y) and   orientation (θ) - pose

Implement:
Find and align with wall
Move along wall
Use sensors to determine location
Go to known goal point (x,y)

wallwallwall doordoor
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Implement Particle Filtering
Update location distribution incrementally
Inputs: movement actions, encoder feedback (optional), and 
sonar signal

(from  Fox 2003)

Recall:
• Propagate 

particles 
(samples) 
according to 
movement model

• Weigh samples 
according to 
sensor model 
(evidence)

• Resample 
according to 
weights (weighted 
random selection)
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Probabilistic Localization 
Implementation Details
1. Find and align with wall (optional)
2. Move along wall 
3. Recognize ends of course
4. Recognize doors (sensor model – map location probability, 

side-facing sonar, parallel movement)
5. Calculate odometry estimates of movement (movement 

model - using encoders or timing)
6. Maintain orientation using closed-loop feedback, either 

sonar or encoders (wall following - optional – or use single 
drivetrain)

7. Use particle filtering to update probability distribution 
over locations

8. Continuously display most likely position (or display full 
distribution off-board)

9. Go to known goal point (x,y)  (optional)
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Movement
Build two-wheel differential 
drive robot with rotation sensors

Simplification 1: one drive train
Simplification 2: no rotation 
sensors (i.e. timing-based 
movement)

Implement odometry
LeJOS: built-in class  
RotationNavigator handles all 
calculations
Methods: backward, forward, 
getAngle, getX, getY, gotoAngle, 
gotoPoint, rotate, stop, travel

Build movement model

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)
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Movement
Build two-wheel differential 
drive robot with rotation sensors

Simplification 1: one drive train
Simplification 2: no rotation 
sensors (i.e. timing-based 
movement)

Implement odometry
LeJOS: built-in class  
RotationNavigator handles all 
calculations
Methods: backward, forward, 
getAngle, getX, getY, gotoAngle, 
gotoPoint, rotate, stop, travel

Build movement model
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Sensing
Side-facing sonar

No need for pivoting or multiple 
sonar
Sonar readings in LeJOS: 
setTypeAndMode (3, 0x80), 
activate, readValue

Build map location probability 
model (sensor model)

Inputs: sonar reading, distance to 
wall (optional), orientation to wall 
(optional), known map

Maintain parallel orientation and 
constant distance (optional)

(from Thrun 2002)

Pr(sonart-1 = wall | (xt-1, yt-1, θt-1), known map)
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Sensing
Side-facing sonar

No need for pivoting or multiple 
sonar
Sonar readings in LeJOS: 
setTypeAndMode (3, 0x80), 
activate, readValue

Build map location probability 
model (sensor model)

Inputs: sonar reading, distance to 
wall (optional), orientation to wall 
(optional), known map

Maintain parallel orientation and 
constant distance (optional)

(from Thrun 2002)
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Wall Following to Maintain 
Orientation and Distance

Drive parallel to wall
Feedback from 
proximity sensors (e.g. 
bump, IR, sonar)
Feedback loop, 
continuous monitoring 
and correction of 
motors -- adjusting 
distance to wall to 
maintain goal distance(Courtesy of Bennet)
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Tips and Hints
Sonar:  

Sonar is a problem in general; maintaining parallel movement helps
RCX sonar very sensitive to non-perpendicular orientation
Useful range: 12-30inches

Odometry:
LeJOS localization has significant error
Localization library does not indicate whether or not robot is moving
Distance traveled (as read) and distance commanded do not generally 
match
Some momentum effects
Using wheels as casters causes too much slippage
Rotation sensors lose counts if geared up to high rpms; very very slow 
gearing might also be a problem
Built-in odometry problems provide good pedagogical motivation for 
particle filtering
Rotation sensors cannot be multiplexed with other sensors

General:
Need to sense ends of course – but don’t use this extra information in 
algorithm
Wall-following to stay aligned with course helps
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Tips and Hints (Continued)
Particle filtering algorithm:

May converge quickly to wrong answer, especially if too few particles
Need to add some noise (random samples) to keep from converging 
incorrectly
Need to map fractional movements to integer locations for efficient 
memory usage
RCX memory can be used up quickly – 25-100 samples good starting point
Need measure of “location certainty” before moving to goal

RCX environment issues:
Test algorithm off-line first to work out bugs (hard to debug RCX on-
line)

• E.g. use array of sample sonar readings along length of course
BrickCC makes a poor IDE – poor error messages, poor comm with tower, 
difficult configuration
Alternative IDEs used: Eclipse (leJOS plug-in), IntelliJ
RCXTools (i.e. RCXDownload) works well for compilation and downloading 
Slow code downloading cycles using IR tower
With leJOS behavior arbiter, each behavior needs stop method so that 
arbiter can gain control
leJOS arbiter uses threads
leJOS does not have garbage collection
Use persistent memory for calibration values
Collection classes are available in leJOS and more useful than arrays
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Demo I (Particle Filtering with RCX 
and LeJOS): Long or Short Wall?

wallwall door
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Demo I (Particle Filtering with RCX 
and LeJOS): Localization

wallwall doordoor

Initialize 
Samples 
Uniformly

Wall But 
NOT Short 
Wall 
Segment

Must Be 
First Door 
(after 
Longer 
Wall)

Must Be at 
Middle 
Wall
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Demo Solution

Particle Filtering with RCX and LeJOS (link to video)
Simplifications in demo:  

no axle rotation sensing – just timing estimates for odometry
two motors connected to one port; ignoring orientation errors

wallwall doordoor
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Demo Algorithm Sketch

25 samples, uniformly 
distributed
Loop:

Move one inch forward
Read sonar
Adjust sample weights
Resample
End if variance in sample 
location is small

Adjust sample weights
Initialize to 1
Compare sonar to map
If both say “wall” 

• then weight * 0.6
• else weight * 0.4

Pr(move = x | action = 1)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Movement uncertainty model



Probabilistic Localization with the RCX, Greenwald 62

Initialize Samples Uniformly
wallwall doordoor
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Wall But NOT Short Wall Segment

wallwall doordoor
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Must Be First Door (after Longer 
Wall)

wallwall doordoor
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Must Be at Middle Wall

wallwall doordoor
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Hands-on Lab: Materials 
MonteCarloLocalization.zip -- Sample code and lab 
instructions – contents:

MCL.pdf/MCL.doc – instructions (including all code)
Testcode directory – RCX Java code to test sonar and 
navigation
MCL_PC directory

• MCL_PC.java – PC Java code to monitor localization progress – to be 
compiled and run on PC

• Irtower.dll – PC libraries needed to run PC code – should be in same 
directory as MCL_PC.java

MCL_RCX directory
• MCL.java – RCX particle filtering code – to be compiled and run on 

RCX
• samples.java – sample transition model

RCX, Robot base with one or two drivetrains, sonar sensor, 
zero or two rotation sensors, LEJOS, RCXTools, 2 or more 
obstacles/walls
These slides

(Materials developed with Babak Shir)
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Hands-on Lab: Building 
Build robot

Option 1: two rotation sensors and differential drive (attach 
sensors to ports 1 and 3)
Option 2: zero rotation sensors and single drive train
Mount sonar to face one side of robot (attach sensor to port 2)
Record the following robot parameters

• Option 1: Wheel diameter, drive length, gear ratio (in consistent 
units)

• Option 2: Time to rotate one revolution (if robot turns), Time to 
move one meter (in fractional seconds)

Build linear environment of walls and doors 
First obstacle should be a wall
Record sizes of walls and doors in inches
Start with something simple and small 
Max length = 250 inches

(Materials developed with Babak Shir)
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Hands-on Lab: Programming 

PC-side code is already written 
Displays particles in real-time using IR tower 
(USB)
Load MCL_PC.java onto PC
Put irtower.dll in same folder as MCL_PC.java
Compile (make sure classpath is correct)

Experiment with sonar code
Experiment with transition model

(Materials developed with Babak Shir)
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Hands-on Lab: Experiment with 
Sonar 
import josx.platform.rcx.*;
import java.io.*;
import josx.rcxcomm.*;
import josx.robotics.*;

public class testsonar
{

public static void main(String[] args) throws 
Exception
{

Sensor.S2.setTypeAndMode(3,0x80);
Sensor.S2.activate(); 
for (;;)
{
LCD.showNumber(Sensor.S2.readValue());
Button.VIEW.waitForPressAndRelease();
} 

}
}

Attach sonar to port 2
Place sonar about 12 inches from wall
Press view button repeatedly to view 
sonar readings
Readings are percent

100 percent = wall very far (around 60 
inches or more)
0 percent = wall very close (around 12 
inches)
Somewhere in between gives relative 
distance of wall

Pick value that captures maximum 
reading you get when wall is near –
anything greater than this will  be 
considered a door
Use this value in mcl_rcx.java as WALL
The program compares the sensor 
value (below WALL = wall) with the map 
expectations for a position and uses 
that to adjust the weight based on the 
accuracy assumptions of the sonar 
sensor 

(Materials developed with Babak Shir)
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Hands-on Lab: Experiment with 
Navigator Movement Commands 
import josx.platform.rcx.*;
import josx.robotics.*;

public class testnavigator
{

public static float wheelDiameter=4.96f, driveLength=9.5f, 
gearRatio=3f; //in cms
// driveLength in {8.45,10.17} for wide wheels

public static void main(String[] args) throws Exception
{

RotationNavigator nav = new     
RotationNavigator(wheelDiameter,driveLength,gearRatio,
Motor.A,Motor.C,Sensor.S1,Sensor.S3);

nav.travel(51); // 51 cm = roughly 20 inches

//uncomment these lines to try out rotation and 
// moving in a point-to-point square   
// nav.rotate(360);
//  nav.gotoPoint(40,0);  
// nav.gotoPoint(40,40);
// nav.gotoPoint(0,40);
// nav.gotoPoint(0,0);
}

}

Record dimensions in 
inches or 
centimeters
Drivelength
sensitive to flooring
Run this program a 
few times to try to 
determine the 
accuracy of 
traveling 2 inches 
Use to modify 
samples.java
(transition model)
Can also use to 
experiment with 
lejOS odometry

(Materials developed with Babak Shir)
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Class RotationNavigator
RotationNavigator(float wheelDiameter, float driveLength, float ratio)
Method Summary 
void backward() : Moves the RCX robot backward until stop() is called. 
void forward() : Moves the RCX robot forward until stop() is called. 
float getAngle(): Returns the current angle the RCX robot is facing. 
float getX(): Returns the current x coordinate of the RCX. 
float getY(): Returns the current y coordinate of the RCX. 
void gotoAngle(float angle): Rotates the RCX robot to point in a 

certain direction. 
void gotoPoint(float x, float y): Rotates the RCX robot towards the 

target point and moves the required distance. 
void rotate(float angle): Rotates the RCX robot a specific number of 

degrees in a direction (+ or -). 
void stop(): Halts the RCX robot and calculates new x, y coordinates. 
void travel(int dist): Moves the RCX robot a specific distance. 

(Materials developed with Babak Shir)



Probabilistic Localization with the RCX, Greenwald 73

Hands-on Lab: Experiment with 
Transition model  (samples.java)

Given a command to travel 2 
inches, where might the 
robot end up?

(Materials developed with Babak Shir)

Pr(move = x inches | action = 2 inches)

0
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0.1

0.15
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0.35

0.5 1 1.5 2 2.5 3 3.5

if(r<0.05)        
this.x=(short) (x+1*action); 

//robot moves one grid or half an inch
else if(r<0.15)

this.x=(short) (x+2*action); 
//robot moves 2 grids or one inch

else if(r<0.35)
this.x=(short) (x+3*action); 

//robot moves 3 grids or one inch and half
else if(r<0.65)

this.x=(short) (x+4*action); 
//robot moves 4 grids or two inches

else if(r<0.85)
this.x=(short) (x+5*action); 

//robot moves 5 grids or two inches and half
else if(r<0.95)

this.x=(short) (x+6*action); 
//robot moves 6 grids or three inches

else 
this.x=(short) (x+7*action); 

//robot moves 7 grids or three inches and half 
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Hands-on Lab: Particle Filtering 
Execution 

Start MCL_PC.java on PC-side 
Position IR tower near RCX
Compile, download and start MCL.java on RCX

Robot will move forward and stop when it localizes
If it fails to localize after moving the full map 
length it will move backwards and continue trying 
to localize
MCL_PC will show localization progress in real-
time
RCX LCD will display mean estimate of location in 
inches

(Materials developed with Babak Shir)
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Lab Tips
Make sure you have irtower.dll in the same folder as 
MCL_PC.java
Do not forget to add LejOS libs folder to classpath

For example: add it to system 
properties>Advanced>Environment Variable> System variable
Variable=classpath
Value=.;C:\lejos\lib\classes.jar;C:\lejos\lib\pcrcxcomm.jar

MCL_PC is not compatible with serial towers
If your robot does not move accurately, you can change the 
transition model in Sample.java
If your samples are converging in the wrong places, re-
consider your sonar WALL threshold
LejOS has some memory leak so running the program for a 
very long time may cause a system crash
Due to limited memory samples are not redistributed or 
added during localization.  So, the robot shouldn’t be moved 
during the localization process

(Materials developed with Babak Shir)


