
Probabilistic Localization with the RCX, Greenwald 1

Probabilistic Localization with the
RCX

Lloyd Greenwald
(www.cs.drexel.edu/~lgreenwa)

Probabilistic Localization with the RCX, Greenwald 2

Outline

Overview
The localization
problem
A simplified
educational challenge
and RCX solution

Teaching the
solution
Example solution
demonstration
Hands-on Lab

Probabilistic Localization with the RCX, Greenwald 3

Localization: “Where am I?”
In many robot applications it is useful
for the robot to know where it is
relative to features in the world

Machine locations in a manufacturing
shop
A kitchen in a home
Known mines in a battlefield
Prized flowers on a lawn
Battery charging stations

How does a robot localize in the world?

Some options:
GPS
(Global Positioning System)
Odometry
Landmarks/sensors

Probabilistic Localization with the RCX, Greenwald 4

Global Positioning (GPS)

(from Dana, UTAustin and Frankel, GT)

Varying levels of
accuracy, size, cost

Not suitable for small,
mobile, low-cost robots

Factory workspaceFactory workspace

TransmittersTransmitters

Probabilistic Localization with the RCX, Greenwald 5

Odometry

Given:
Starting point
Motor commands, sensor values
Model of robot drive system and geometry

Compute:
Current point using kinematics

Problems:
Predicted movement varies from observed movement

• Calibration errors, uncertain robot geometry
• Friction, wheel slippage

Errors grow without bound unless periodic absolute
position corrections from other sensors used

(From Borenstein et. al.)

Probabilistic Localization with the RCX, Greenwald 6

Building Maps With Odometry

(From Thrun et. al.)

Bad odometry
Good odometry

Probabilistic Localization with the RCX, Greenwald 7

Landmarks
Artificial: distinctive
landmarks placed at
known locations in
environment
Natural: distinctive
features already in
environment (known in
advance or learned)
First recognize
landmark, then use with
map to localize

Problems:
Requires modified
environment or unique
features in
environment
Noisy sensors have
difficulty finding
landmarks
Natural landmarks may
be ambiguous

(From Borenstein et. al.)

Probabilistic Localization with the RCX, Greenwald 8

The Challenge: Simplified
Localization

Given:
Known map (with coordinates)
(Un)known initial position (x,y) and orientation (θ) - pose

Implement:
Find and align with wall
Move along wall
Determine location
Go to known goal point (x,y)

wallwallwall doordoor

Adapted from:
“Adapting the sample size in particle filters
through KLD-sampling” by Dieter Fox.
International Journal of Robotics Research
(IJRR), 22(12), p 985-1004, December 2003

Probabilistic Localization with the RCX, Greenwald 9

Potential Solutions

Accurate GPS too expensive
Encoders not accurate enough for
localization via odometry (even if initial pose
is known)
Sensors too noisy and landmarks too
ambiguous for landmark-based localization

Combine both encoders and sensors with
smart algorithms: probabilistic localization

wallwallwall doordoor

Probabilistic Localization with the RCX, Greenwald 10

Teaching Probabilistic Localization

Instructions

Background material

Implementation details
and tips

Probabilistic Localization with the RCX, Greenwald 11

Probabilistic Localization with
Particle Filtering

Given:
Initial pose (optional)
Map of environment features/landmarks
Sequence of movement actions, over time
Sequence of sensor readings, over time
Model of movement uncertainty
Model of sensor reading-landmark associations

Compute:
Probability distribution over possible current poses
(belief state)

wallwallwall doordoor

Probabilistic Localization with the RCX, Greenwald 12

Probabilistic Localization with
Particle Filtering: Steps

Implementation details:
1. Find and align with wall (optional)
2. Move along wall
3. Recognize ends of course
4. Recognize doors/walls
5. Calculate odometry estimates of movement (using

encoders or timing)
6. Maintain orientation using closed-loop feedback, either

sonar or encoders (optional – or use single drivetrain)
7. Use particle filtering to update probability distribution

over locations
Evaluation:

Continuously display most likely position (or display full
distribution off-board)
Go to known goal point (x,y) (optional)

Probabilistic Localization with the RCX, Greenwald 13

Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for
probabilistic
localization

Implementation details
and tips

Probabilistic Localization with the RCX, Greenwald 14

Odometry

Given:
Starting point
Motor commands, sensor values
Model of robot drive system and geometry

Compute:
Current point using kinematics

Problems:
Predicted movement varies from observed movement

• Calibration errors, uncertain robot geometry
• Friction, wheel slippage

Errors grow without bound unless periodic absolute
position corrections from other sensors used

(From Borenstein et. al.)

Probabilistic Localization with the RCX, Greenwald 15

Odometry Examples

Good line, poor line, squares

Probabilistic Localization with the RCX, Greenwald 16

Differential Drive
Two motors and driven
wheels
Robot pivots around center
point
Casters support weight at
edges
Odometry tips:

Larger wheelbases are less
prone to orientation
errors
Castor wheels that bear
significant weight induce
slippage
Limit speed during turning
to reduce slippage
Limit accelerations

(From Borenstein et. al.)

Probabilistic Localization with the RCX, Greenwald 17

Calculating Kinematics
Assume encoders mounted on drive motors
Let

Cm = encoder count to linear displacement conversion factor
Dn = wheel diameter
Ce = encoder pulses per revolution
N = gear ratio

Cm = π Dn / N Ce
Incremental travel distance for left wheel
∆L = Cm NL (NL = encoder counts on left wheel)

Incremental travel distance for right wheel
∆R = Cm NR (NR = encoder counts on right wheel)

That’s all we need for determining horizontal
displacement and rotation from encoder counts

16 counts per revolution

Probabilistic Localization with the RCX, Greenwald 18

Differential Drive
Odometry/Kinematics

∆L = distance traveled by left
wheel
∆R = distance traveled by
right wheel

Distance D traveled by center
point of robot is
D = (∆R+∆L)/2

Change in orientation ∆θ is
∆θ = (∆R – ∆L)/base

Given: Starting pose (x,y,θ),
D and ∆θ
Compute: Ending pose
(x’,y’,θ’)

New orientation is now
θ’ ≈ θ + ∆θ

New position is now
x’ ≈ x + D cos θ’
y’ ≈ y + D sin θ’

VR(t)

VL (t)

starting position

ending position

x

y
∆L

∆R

Probabilistic Localization with the RCX, Greenwald 19

Inverse Kinematics for Waypoint
Navigation

Given (sequence of):
Initial pose (x, y, theta)
Target pose (x’, y’, theta’)

Decompose movement:
1. Rotate robot to face toward (x’,y’)
2. Move in straight line to (x’,y’)
3. Rotate robot to orientation theta’
Determine target NR and NL (right and left
encoder counts), for each movement:

Rotation:
1. Determine desired angle
2. Determine encoder counts
Straight line movement
1. Determine desired distance
2. Determine encoder counts

Probabilistic Localization with the RCX, Greenwald 20

Closed-Loop Control for
Orientation Adjustment

Given target right and left encoder counts (from inverse
kinematics)
Program: guide robot toward target counts

Begin movement with initial motor speeds
Monitor feedback from encoders
Adjust motor speeds in small increments so that encoder
ratios are maintained and the robot achieves the encoder
targets with minimal delay

Loop (while targets not reached)
Compute current ratio and set state =
• Below_target_ratio or above_target_ratio or at_target_ratio

(note: target ratio is 1:1 if you are always going straight)
Adjust motor velocities to stay in at_target_ratio state
(could use proportional derivative control here)

Probabilistic Localization with the RCX, Greenwald 21

Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for
probabilistic
localization

Implementation details
and tips

Probabilistic Localization with the RCX, Greenwald 22

Ultrasonic Distance Sensing (SONAR)
Ultrasonic burst, or “chirp,”

travels out to an object
reflected back into a

receiver circuit (tuned to
detect the specific frequency
of sound)

Measures time-of-flight of
“chirp”

Sound travels about 0.89 ms per
foot (1.12 feet per ms) -- 1.78 ms
for round trip

Distance to the target object (in
feet) is round trip time (ms) divided
by 1.78

Greater accuracy than with IR
Bats use form of ultrasonic

ranging to navigate
(copyright Prentice Hall 2001)

Probabilistic Localization with the RCX, Greenwald 23

Hitechnic Ultrasonic Sensor

40kHz sound
bursts
On-board circuit
to time echo and
return calculated
range to RCX
Range: 6in-56in in
½ inch units (0-
100 as light
sensor on RCX)

(from hitechnic.com)

Probabilistic Localization with the RCX, Greenwald 24

Mindsensors Sonar
Details
Freq: 24kHz
Range: 30 cm to 1.5meters
Accuracy: 4-5 cm
Pinging and timing inside sonar package
Programming:
int a;
Sensor.S2.setTypeAndMode(3,0x80);
Sensor.S2.activate();
for(;;) {

a=Sensor.S2.readValue();
LCD.showNumber(a);
// add sleep here

}

a is number from 1 to 100
Empirical mapping = (12+.53*a) inches
dist = inchesToCm((float)(12f+.53*(float)a));

(from http://www.mindsensors.com/uspd.htm)

Probabilistic Localization with the RCX, Greenwald 25

Sonar Beam Pattern

Distance is not a point
distance
Sonar beam has angular
“spread” (about 30 degree
dispersion)
Closest point of object is
somewhere within that arc
Need multiple readings to
disambiguate – but
readings take time

?

cone width

(Courtesy of Dodds)

Probabilistic Localization with the RCX, Greenwald 26

Sonar Effects

(d) Specular reflections
cause walls to disappear

(e) Open corners produce a
weak spherical wavefront

(f) Closed corners measure to the
corner itself because of multiple
reflections

(a) Sonar providing an
accurate range measurement

(b-c) Lateral resolution is not very
precise; the closest object in the
beam’s cone provides the response

(Courtesy of Dodds)

Probabilistic Localization with the RCX, Greenwald 27

Recognize Doors
with Sonar

Side-facing sonar
No need for pivoting
or multiple sonar

Learn door
probability model

(from Thrun 2002)

Probabilistic Localization with the RCX, Greenwald 28

Teaching Probabilistic Localization

Instructions

Background material
Review odometry
Review sonar
Particle filtering for
probabilistic
localization

Implementation details
and tips

Probabilistic Localization with the RCX, Greenwald 29

Probabilistic Localization with
Particle Filtering

Given:
Initial pose (optional)
Map of environment features/landmarks
Sequence of movement actions, over time
Sequence of sensor readings, over time
Model of movement uncertainty
Model of sensor reading-landmark associations

Compute:
Probability distribution over possible current
poses (belief state)

Probabilistic Localization with the RCX, Greenwald 30

Implement Particle Filtering
Update location distribution incrementally
Inputs: movement actions, encoder feedback (optional), and
sonar signal

(from Fox 2003)

Probabilistic Localization with the RCX, Greenwald 31

General Problem: Tracking Change
over Time

(from Russell and Norvig)

In localization
unobservable state is pose (x, y, θ)
sensor readings and movement actions are evidence

Probabilistic Localization with the RCX, Greenwald 32

Localization over Time

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Probabilistic Localization with the RCX, Greenwald 33

Movement Model

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Move forward 1 second

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

Probabilistic Localization with the RCX, Greenwald 34

Sensor/Landmark Model

wallwall door

(xt-1, yt-1, θt-1)

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Known map

Pr(sonart-1 | (xt-1, yt-1, θt-1), known map)

Probabilistic Localization with the RCX, Greenwald 35

Dynamic Bayesian Network/Hidden
Markov Model for Localization

xt-1,yt-1,θt-1 xt,yt,θt xt+1,yt+1,θt+1

sonart-1 sonart sonart+1

Pr(sonart-1 | (xt-1, yt-1, θt-1), known map)
Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move)

Filtering: Compute current belief state
given history of observations/actions

Probabilistic Localization with the RCX, Greenwald 36

Filtering: Compute Current Belief
State

Dividing the evidence
Bayes’ rule
Markov property

Update with
new
evidence
(sensor
model)

Transition model Current belief state

Markov property

(from Russell and Norvig)

Probabilistic Localization with the RCX, Greenwald 37

Dynamic Bayesian networks ARE Bayesian networks

with variables in temporal order

This is not good news.
Variable elimination is not efficient for
inference because the factors grow to include
all state variables

(from Russell and Norvig)

Probabilistic Localization with the RCX, Greenwald 38

Weighted by conditional
probabilities

(from Russell and Norvig)

Probabilistic Localization with the RCX, Greenwald 39

Resort to approximate inference

Samples generated
“upstream” from
evidence
Weight of sample
depends on evidence but,
actual samples have no
relation to evidence

(from Russell and Norvig)

Probabilistic Localization with the RCX, Greenwald 40

Particle Filtering
Given: a constant set of “particles” (samples)
Distribute: particles over possible states at time t
Re-distribute: particles given new evidence to
track belief state – where is the robot?

wallwall door

Could be anywhere

wallwall door

Just saw a wall (maybe)

Probabilistic Localization with the RCX, Greenwald 41

Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles

with very low weights given evidence

wallwall door

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

wallwall door

Probabilistic Localization with the RCX, Greenwald 42

Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles

with very low weights given evidence

wallwall door

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

wallwall door

Probabilistic Localization with the RCX, Greenwald 43

Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights
Result: track high probability states and throw away particles

with very low weights given evidence

wallwall door

Pr(sonart-1 = wall | (xt-1, yt-1, θt-1), known map)

wallwall door

Probabilistic Localization with the RCX, Greenwald 44

Particle Filtering Steps
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights (weighted random selection)
Result: track high probability states and throw away particles

with very low weights given evidence

wallwall door wallwall door

Probabilistic Localization with the RCX, Greenwald 45

Particle Filtering Summary
1. Propagate particles (samples) according to movement model
2. Weigh samples according to sensor model (evidence)
3. Resample according to weights (weighted random selection)

Result: track high probability states and throw away particles with
very low weights given evidence

Widely used for tracking
nonlinear systems

Can handle high-dimensional
state spaces

Simple to implement

Consistent approximations with
bounded computation (from Russell and Norvig)

pf

Probabilistic Localization with the RCX, Greenwald 46

Teaching Probabilistic Localization

Instructions

Background material

Implementation details
and tips

Probabilistic Localization with the RCX, Greenwald 47

The Challenge: Simplified
Localization

Given:
Known map (with coordinates)
(Un)known initial position (x,y) and orientation (θ) - pose

Implement:
Find and align with wall
Move along wall
Use sensors to determine location
Go to known goal point (x,y)

wallwallwall doordoor

Probabilistic Localization with the RCX, Greenwald 48

Implement Particle Filtering
Update location distribution incrementally
Inputs: movement actions, encoder feedback (optional), and
sonar signal

(from Fox 2003)

Recall:
• Propagate

particles
(samples)
according to
movement model

• Weigh samples
according to
sensor model
(evidence)

• Resample
according to
weights (weighted
random selection)

Probabilistic Localization with the RCX, Greenwald 49

Probabilistic Localization
Implementation Details
1. Find and align with wall (optional)
2. Move along wall
3. Recognize ends of course
4. Recognize doors (sensor model – map location probability,

side-facing sonar, parallel movement)
5. Calculate odometry estimates of movement (movement

model - using encoders or timing)
6. Maintain orientation using closed-loop feedback, either

sonar or encoders (wall following - optional – or use single
drivetrain)

7. Use particle filtering to update probability distribution
over locations

8. Continuously display most likely position (or display full
distribution off-board)

9. Go to known goal point (x,y) (optional)

Probabilistic Localization with the RCX, Greenwald 50

Movement
Build two-wheel differential
drive robot with rotation sensors

Simplification 1: one drive train
Simplification 2: no rotation
sensors (i.e. timing-based
movement)

Implement odometry
LeJOS: built-in class
RotationNavigator handles all
calculations
Methods: backward, forward,
getAngle, getX, getY, gotoAngle,
gotoPoint, rotate, stop, travel

Build movement model

Pr((xt, yt, θt) | (xt-1, yt-1, θt-1), move forward 1 second)

Probabilistic Localization with the RCX, Greenwald 51

Movement
Build two-wheel differential
drive robot with rotation sensors

Simplification 1: one drive train
Simplification 2: no rotation
sensors (i.e. timing-based
movement)

Implement odometry
LeJOS: built-in class
RotationNavigator handles all
calculations
Methods: backward, forward,
getAngle, getX, getY, gotoAngle,
gotoPoint, rotate, stop, travel

Build movement model

Probabilistic Localization with the RCX, Greenwald 52

Sensing
Side-facing sonar

No need for pivoting or multiple
sonar
Sonar readings in LeJOS:
setTypeAndMode (3, 0x80),
activate, readValue

Build map location probability
model (sensor model)

Inputs: sonar reading, distance to
wall (optional), orientation to wall
(optional), known map

Maintain parallel orientation and
constant distance (optional)

(from Thrun 2002)

Pr(sonart-1 = wall | (xt-1, yt-1, θt-1), known map)

Probabilistic Localization with the RCX, Greenwald 53

Sensing
Side-facing sonar

No need for pivoting or multiple
sonar
Sonar readings in LeJOS:
setTypeAndMode (3, 0x80),
activate, readValue

Build map location probability
model (sensor model)

Inputs: sonar reading, distance to
wall (optional), orientation to wall
(optional), known map

Maintain parallel orientation and
constant distance (optional)

(from Thrun 2002)

Probabilistic Localization with the RCX, Greenwald 54

Wall Following to Maintain
Orientation and Distance

Drive parallel to wall
Feedback from
proximity sensors (e.g.
bump, IR, sonar)
Feedback loop,
continuous monitoring
and correction of
motors -- adjusting
distance to wall to
maintain goal distance(Courtesy of Bennet)

Probabilistic Localization with the RCX, Greenwald 55

Tips and Hints
Sonar:

Sonar is a problem in general; maintaining parallel movement helps
RCX sonar very sensitive to non-perpendicular orientation
Useful range: 12-30inches

Odometry:
LeJOS localization has significant error
Localization library does not indicate whether or not robot is moving
Distance traveled (as read) and distance commanded do not generally
match
Some momentum effects
Using wheels as casters causes too much slippage
Rotation sensors lose counts if geared up to high rpms; very very slow
gearing might also be a problem
Built-in odometry problems provide good pedagogical motivation for
particle filtering
Rotation sensors cannot be multiplexed with other sensors

General:
Need to sense ends of course – but don’t use this extra information in
algorithm
Wall-following to stay aligned with course helps

Probabilistic Localization with the RCX, Greenwald 56

Tips and Hints (Continued)
Particle filtering algorithm:

May converge quickly to wrong answer, especially if too few particles
Need to add some noise (random samples) to keep from converging
incorrectly
Need to map fractional movements to integer locations for efficient
memory usage
RCX memory can be used up quickly – 25-100 samples good starting point
Need measure of “location certainty” before moving to goal

RCX environment issues:
Test algorithm off-line first to work out bugs (hard to debug RCX on-
line)

• E.g. use array of sample sonar readings along length of course
BrickCC makes a poor IDE – poor error messages, poor comm with tower,
difficult configuration
Alternative IDEs used: Eclipse (leJOS plug-in), IntelliJ
RCXTools (i.e. RCXDownload) works well for compilation and downloading
Slow code downloading cycles using IR tower
With leJOS behavior arbiter, each behavior needs stop method so that
arbiter can gain control
leJOS arbiter uses threads
leJOS does not have garbage collection
Use persistent memory for calibration values
Collection classes are available in leJOS and more useful than arrays

Probabilistic Localization with the RCX, Greenwald 57

Outline

Overview
The localization
problem
A simplified
educational challenge
and RCX solution

Teaching the
solution
Example solution
demonstration
Hands-on Lab

Probabilistic Localization with the RCX, Greenwald 58

Demo I (Particle Filtering with RCX
and LeJOS): Long or Short Wall?

wallwall door

Probabilistic Localization with the RCX, Greenwald 59

Demo I (Particle Filtering with RCX
and LeJOS): Localization

wallwall doordoor

Initialize
Samples
Uniformly

Wall But
NOT Short
Wall
Segment

Must Be
First Door
(after
Longer
Wall)

Must Be at
Middle
Wall

Probabilistic Localization with the RCX, Greenwald 60

Demo Solution

Particle Filtering with RCX and LeJOS (link to video)
Simplifications in demo:

no axle rotation sensing – just timing estimates for odometry
two motors connected to one port; ignoring orientation errors

wallwall doordoor

Probabilistic Localization with the RCX, Greenwald 61

Demo Algorithm Sketch

25 samples, uniformly
distributed
Loop:

Move one inch forward
Read sonar
Adjust sample weights
Resample
End if variance in sample
location is small

Adjust sample weights
Initialize to 1
Compare sonar to map
If both say “wall”

• then weight * 0.6
• else weight * 0.4

Pr(move = x | action = 1)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Movement uncertainty model

Probabilistic Localization with the RCX, Greenwald 62

Initialize Samples Uniformly
wallwall doordoor

Probabilistic Localization with the RCX, Greenwald 63

Wall But NOT Short Wall Segment

wallwall doordoor

Probabilistic Localization with the RCX, Greenwald 64

Must Be First Door (after Longer
Wall)

wallwall doordoor

Probabilistic Localization with the RCX, Greenwald 65

Must Be at Middle Wall

wallwall doordoor

Probabilistic Localization with the RCX, Greenwald 66

Outline

Overview
The localization
problem
A simplified
educational challenge
and RCX solution

Teaching the
solution
Example solution
demonstration
Hands-on Lab

Probabilistic Localization with the RCX, Greenwald 67

Hands-on Lab: Materials
MonteCarloLocalization.zip -- Sample code and lab
instructions – contents:

MCL.pdf/MCL.doc – instructions (including all code)
Testcode directory – RCX Java code to test sonar and
navigation
MCL_PC directory

• MCL_PC.java – PC Java code to monitor localization progress – to be
compiled and run on PC

• Irtower.dll – PC libraries needed to run PC code – should be in same
directory as MCL_PC.java

MCL_RCX directory
• MCL.java – RCX particle filtering code – to be compiled and run on

RCX
• samples.java – sample transition model

RCX, Robot base with one or two drivetrains, sonar sensor,
zero or two rotation sensors, LEJOS, RCXTools, 2 or more
obstacles/walls
These slides

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 68

Hands-on Lab: Building
Build robot

Option 1: two rotation sensors and differential drive (attach
sensors to ports 1 and 3)
Option 2: zero rotation sensors and single drive train
Mount sonar to face one side of robot (attach sensor to port 2)
Record the following robot parameters

• Option 1: Wheel diameter, drive length, gear ratio (in consistent
units)

• Option 2: Time to rotate one revolution (if robot turns), Time to
move one meter (in fractional seconds)

Build linear environment of walls and doors
First obstacle should be a wall
Record sizes of walls and doors in inches
Start with something simple and small
Max length = 250 inches

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 69

Hands-on Lab: Programming

PC-side code is already written
Displays particles in real-time using IR tower
(USB)
Load MCL_PC.java onto PC
Put irtower.dll in same folder as MCL_PC.java
Compile (make sure classpath is correct)

Experiment with sonar code
Experiment with transition model

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 70

Hands-on Lab: Experiment with
Sonar
import josx.platform.rcx.*;
import java.io.*;
import josx.rcxcomm.*;
import josx.robotics.*;

public class testsonar
{

public static void main(String[] args) throws
Exception
{

Sensor.S2.setTypeAndMode(3,0x80);
Sensor.S2.activate();
for (;;)
{
LCD.showNumber(Sensor.S2.readValue());
Button.VIEW.waitForPressAndRelease();
}

}
}

Attach sonar to port 2
Place sonar about 12 inches from wall
Press view button repeatedly to view
sonar readings
Readings are percent

100 percent = wall very far (around 60
inches or more)
0 percent = wall very close (around 12
inches)
Somewhere in between gives relative
distance of wall

Pick value that captures maximum
reading you get when wall is near –
anything greater than this will be
considered a door
Use this value in mcl_rcx.java as WALL
The program compares the sensor
value (below WALL = wall) with the map
expectations for a position and uses
that to adjust the weight based on the
accuracy assumptions of the sonar
sensor

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 71

Hands-on Lab: Experiment with
Navigator Movement Commands
import josx.platform.rcx.*;
import josx.robotics.*;

public class testnavigator
{

public static float wheelDiameter=4.96f, driveLength=9.5f,
gearRatio=3f; //in cms
// driveLength in {8.45,10.17} for wide wheels

public static void main(String[] args) throws Exception
{

RotationNavigator nav = new
RotationNavigator(wheelDiameter,driveLength,gearRatio,
Motor.A,Motor.C,Sensor.S1,Sensor.S3);

nav.travel(51); // 51 cm = roughly 20 inches

//uncomment these lines to try out rotation and
// moving in a point-to-point square
// nav.rotate(360);
// nav.gotoPoint(40,0);
// nav.gotoPoint(40,40);
// nav.gotoPoint(0,40);
// nav.gotoPoint(0,0);
}

}

Record dimensions in
inches or
centimeters
Drivelength
sensitive to flooring
Run this program a
few times to try to
determine the
accuracy of
traveling 2 inches
Use to modify
samples.java
(transition model)
Can also use to
experiment with
lejOS odometry

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 72

Class RotationNavigator
RotationNavigator(float wheelDiameter, float driveLength, float ratio)
Method Summary
void backward() : Moves the RCX robot backward until stop() is called.
void forward() : Moves the RCX robot forward until stop() is called.
float getAngle(): Returns the current angle the RCX robot is facing.
float getX(): Returns the current x coordinate of the RCX.
float getY(): Returns the current y coordinate of the RCX.
void gotoAngle(float angle): Rotates the RCX robot to point in a

certain direction.
void gotoPoint(float x, float y): Rotates the RCX robot towards the

target point and moves the required distance.
void rotate(float angle): Rotates the RCX robot a specific number of

degrees in a direction (+ or -).
void stop(): Halts the RCX robot and calculates new x, y coordinates.
void travel(int dist): Moves the RCX robot a specific distance.

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 73

Hands-on Lab: Experiment with
Transition model (samples.java)

Given a command to travel 2
inches, where might the
robot end up?

(Materials developed with Babak Shir)

Pr(move = x inches | action = 2 inches)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.5 1 1.5 2 2.5 3 3.5

if(r<0.05)
this.x=(short) (x+1*action);

//robot moves one grid or half an inch
else if(r<0.15)

this.x=(short) (x+2*action);
//robot moves 2 grids or one inch

else if(r<0.35)
this.x=(short) (x+3*action);

//robot moves 3 grids or one inch and half
else if(r<0.65)

this.x=(short) (x+4*action);
//robot moves 4 grids or two inches

else if(r<0.85)
this.x=(short) (x+5*action);

//robot moves 5 grids or two inches and half
else if(r<0.95)

this.x=(short) (x+6*action);
//robot moves 6 grids or three inches

else
this.x=(short) (x+7*action);

//robot moves 7 grids or three inches and half

Probabilistic Localization with the RCX, Greenwald 74

Hands-on Lab: Particle Filtering
Execution

Start MCL_PC.java on PC-side
Position IR tower near RCX
Compile, download and start MCL.java on RCX

Robot will move forward and stop when it localizes
If it fails to localize after moving the full map
length it will move backwards and continue trying
to localize
MCL_PC will show localization progress in real-
time
RCX LCD will display mean estimate of location in
inches

(Materials developed with Babak Shir)

Probabilistic Localization with the RCX, Greenwald 75

Lab Tips
Make sure you have irtower.dll in the same folder as
MCL_PC.java
Do not forget to add LejOS libs folder to classpath

For example: add it to system
properties>Advanced>Environment Variable> System variable
Variable=classpath
Value=.;C:\lejos\lib\classes.jar;C:\lejos\lib\pcrcxcomm.jar

MCL_PC is not compatible with serial towers
If your robot does not move accurately, you can change the
transition model in Sample.java
If your samples are converging in the wrong places, re-
consider your sonar WALL threshold
LejOS has some memory leak so running the program for a
very long time may cause a system crash
Due to limited memory samples are not redistributed or
added during localization. So, the robot shouldn’t be moved
during the localization process

(Materials developed with Babak Shir)

