
Robotics in Early Undergraduate Education

David L. Duke, Justin Carlson and Chuck Thorpe
Carnegie Mellon University, Qatar Campus
{dduke|justinca|thorpe}@qatar.cmu.edu

Abstract

Introduction to Mobile Robot Programming is a new project-
based course taught at Carnegie Mellon University in Qatar
to undergraduates early in the curriculum. We describe the
course details and relate our experiences and observations.
We believe that this course is a valuable introductory com-
puter science course; however, its success requires a signifi-
cant time commitment from the instructors. The value lies in
this course’s ability to add breadth and computational think-
ing skills that will aid the students as they progress.

Introduction
At the new Qatar branch campus of Carnegie Mellon Uni-
versity, a new robotics based course is being offered which
is targeted at undergraduates early in their course of study.
This course is designed as a departure point for building
breadth and computational thinking skills at a very early
point in the curriculum. Mobile robotics provides a rich
source of opportunities to apply creative thinking and an-
alytical skills to tangible problems. Additionally, relatively
simple platforms and low level APIs keep barriers to entry
low, making it possible to expose students to nontrivial prob-
lems very early in their undergraduate careers.

In this paper, we will share our experiences in the de-
sign and teaching of this course through its first two itera-
tions. We will outline the structure of the course, describe
the hardware and software systems used and developed, give
an overview of the curriculum and logistics, and outline our
observations throughout the process.

Background
In 1999, the Qatar Foundation launched an initiative to
bring high-quality, western-style postsecondary education to
the Arabian peninsula. The result, Education City, houses
branch campuses of several American universities serving a
growing undergraduate population drawn primarily from the
region.

Carnegie Mellon began providing undergraduate educa-
tion programs in computer science and business at Educa-
tion City in the fall of 2004. Carnegie Mellon University in
Qatar (CMU-Q) currently has an undergraduate population

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Robot Platform

of approximately 120, with a longer term plan to grow to
approximately 400 students. The startup of a new program
provides an intimate, fast-paced environment which is con-
ducive to innovative ideas in teaching and curriculum.

Course Context
Introduction to Mobile Robot Programming is offered to
second-semester freshmen. The requirements for enrollment
are minimal: one semester of programming as a prerequi-
site, and another as a corequisite. In addition to the majority
of computer science students, the course is taken by a sub-
stantial proportion of business students. The course is not a
robotics course in the traditional sense; instead, it is a com-
puter science course which uses robotics as a platform for a
project-based approach to early-stage computer science ed-
ucation. The curriculum was initially designed by adapting
an existing course pioneered by Illah Nourbaksh (Lalonde,
Bartley, & Nourbakhsh 2006).

One of the major goals of the computer science curricu-
lum at CMU is the development of the skills needed to
apply computational power to a wide variety of problems.
This course helps students towards that goal in a number of
ways. Teamwork, abstraction, complexity management, de-
sign, debugging, testing, and large project management are
all required to succeed. The project nature of the course
means that at the end of the semester students have built all
the significant parts of a large software system which can

play a nontrivial competitive game in the real world.

Hardware
The robotic platform used is the AmigoBot from ActivMe-
dia. This is a low-profile, two-wheeled differential drive
robot, with a ring of 8 sonars to sense its environment.
Integrated odometry is provided via encoders on the drive
wheels. An example of the platform can be seen in Figure 1.

A standard Linux-based laptop is connected to the robot
via an RS232 serial link, and rides atop the chassis on a cus-
tom metal platform. The computational burden of the tasks
covered in the semester requires a very modest amount of
processing power. While the hardware used is not as inex-
pensive as some alternatives (Wolz 2001), the cost per lap-
top/robot combination is not prohibitive.

The robot used has some significant limitations. The most
significant is the coarse granularity of commands for set-
ting the velocities of the wheels independently. This is not a
hardware limitation; rather, it is a protocol limitation which
could be addressed with a firmware update. However, we
have been unsuccessful in persuading the vendor to address
this issue.

Additionally, sonars have a relatively slow update rate and
the firing order cannot be easily configured. The control
loop over the serial link runs at 10 Hz. In each iteration
of this loop, 2 sonars are updated, meaning the entire sonar
ring update takes .4 seconds.

The possibility of using vision as a primary sensing
modality for this course was considered, but eventually was
explicitly rejected. Although it is possible to present high-
level vision APIs, the desire to have students implement as
much of the systems as possible guided us to simpler sensing
solutions.

Figure 2: Robot solving a maze

Software
Currently, introductory programming classes at CMU-Q are
taught using Java and the Eclipse IDE; the same platforms
are used in this course, albeit on top of Linux instead of
Windows.

Students communicate with the robot via a simplified API
which allows them to query the state of the sonars and en-
coders and give linear or angular velocity commands to the
robot at 10 Hz. The most significant calls to the API are
listed in figure 4.

The run-time interface presented to the students provides
them with visual feedback about the current state of the
robot, and allows them to run their code by selecting assign-
ments from a menu.

Lab assignments are typically implemented by adding a
method with a specified prototype to a given file. In the in-
stances where input is required of the user, the input and
parsing mechanisms are given and the sanitized input is
given to the student’s code. This is an intentional design
decision; although we would prefer to give the students the
flexibility to implement a user interface how they see fit, the
substantial majority have not seen any significant GUI pro-
gramming before.

Figure 3: Software Frontend

For prototyping and experimentation, students are also
provided with a simulated robot. This simulator is presented
as a swappable backend to the API; students can run their
programs on the simulator with no modification, though one
of the constant surprises to an undergraduate is that the re-
sults of their programs can be significantly different on the
physical robot than in the idealized simulator. Almost all
lab work requires demonstration on a physical robot, forcing
students to cope with the challenges not modeled in simula-
tion.

Curriculum
The emphasis of the course is on laboratory programming
assignments at one-week intervals. Each week the students
demonstrate and explain their work to instructors for evalu-
ation and advice.

The first half of the semester is fairly nonlinear in con-
struction; each assignment is relatively independent of pre-
vious work. Topics covered include robot characterization,
reactive control, open- and closed-loop control, precision
movement, and learning via operant conditioning. Through-
out this portion of the course, the environment in which the
robot operates is left relatively unstructured; the ground is
guaranteed to be flat, but obstacles are multiple shapes and
sizes.

// Return the sonar and odometry state

public AmigoBotState getState();

// Set the velocity of the wheels, in m/sec

public void setVel2(float lVel, float rVel);

// Rotate in place at rvel degrees/sec

public void setRVel(float rvel);

// Move in a straight line at vel m/sec

public void setVel(float vel);

Figure 4: Selected functions from the software API

Figure 5: Simulator in a maze environment

The second half of the semester is more progressive,
building towards the final tournament. At this point in the
semester the robots operate in a more structured rectangu-
lar maze environment. All walls of the maze are orthogo-
nal and of a fixed known length. We begin by having the
students build primitives to map precision movement into
movement commands useful for sensing and navigating a
maze and bounding error accumulation. Using these primi-
tives, students solve carefully constructed mazes using hand-
generated universal plans, and are introduced to the idea of
handling a case wherein the robot does not know where it
begins. The next step is sequential planning, in which the
robot must generate and execute its own plan for solving an
arbitrary maze given a known starting point, goal and maze.
Finally, information is hidden, and mazes must be solved
both in the case where the starting position of the robot is
unknown as well as in the case where the maze is not known.

The capstone of the class is the final challenge, in which

robots race to gather goals in a networked interactive en-
vironment. It is designed to be achievable yet is complex
enough that strategies for improving performance can be
(and generally are) extremely diverse.

The challenge is a competitive game, with two teams
playing at a time in identical (but separate) mazes. When
the game begins, each team receives the outline of an empty
maze, their starting position relative to that outline, and a set
of shared goal locations. The number of goals is constant,
though their locations change as teams claim them. When a
team claims a goal it scores a point, and the goal is moved
elsewhere in the maze for both teams.

Figure 6: Head-to-head final competition

Logistics
Introduction to Mobile Robot Programming is taught with
one instructor and two TAs. The most recent class size was
26 students divided into 13 groups of two. Each team had
access to one laptop, and all teams shared time on 8 robots.

The class operates on a weekly cycle. At the start of the
week, students are given a detailed laboratory assignment
listing the skills their robot must demonstrate. When pos-
sible, the assignment includes a performance-based grading
rubric to help students evaluate their progress.

Lectures are sparse, covering the basic material necessary
for the completion of the lab as well as related topics. We of-
ten discuss different approaches to the problems presented,
but generally do not give detailed guidance. Many of the
projects include a competition component to help motivate
the students. The weekly cycle ends with evaluations of
the implementations. Significantly, all students can observe
demonstrations for all groups.

Students work in groups of two to complete the labs, and
after each week the students change partners. Each group
is required to submit all underlying code when they demon-
strate their implementation. The code is then placed into a
code repository which is opened after all groups demonstrate
the lab. Groups are allowed to access and build on any code
from previous weeks placed in the code repository. Late in

the semester, students are allowed to form their own teams
which are maintained through the last few lab assignments
and through the final challenge.

Although the emphasis of the course is on the weekly lab-
oratory projects, there are also homework assignments, ex-
ams, and some writing requirements which help to evaluate
students progress outside of the team context.

Observations
This is a relatively new course, but we can offer some qual-
itative observations.

One of our key observations is that robotics is a fer-
tile field for generating interesting computational problems
which are interesting but do not require extensive computer
science backgrounds to approach. All of the lab assignments
can be solved using standard Java code with extremely sim-
ple data structures, yet students found most of the assign-
ments quite challenging. From the comments of our stu-
dents, we believe that seeing physical results from writing
programs can be a powerful motivator.

Competition is good. Students are more motivated by
assignments which have some aspect of intraclass compe-
tition, even when this is unrelated to their grade. In many
cases competitions have motivated students to implement
solutions that far exceed the requirements. In particular, top
students are inspired to push themselves by friendly compe-
tition with the instructors, especially in the final challenge
of the semester when their work is on display to the wider
university community.

For many of our students this was their first experience
working in a team. Keeping teams fluid for much of the
semester improved the students’ teamwork skills by letting
them work with a variety of personalities and coding styles.
As with any course involving teamwork, there are some
problems with nonparticipation and group conflict which
need appropriate handling. In particular, at the freshman
level sometimes students need more guidance on how to ef-
fectively work in less-than-ideal team situations.

In the course from which this offering is adapted, teams
of three students are formed at the beginning of the semester
and are kept for the duration. In the first iteration of this
course, the same approach was taken. The varied skill lev-
els of team members combined with the expected group
conflicts exacerbated problems of nonparticipation in many
cases, causing us to move to the current system.

Making the code repository available is a valuable method
for teaching the students how to read, understand, and debug
code, and to find examples of design patterns which work
well. It also helps to keep students from falling irreparably
behind as lab assignments begin to build on previous work.
Students often downloaded code written by a different group
that needed to be debugged. As instructors we intentionally
gave limited help, leaving the responsibility of understand-
ing the code to the students.

One lesson that is constantly reinforced in the lab assign-
ments is analysis. Particularly when debugging, students
are forced to come up with strategies for making behavior
triggers visible and breaking down the problem into smaller
parts.

Finally, to be effective, teaching this course requires a sig-
nificant amount of time invested in interactions between in-
structors and small groups. The nature of the course is such
that individualized instruction and help is indispensable.

Conclusion
We have presented a new robotics course offered to un-
dergraduates early in their coursework. This course lever-
ages robotics as a platform to teach analytical skills, and
gives students early exposure to teamwork and large-scale
projects, and culminates in students building all the major
components to solve a nontrivial task on real hardware.

The course is well received by students, most of whom
find interactions with robots and competition with their
peers to be good motivators to explore and invent. We look
forward to continuing to refine the presented course and to
exploring more options for using robotics in the curriculum.

References
Danyluk, A. P. 2005. Using robotics to motivate learning in
an ai course for non-majors. In In Accessible Hands-on Ar-
tificial Intelligence and Robotics Education (AAAI Spring
Symposium).
Dodds, Z.; Greenwald, L.; Howard, A.; Tejada, S.; and
Weinberg, J. 2006. Components, curriculum, and commu-
nity: Robots and robotics in undergraduate ai education. AI
Magazine 27(1):11–22.
Lalonde, J.-F.; Bartley, C.; and Nourbakhsh, I. 2006. Mo-
bile robot programming in education. In International
Conference on Robotics and Automation (ICRA).
Maxwell, B. A., and Meeden, L. A. 2000. Integrating
robotics research with undergraduate education. IEEE In-
telligent Systems 15(6):22–27.
Rosenblatt, M., and Choset, H. 2000. Designing and imple-
menting hands-on robotics labs. IEEE Intelligent Systems
15(6):32 – 39.
Wolz, U. 2001. Teaching design and project management
with lego rcx robots. In SIGCSE ’01: Proceedings of the
thirty-second SIGCSE technical symposium on Computer
Science Education, 95–99. New York, NY, USA: ACM
Press.

