
Remote Shared Access To A Classroom Robotics Lab
William Harris

Dept. of CS
Medgar Evers College

Brooklyn, NY

wharris@acm.org

David Arnow
Turing’s Craft, Inc.

Brooklyn, NY 11210
arnow@turingscraft.com

ABSTRACT
Robot programming is a quintessential hands-on
computing activity, and this rightfully accounts for
much of its growing popularity in the CS curriculum.
However, as robot programming moves from an
elective curiosity into the mainstream of the
curriculum, this hands-on character will create
logistical challenges of lab availability to students.
Remote access to the lab during off-hours can
ameliorate this problem.

Keywords
Robot programming, programming instruction,
automated checking of programming exercises

1. INTRODUCTION
Robot programming is an exciting, relatively new
addition to the computer science curriculum, one that
articulates with multiple points of that curriculum,
from the high school level to undergraduate senior
projects. One reason for its effectiveness in capturing
student interest is its concrete, hands-on character.
Ironically, as robotics programming moves from the
experimental section or the optional elective to the
mainstream of the CS curriculum in a department, the
need to satisfy the hands-on, concrete aspect of the
subject will become a resource bottleneck. This paper
reports work in progress to extend a widely used
general purpose asynchronous learning tool,
CodeLab™, to facilitate supportive remote access to a
robotics lab for introductory robotics programming
students.

2. BACKGROUND
The Robotics Laboratory, housed in the Major R.
Owens NASA Aerospace Educational Laboratory
(AEL) at Medgar Evers College of The City
University of New York, is the primary site used to
teach our robotics classes. Several groups of students
(from elementary school through college) have
experienced the Robotics Lab, and have completed

sample lessons that introduce robot and robotics
fundamentals. The Robotics Lab has been used to
teach several robot programming languages
(including: RCX Code, RoboLab, NQC, and
XSLisp).

A variety of robot languages have been presented,
over recent years, to a diverse set of populations at the
lab. Elementary school students (6-graders) have
studied RoboLab. High School students have studied
RCX Code, RoboLab, and NQC. College students
have used these languages as well in a Digital
Systems course and have also used XSLisp at the lab
in their Artificial Intelligence course.

The elementary school students were part of
“RoboCamp 2005”: an Intensive week-long LEGO
Robotics Summer Camp for rising six-graders. The
camp was a collaborative partnership between LEGO
Education, the Education Technology Think Tank,
Medgar Evers College, and the Crown School for
Law and Journalism (PS 161). The middle school
students were selected from the College’s NASA
SEMAA Program (Science, Engineering,
Mathematics, and Aerospace Academy (SEMAA),
and took part in an 8-week program. High school
students participated in a 10-week program, and were
part of the New York State Science, Technology,
Engineering (STEP) Program at Medgar Evers
College. The College students were MEC Computer
Science Majors.

 Currently, use of this off-line robotics lab is limited
by the requirement of physical access, the need for the
presence of instructional and supervisory personnel,
and delays resulting from the learning curve of
visiting students. The clear benefit that would result
from providing structured online access to the lab
leads us to CodeLab.
CodeLab [1] is the commercial version of an
academic NSF project[2], WebToTeach [3, 4]. The
pedagogy behind CodeLab mimics techniques used

widely in other subjects, such as mathematics and
foreign language study. The main idea of the
pedagogy is to provide large numbers of self-paced,
highly interactive exercises that focus on key ideas of
programming. These exercises are intended to
augment, rather than to replace, the traditional "whole
program" assignments in the first year of
undergraduate study. CodeLab is a web-based tool
that enables faculty to assign exercises to students and
monitor student progress. For the student, CodeLab
provides experience with fundamental elements of
syntax, semantics, and basic usage of the
programming language. The tool provides immediate
feedback on correctness and often offers suggestions
for fixing errors. Students can proceed at their own
pace, subject to deadlines imposed at the instructor’s
discretion.
For the faculty member, CodeLab automatically
checks student work for correctness. A dynamic roster
is built into CodeLab to track student performance
and maintain a record of submissions. CodeLab's
helpful feedback and hints give students on-the-spot
assistance, which reduces the number of students
coming to faculty office hours with low-level
questions. One instructor stated: "I am getting more
questions about concepts, software engineering and
problem-solving and fewer questions about basics"
[5]. Successful performance on CodeLab exercises
certifies that the student has written code that
correctly solves a stated problem. This provides
instructors with an additional indicator that students
coming out of an introductory class have obtained
mastery of the topics covered by CodeLab.
From its beginning as an academic NSF project, a
development goal of CodeLab was to reduce attrition.
By providing a setting where students can master the
syntax, semantics, and common usage of a
programming language, CodeLab can help flatten the
student learning curve in CS1. For example, one
instructor reported a reduction of student withdrawals
six weeks into the term from the usual 30 (out of 150)
to only 2 [6]. CodeLab has also been used by several
departments (for example, Brooklyn College,
Blackburn College, the University of Alberta, and The
Citadel) in courses other than CS1 (e.g. Data
Structures or an introduction to OOP) to ease the
introduction of a new language or provide a refresher
of a previously taught language, without devoting
substantial class time teaching or reviewing the
language fundamentals. Students with programming

experience have used CodeLab to quickly get up to
speed on the new language, freeing the instructor to
focus on the concepts of the course rather than on
language details.

3. THE PROJECT
In order to increase access to the lab, and realize the
benefits of CodeLab pedagogy in the context of robot
programming we are integrating CodeLab with a
robotics lab, and developing a suitable set of
meaningful CodeLab robotics programming exercises
to use in connection with this arrangement.
The traditional architecture of CodeLab involves
multiple separate, typically remote, testing servers
that have the responsibility for taking the student code
submission, incorporating it in a code harness,
compiling and executing the resulting program, and
generating a response to the student. The servers are
responsible for different languages, and so supporting
a robotics programming language such as NQC in the
context of CodeLab means constructing a suitable
testing server: a process that can receive NQC code
fragments, and with suitable harnesses build an
executable NQC program and run it on a robot.
Typical non-robotics student programs run on a
general purpose computer, and interact with the
environment at most through file creation. In such
cases, the CodeLab testing servers are able to
ascertain correctness or discover particular flaws in
the student code logic by examining the state of the
executing program or its file system environment. In
the case of robotics programming, correctness is more
difficult to establish because it depends on an
environment (robot motion) that is more complex, and
harder to programmatically access and analyze.
For this reason, our current system will in some cases
not provide definitive feedback on correctness, but
rather capture the resulting robot motion in a short
movie and make that movie available to the student
user. Although this now shifts a significant part of the
onus of evaluation to the student user herself, the
CodeLab mechanism can still be used to provide
immediate feedback on compilation errors and on
logical errors when such errors are detectable in the
NQC program state itself. In any case, video feedback
is essential to retaining at least the sense of the hands-
on concrete character that makes robotics
programming so attractive in the first place.
The NQC testing server that accomplishes this is itself
divided into two servers: the CodeLab front-end

which interacts with CodeLab and plays the role of a
testing server and the robot back-end, which directly
manages the robot and the camera.
The use scenario then is as follows. A student submits
a solution to a robot programming exercise to
CodeLab. As is true of most CodeLab exercises, the
student’s submission is not an entire program but a
snippet of code, concentrating on one aspect of NQC
or a particular robot programming technique. An
NQC cross compiler is used on the front-end testing
server to check the syntax, and offer some semantic
checks as well, before executing them on the robot.
When the program checks out, the front-end testing
server, taking on the role of a client, contacts the
testing back-end server in the networked robotics lab,
and submits the compiled NQC program, along with
various identifying information. The back-end server
loads the program into a robot and lets the robot
execute the program. A video camera then records
the action, and the back-end server saves the short
video file, returns the status and video access
information to the front-end server. With that
information in hand, the front-end server can continue
in the typical role of any CodeLab testing server,

passing the status and access information back to the
main CodeLab server which makes the video
available to the student.

4. REFERENCES
[1] Turing's Craft – The Exercises,

http://www.turingscraft.com/exers.php
[2] Arnow, D. & Weiss, G. An Asynchronous

Learning Network Tool for Improving CS
Education and Retention Rates, Proposal to the
National Science Foundation, EHR-DUE CCLI-
EMD Program.

[3] WebToTeach: A Web-based Automated Program
Checker, Frontiers in Education (FIE99), San
Juan, Puerto Rico, November, 1999. (With Oleg
Barshay).

[4] WebToTest: On-line Programming Examinations
Using WebToTeach, ITiCSE 99, Cracow, Poland,
June, 1999. (With Oleg Barshay).

[5] Rose Williams, SUNY at Binghamton, private
communication, 2003.

