
Roomba Pac-Man: Teaching Autonomous Robotics through Embodied Gaming
Brendan Dickenson Odest Chadwicke Jenkins Mark Moseley

David Bloom Daniel Hartmann
Department of Computer Science

Brown University
115 Waterman St.

Providence, RI, 02912-1910
{bcd | cjenkins | mmoseley | dbloom | dhartman }@cs.brown.edu

Abstract

We present an approach to teaching autonomous
robotics to upper-level undergraduates through the
medium of embodied games. As part of a develop-
ing course at Brown University, we have created the
Roomba Pac-Man task to introduce students to differ-
ent approaches to autonomous robot control in the con-
text of a specific task. Roomba Pac-Man has been de-
veloped using commodity hardware from which stu-
dents explore standard methods in robotics, namely sub-
sumption, localization, and path planning. Our devel-
opment of Roomba Pac-Man is founded upon ground-
ing robotics in an compelling and accessible application
in a noncontrived real-world environment in a manner
than can be reproduced, giving students a sense of own-
ership.

Introduction
As the field of robotics advances, robotics education must
adapt to incorporate both technical developments that be-
come core topics and compelling new challenges of societal-
level interest. Undergraduate autonomous robotics curricula
have been adept at exposing students to relatively modern
topics, such as behavior-based control and Monte Carlo Lo-
calization. However, the impact of such coursework can
be difficult to conceptually translate beyond the academic
setting. Tangible artifacts produced in robotics courses are
often overly structured (e.g., simulations, toy-level robots),
difficult to reproduce (e.g, expensive equipment), or are dis-
tant from deployment in society. Our approach is to explore
different approaches to autonomous control with focus on
a specific task that is compelling, reproduceable with inex-
pensive off-the-shelf hardware, and deployable in many en-
vironments.

To this end, we have developed the Roomba Pac-Man task
(RPM) as a central theme in Brown course CS148 (“Build-
ing Intelligent Robots”) for exploring topics in reactive and
deliberative robot control. Working from the appeal of video
games, RPM is an embodied version of classic 1980s arcade
game Pac-Man, where the player-controlled agent must nav-
igate a maze to consume “dots” while avoiding “ghosts”. In

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

RPM, a virtual Pac-Man is replaced with a physically em-
bodied iRobot Roomba vacuum equipped with a webcam
and onboard computing. Students perform three introduc-
tory projects that cover subsumption (Arkin 1998), localiza-
tion (Thrun, Burgard, & Fox 2005), and path planning in the
context of RPM, allowing for normalized comparison and
appreciation for the relative strengths of both approaches.
RPM leverages Roombas as a cost-effective and deployable
solution for teaching Robotics on real robots. Following
the desire for reproduceability, students use the Player robot
server and Gazebo simulation platform (collectively referred
to as PSG) to develop control clients. RPM is placed in typ-
ical human environments containing fiducialized versions of
“food pellets,” “ghosts,” and “power ups.” Student’s con-
trol clients score points by vacuuming pellets and visiting
power-ups within a fixed amount of time.

Roombas are used as the platform for the course because
they offer the student a chance to interact with a robot that
is actually used in the world. The Roombas provide a
platform that is easy to interact with (no proprietary soft-
ware/hardware). Via the PSG open-source project a wide
variety tools may be used to acquire sensory information,
and if something is not currently supported it can be reason-
ably added. This allows the student to attach virtually any
real world sensor to the Roomba. In short, the Roombas are
real robots, used in the real world, not some striped down
educational robot, and certainly not a toy.

In the following sections we present our ongoing work de-
veloping robotics curriculum around Roomba Pac-Man. We
describe our extensions to PSG to support RPM and the pro-
gression of lab exercises and projects throughout the course.

Course Structure
The structure of Brown CS148 consists of 3 introductory
labs and 3 control projects to reinforce material presented
in lecture. Labs are simple projects that are designed to
give students an introduction to using PSG and the Roomba
hardware. The labs progress through basic reactive ob-
stacle avoidance, blobfinding, object/fiducial seeking , and
color calibration with physically simulated robot. These labs
are designed to be straightforward exercises (implementable
within a given lab period) that give the students a chance to
familiarize themselves with robotics. These labs build on
one another to yield a robot client that is the foundation for

the first project of RPM.
The course projects are designed to explore reactive and

deliberative approaches to robot control in the context of
RPM. The first project, implementing a reactive subsump-
tion controller, integrates all the topics covered previously
in the labs. The final two projects focus on localization and
its use for deliberative path planning. For the second project,
students implement Monte-Carlo Localization (MCL) for a
simulated Pioneer 2AT in PSG. The third project involves
writing a path planner to play RPM in the real world, us-
ing the estimates from their MCL system from the sec-
ond project. For final projects, undergrads develop robot
clients of their own design to compete in a final competition.
Students are encouraged to either strengthen their existing
code or blend their creativity with concepts from the course,
such as learning policies from demonstration or performing
SLAM.

Our approach offers a logical transition through the ma-
terial. Starting with three straightforward lab assignments
(two of which are in simulation) allows the students to gain
a mastery of the platforms as well as a basic understand-
ing of fundamentals of robotics (odometry for instance), be-
fore dealing with more complex ideas or issues with real
world implementations. The third lab provides a transition
from simulation to real world implementation. The second
project gives the students the chance to successfully imple-
ment MCL in simulation where debugging and lighting con-
ditions are much easier before being forced to make it work
in the real world.

RPM Platform
We aimed for RPM to be cheap, reproduceable, and us-
able in normal environments. For this purpose, the iRobot
Roomba was a logical choice, being a cost effective solu-
tion with brand familiarity. Because of its popularity in
society, students immediately see it not as a toy, but a de-
vice with real-world applicability. Each Roomba costs $150.
We use standard Dell Dimension laptops which cost $500
each to control an individual Roomba. The Roombas are
connected to the laptops via a Robo-Dynamics Roo-Stick,
which can be purchased for $25 each. PSG has basic sup-
port for the Roomba Serial Command Interface, which we
have extended to incorporate more of the Roomba’s features
(e.g., IR, vacuum, etc.). Finally, we mounted Logitech Com-
municate STX webcams on the Roombas, costing about $30
dollars each. Thus, for under $700 a robot, we have a very
functional, real world robot with the ability to manipulate
objects (i.e., vacuum). An early version of RPM is shown in
Figure 1.

While cheap, our infrastructure is far from optimal due to
their size and weight of the laptop and the sketchy nature of
webcams. Other efforts have explored better options such
as Gumstix embedded boards and MacMinis. The primary
strength of these approach follows from the philosophy of
PSG itself in that it is portable and flexible to the specific
of the robot hardware. If one needs better computation, one
can buy a more powerful computer. If better or different
sensors are needed, attach a suitable device and use or write
the Player interface.

Figure 1: An early version of Roomba Pac-Man.

PSG and its Modifications
Much of our framework relies on the PSG platform (Gerkey
et al. 2001). Player is a network server for robot control.
Player runs onboard a single robot and provides a clean in-
terface to the robot’s sensors and actuators over an IP net-
work. Gazebo is a 3D physics-based robot simulator suit-
able for smaller numbers of robots simulated at high fidelity.
The physics for Gazebo is provided by the Open Dynamics
Engine (ODE), which integrates physical dynamics for arbi-
trary kinematic structures through optimization.

PSG provides an infrastructure for developing robot con-
trollers. Students write controllers as client programs that
send control commands to and request information from a
robot through its Player server. Stage and Gazebo can sim-
ulate various types of robot platforms (i.e., hardware) and
populations. The same interface, provided by the Player
robot server, is used to control a robot in the real world or its
equivalent in a Stage/Gazebo simulation. Robot platforms
that are not currently supported in PSG can be developed
through implementing appropriate Player server interfaces
and devices in Stage or Gazebo.

Devices (e.g., a laser, a camera, or a complete robot) are
actual hardware in the real world or simulated hardware
that exists in a virtual environment maintained by Stage or
Gazebo. A robot server (e.g., Player) is the information in-
terface between the robot and any program that requests in-
formation from or sends commands to the robot. Regardless
of whether a device is real or simulated, the robot server
provides the same interface to the robot for client programs.
Thus, controllers developed on a simulated device will im-
mediately run the equivalent real robot device given PSG

Figure 2: Simulated world in Gazebo for Labs 1 and 2

support for the device.

Another advantage of Player as a robot server is its in-
dependence from a particular client-development language.
The interaction between Player and a client program is done
completely over a TCP/IP (or UDP/IP) network connection.
Thus, any language with libraries that supports Player func-
tionalities can be used to develop robot clients. The most
supported client language are C and C++. Many other lan-
guages are supported including Python, Java, and GNU Oc-
tave.

We made several changes to player in the development
of RPM. The original Player Roomba support allowed only
for position control and reading the bump sensor. We added
the ability to read the other sensors on the Roomba, includ-
ing six infrared sensors including the IR-wall detector and
the various buttons on top of the Roomba. We were able to
add this ability by utilizing the Proxy structure supplied by
Player, adding only the ”glue” to map the commands into the
proxy functions. We also added the ability to control more
of the Roomba outputs besides just the wheel motors. This
included the ability to control the color and brightness of
the LEDs on the Roomba and to turn on and off the vacuum
through the gripper proxy.

We made several other modifications to Player in relation
to the camera. We added the ability to auto-detect cam-
era parameters, enabling the webcams we had purchased to
function in player. Modifications were also made to play-
ercam, a PSG utility that streams the camera frames to the
screen and overlays the blobfinder results in this image. This
program was modified to report a range of YUV values when
the user clicked and selected a rectangular region of interest
in the image. This change was a tremendous help for camera
calibration, which allows for more readily preparing Room-
bas to play in various lighting conditions. We hope to com-
mit all of these changes to the Player project in the very near
future.

Labs and Projects
Lab 1: Obstacle Avoidance
The first lab is structured to acquaint students with the sub-
tleties involved in using the PSG robot interface and simu-
lation system. After a brief tutorial of libplayerc, the Player
C client library, they are given the task of writing a reac-
tive client for a simulated Pioneer 2AT to exit the enclosure
shown in Figure 2. Students write wandering and obstacle
avoidance routines using simulated SICK 2000 laser range
finder.

Lab 2: Object Seeking
In lab two, students extend their obstacle avoidance client
to perform an object seeking task. In this seeking task, the
robot is to look for and drive to fiducials recognizable from
blobfinding (provided by CMVision). To accomplish this
task, students use a simulated a Sony VID30 video camera.
Given a world, the goal for this lab is to create a Player client
containing a finite state machine that continually drives be-
tween two different fiducials (Figure 2). The robot has one
bit of state indicating the current object of interest. The robot
must seek, identify, and drive (as close as possible) to the the
current object of interest without hitting it. Upon arriving
to the current object, the state bit is flipped and the process
continues to the next fiducial. Students also experiment with
positioning the light source to get a controlled sense of how
lighting affects vision sensing.

Lab 3 and Project 1: Color Calibration
and Reactive Roomba Pac-Man
Lab 3 serves a gateway into the first project, writing a sub-
sumption client for the Roomba Pac-Man task. Lab three
extends Lab two’s object seeking client to work with a phys-
ically embodied Roomba. Using the same Player proxies,
the client (running on a supplied laptop) controls a Roomba
endowed with touch/bump, IR, and camera sensing. The
camera sensing is accomplished by attaching a web-cam to
Roomba and having the client subscribe to the web-cam as
a proxy. While the lab two client could theoretically per-
form on the Roomba without modification, there are issues
caused by the uncontrolled nature of the real world that must
be addressed. Specifically, the blobfinder must be calibrated
to recognize fiducial colors that vary under different light-
ing conditions, camera sensors, camera viewpoints, etc. The
goal for Project 1 is to play Roomba Pac-Man with a sub-
sumption control policy. Lab 3 prepares students for this
project by having them implement the following basic un-
prioritized functions:
• Fiducial attraction: same as in lab 2, except the sought

cylindrical “Power up” fiducial will be composed of two
colors, orange over green.(Figure 3(a))

• Fiducial avoidance: detect and avoid a green cylindrical
“Ghost” fiducial by turning away from it. (Figure 3(b))

• Pellet consumption: detect and drive over a pile of orange
colored “food pellets” on the floor. (Figure 3(c))

• Wander: wander around an environment without an ob-
jective.

(a)

(b)

(c)

Figure 3: Examples of the robot driving to a fiducial (a), avoiding a ghost (b), and driving to food (c)

• Wall avoidance: detect collisions with physical or virtual
walls and move to avoid these contacts.
Project 1 involves two main deliverables, a demonstra-

tion of the subsumption client and electronic submission of
the work (project write-up, source code, and other materi-
als). In the demonstration, we look for understanding of the
subsumption architecture (prioritization and statelessness),
fiducial recognition, responsiveness to obstacles and perfor-
mance in the Roomba Pac-Man task (ghost avoidance, food
pellets vacuumed). Project write-up should address the de-
sign choices and implementation approach for the subsump-
tion architecture and calibration procedures.

Project 2: Monte-Carlo Localization
Project 2 involves implementing Monte-Carlo Localization
(MCL) in preparation for the third project: Deliberative
Roomba Pac-Man. Students are given the fifth floor of

Brown’s Computer Science building as a Gazebo world file
(Figure 4). This world file is a functionally exact recreation
of the world in which the students will compete in Deliber-
ative Roomba Pac-Man in the third project. Fiducials of the
same color are distributed throughout the world at known
locations. Fiducials are used in the world so as to allow
the students to write their MCL using a blobfinder. While a
laser range finder may be more accurate and allow for a less
contrived world, the goal of the project is to prepare the stu-
dents for the third project which is implemented in the real
world. As we do not have enough laser range finders for all
the Roombas, web-cams and blobfinders must be used. The
fiducials have the same color in order to make it impossible
to dead reckon off of a single fiducial forcing the students to
maintain a probability distribution of hypothesises.

The goal for the student is to implement MCL on a sim-
ulated Pioneer 2AT using a blobfinder, bump/touch sensor,

ir sensor, and odometry. The fact that the project is imple-
mented in PSG makes it easier to deal with bugs and noise
from the real world. For one, the lighting in PSG is constant
and controllable. It is reasonable to ensure that the color
of the fiducials only occur on fiducials. Furthermore, test-
ing does not involve the set up of a lot of equipment, which
means that bugs can be found and fixed expeditiously. Fi-
nally, the successful completion of project 2 allows student
to concentrate their full attention to planning for RPM in
project three.

Project 3: Deliberative Roomba Pac-Man
Project 3 uses the code developed in Projects 1 and 2 to cre-
ate an effective deliberative robot control policy for the RPM
task. The goal for this project is to create a control policy
that uses a model of the world from a known map and state
estimation to plan a path and execute it intelligently. In order
to create an effective Roomba Pac-Man player, this project
forces the students to pull knowledge from all the areas of
robotics including but not limited to: sensing, in order to
get meaningful data about the world; perception, in order to
maximize the information gleaned from the senses; decision
making, how to make smart decisions under uncertainty; and
motion control, in order to maximize speed to and from ob-
jects.

Improving the sensory inputs is a way for students to im-
prove the data they are using to perceive the world. Students
must ensure that their color calibration for the blobfinder has
optimal thresholds in order to get back usable data. Further-
more, they are free to modify the hardware (within reason)
to increase the amount of sensory data they receive. For in-
stance modifying the Roomba to have two web-cams could
potentially yield a bountiful increase in sensory data.

Students must also tackle a wide variety of issues in per-
ception. There are many ways to glean information from
a single camera frame. The PSG blobfinder detects blobs,
nothing else. However, extending this blobfinder to deter-
mine distances and angles to blobs should not be very diffi-
cult. Filtering out noise from the images is a critical task,
and one that plagues robotics to the highest levels. Effi-
ciently maximizing how much information is leveraged from
single frame is very important. Furthermore, students must
figure out how to estimate the state of the world. The natural
state estimation technique would be to use the MCL from
project two, as, thanks to PSG, it will port directly to the
Roombas.

Students then must develop a planning algorithm to de-
liberatively control their Roomba. This can be a simple as
using Dijkstra’s to calculate the shortest paths to fiducials.
The algorithm, however, must take in to account the pres-
ence of ghosts and their random movements throughout the
world.

Finally, students must also develop a motion model for
controlling their Roombas. While PSG nicely abstracts the
commanding of the motors, it leaves room for development
of different control loops. P, PD, and PID are all viable con-
trol options, but it will be important to maximize one’s speed
in order to get the highest score.

Figure 4: Map of the fifth floor of the Brown CS department

Final Projects and Future Work: Making Robotics
Relevant
CS148 concludes with final paper and project. The fi-
nal project is an independently designed competitive RPM
controller. Collectively, student clients are evaluated in a
tournament-style RPM contest. The final paper is analysis
of a fictional robot that discusses its technological feasibil-
ity (in terms of perception, decision making, motor control,
and platform engineering) and possible means to develop in-
novations for realizing the robot. Additionally, the paper
should try to answer the following question: “What is the
point of robotics?”, specifically constructing an argument
about most pertinent applications for robotics in society.

In future versions of CS148, we want to establish a
stronger connection between human and robot decision
making through embodied gaming. We are implementing
an off-board, wireless teleoperation client that will allow a
person to play RPM. Ideally, the teleoperator would observe
only the perceptual features used by the robot (color blobs,
IR, bump, and odometry). Such tighter human-robot interac-
tion would help motivate the difficultly of developing robot
control policies, provide students a baseline for their work,
and make RPM even more fun.

References
Arkin, R. C. 1998. Behavior-Based Robotics. Cambridge,
Massachusetts, USA: MIT Press.
Gerkey, B.; Vaughan, R.; Stoy, K.; Howard, A.; Sukhatme,
G.; and Mataric, M. 2001. Most valuable player: A
robot device server for distributed control. In Proceedings
of 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1226–1231.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.

