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Abstract

Over last fifteen years, robot technology has become
popular in classrooms across our whole educational sys-
tem. Both engineering and AI educators have developed
ways to integrate robots into their teaching. Engineer-
ing educators are primarily concerned with engineering
science (e.g., feedback control) and process (e.g., de-
sign skills). AI educators have different goals—namely,
AI educators want students to learn AI concepts. Both
agree that students are enthusiastic about working with
robots, and in both cases, the pedagogical challenge is
to develop robotics technology and provide classroom
assignments that highlight key ideas in the respective
field. Mobile robots are particularly intriguing because
of their dual nature as both deterministic machines and
unpredictable entities. This paper explores challenges
for both engineering and AI educators as robot toolkits
evolve.

Introduction
Feedback is a central process in our lives, but its operationis
also invisible. Because of our own abilities to learn, we are
generally not aware of how pervasive and ubiquitous feed-
back is. Autonomic body processes, like temperature reg-
ulation and breathing, happen without our conscious atten-
tion, and learned activities, like balancing and walking, are
performed without deliberate attention.

Feedback is also a central process in engineered systems.
Historic and modern technologies, from clocks to automo-
biles and ovens to jets, make extensive use of feedback in
their controls.

Over the last fifteen years, many educators have intro-
duced mobile robotics to students. For engineering edu-
cators, robotics is popular for introducing students to feed-
back. As robots become more mainstream, though, “more
advanced” toolkits now offer closed-loop movement com-
mands as a primitive. By abstracting away feedback, we run
the risk of short-circuiting students’ learning.

A similar pedagogical challenge exists for AI educators
who are integrating robotics into their courses. Certain as-
pects of AI map well onto practical robots, while other parts
of the conventional AI curriculum do not.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper I examine parallel pedagogical challenges
for both engineering and AI educators. There is a deep in-
teraction among the technological capabilities of the materi-
als we provide to our students, the practical challenges and
structured problems we give to them, and the ideas we want
them to learn. As robotics technology continuously changes,
we must keep our learning goals in the front of our minds.

Feedback Is Invisible, Yet Pervasive
Every day we use feedback. Walking down the street, driv-
ing a car, and riding a bicycle are all examples. Our ability to
constantly and continuously correct our motion is so compe-
tent, so automatic, that we do not realize that it is happening.

While it is normally invisible, our personal feedback pro-
cesses are sometimes easily observable. Often this is the
case when we are learning something new. Here are two
examples, both dealing with locomotion:

• I have recently starting swimming laps. Swimming
straight to stay in the lane was a challenge. If I didn’t pay
attention, I would veer off and side-swipe the lane bar-
rier. Then I discovered the lane stripe painted on the floor
of the pool. Without exactly realizing how, I discovered
that I was taking regular glances at the lane stripe. By us-
ing this visual feedback—performed without my explicit
focused attention—I was able to stay in a straight path.

• I was helping my 3-year-old ride his tricycle down the
sidewalk. He was pretty well able to pedal and move
along, but steering required extra attention. I gave the
same advice repeatedly: “Keep steering toward the mid-
dle of the sidewalk.” Presently, he is successfully veering
back and forth across some imaginary middle of the side-
walk.

In one sense, my son is not yet “driving straight.” In his
riding, his corrections to stay on the sidewalk are large, ob-
vious, and deliberate. But in another sense, heis driving
straight: an experienced rider is also makes constant course
corrections. The only difference is that for the experienced
rider, the corrections are small and unconscious.

Students Don’t Believe In Feedback
As we become competent with our physical selves, the feed-
back actions we perform in our everyday lives become in-



ternalized and invisible to us. We literally are not aware that
we are doing it.

In earlier work, I found that students are unlikely to de-
velop feedback-based approaches in their designs of mobile
robots in contest events. They prefer imperative program-
ming, in which they expect robots to reliably execute com-
mand actions. This approach leads to brittle designs, but
even after this is demonstrated to the students, they resist
adopting approaches that embrace feedback (Martin 1996).

I was reminded of this in a recent lecture in my undergrad-
uate mobile robotics course. The topic was wall-following
using a distance sensor. I explained a “1-threshold” algo-
rithm where the robot takes a distance reading and then de-
cides if it is too close or too far from the wall. If it’s too
close, it steers away; if it’s too far, it steers in.

Upon hearing this, a student burst out, exclaiming, “You
mean it will be always weaving back and forth?!” Yes, ex-
actly, I replied. The student had reminded me that most do
not consider weaving back and forth to be an effective or
recommended algorithm.

Later, in reviewing the class’s work, it was hard to tell
if their robots were actually wall-following properly. Yes,
they told me, they tested them on the bench and they were
sure that the left and right motors were powering up and
down depending on whether the robot was too close or too
far. But several of them used only a small power differential
between the two sides—that is, to turn toward the wall, the
outside wheel was at full power while the inside wheel was
at more than 50% power.

In other words, they were so reticent to see feedback in
action that they made sure that any turns would be so gen-
tle as to be nearly imperceptible! Of course, that solution
doesn’t allow the robot to navigate a corner very well.

Robot as Machine vs. Robot as Creature
In the earlier work cited, I also observed that students likeit
when robots drive in straight lines. This was part of what I
called the “omnicient robot fallacy”—the idea that students
design robot performance structures by imagining what they
would do at the helm of their robot, looking down at its per-
formance arena with an all-knowing eye (Martin 1996).

Of course, robots don’t work this way. But students still
hold on to the idea that a robot with a left- and right-side
motor should drive in a straight line if you turn both motors
on in the same direction and at the same power. Never mind
that there are many internal factors (motor and geartrain per-
formance) external ones (irregularities on the ground) which
would prevent the robot from indeed going straight.

Related to this is the notion that timing is an effective way
to get a robot to translate a known distance. In other words,
if I would like my robot to move 10 centimeters, I can ac-
complish this by turning on its motors for a particular (ex-
perimentally determined) period of time.

Experienced roboticists know that this is a crude and only
marginally effective approach. Depending on battery level,
surface friction, internal gear friction, and other variables,
the actual distance traveled may vary widely. Nevertheless
it is a simple and sometimes effective method.

The extent to which students are inclined to use timed
motions may depend significantly upon performance arena
(e.g., contest) that is provided to them. For example, stu-
dents might be much more likely to think of straight line
movements in a contest where the game elements are placed
in highly structured surrounds versus one that distributes
those elements more arbitrarily.

For example, consider the following two robot contests.
The first is shown in Figure 1. The upper diagram depicts
the 2004 First LEGO League (FLL) contest. In it, robot
designers may conduct various missions, which include re-
trieving the CD-ROM, collecting balls and delivering them
to the basket, and pushing in the chairs at the little dining
table (First LEGO League 2004).

In the close-up of the ball / CD-ROM / dining table areas,
it is apparent that there areno features in the environment
that can help robots locate the contest components. Re-
member that these robots do not have vision systems. Thus,
in order for robots to interact with these game objects, they
typically must dead-reckon toward them, maybe using the
edge of the playing field for reference. The concentric cir-
cles around the dining table seem to be there for human ref-
erence; the lines are too faint to be reasonably detected by
robot sensors. The basket area, on the other hand, does have
black lines that might be readily sensed by a robot for posi-
tioning.

Now consider the Case-Western Reserve “Egg Hunt” con-
test, shown in Figure 2 (Beer, Chiel, & Drushel 1999).
Robots traverse a large, unstructured playing field, foraging
for plastic eggs. When they find one, they decide whether
it’s a good egg (and then bring to their own goal) or a bad egg
(maybe bring to the opponent’s goal). Each contest round
lasts 10 minutes—quite long by the standards of most robot
contests.

It is no accident that the principals in the Case-Western
contest are first biologists, and secondarily roboticists.The
design of the Egg-Hunt contest clearly reveals thinking
about therobot as a creature, while the design of the FLL
contests (and the many like it) conceive of therobot as a
machine.

There are real implications to these two different world-
views. In the Egg Hunt contest, the notion of driving in a
straight line literally does not arise. There are no features
that are aligned in a straight path; indeed, the game objects
are randomly scattered about. As such, students are explic-
itly encouraged to think of their robots as creatures, with the
ability to “survive” for a protacted period of time. Ten min-
utes is long for a contest robot, and the Egg Hunt robots are
expected to not get stuck in a corner and take themselves out
of commission for significant chunks of time.

In the design of the LEGO NXT system, introduced in
2006, the developers of the LEGO materials have gone the
opposite route. Since it is so difficult to get a toy robot to
drive straight reliably, and yet it seems to be so necessary
(per the design of the FLL contests), LEGO has decided to
making driving straight a primitive.

The technical solution involved creating a motor with an
integrated encoder (Figure 3) and software that transparently
builds a closed-loop control system, including keying two



Figure 1: First LEGO League 2004 “No Limits” arena (top);
ball, table, and CD-ROM closeup (middle); basket close-up
(bottom).

Figure 2: Case-Western Reserve University “Egg Hunt”
competition arena (top); game play (bottom)

Figure 3: LEGO NXT motor



Figure 4: LEGO NXT motor software control block

motors together (Figure 4).
The motor control function accepts as parameters both the

desired velocity and the total number of axle rotations to
be performed. Thus, with the LEGO NXT materials, it is
easy to build a robot that moves in a straight line, and for a
predictable distance. Also, robots can be made to rotate in
place for predictable angles.

Why a Straight Line Primitive is a Bad Idea
By providing these built-in closed loop primitives, LEGO is
depriving its users of one of the critical engineering lessons
of classroom robotics: the principle that robots need to sense
their local environment and react to it in order to perform
useful work. The central premise that robots are feedback
systems has been buried.

Also, for middle school-age students, the First LEGO
League contests are a crucial exemplar of a robot environ-
ment. In other words, they matter. Historically, these con-
tests have not included a plethora of local features for robots
to sense in their quest for aligning with game objects. Thus,
the contests themselves also encourage students to think
about planned, fixed movements. This is why the FLL com-
munity has been so frustrated with difficulties in using the
earlier LEGO technology to carry out pre-planned motion.

But the cure is worse than the disease. There is ample ev-
idence that people learn through failure. Also, the commu-
nity learns over time. For example, instructional videos for
FLL teams are freely available from the Minnesota-based
“High Tech Kids” parent/teacher/student group. These
videos, developed by a FLL student-turned-educator, co-
gently and intelligently explain how to use light sensors to
detect contest features (High Tech Kids 2006).

As the FLL community migrates to the NXT controller,
contest designers will be more likely to make use of the
ability of robots to carry out pre-programmed motions. Con-
test designs may include even fewer features that allow the
development of genuine feedback solutions. FLL robots
will migrate toward open-loop solutions, in which the robots
simply carry out a series of pre-planned actions.

Without the feedback of failure, students will be deprived
of the opportunity of developing authentic and deep knowl-
edge of what robotics is about.

Of course, in order to drive straight, these robots are do-
ing feedback on using their encoder sensors and modulating
their motor power output. But by burying this feedback into
a primitive behavior, it will be even harder for students to ap-
preciate its central role in robotic systems (and engineering
in general).

AI and Robotics
Many educators are enthusiastic about using robotics in their
undergraduate artificial intelligence classrooms, but there
are challenges in aligning AI content with what robots can
do. Also, AI educators do not typically wish to focus stu-
dents’ attention on engineering issues, and this has been dif-
ficult to avoid when using low-cost robotics materials.

The content taught by AI educators using robots encom-
passes a range from traditional AI to material that is more
specific to robotics. For example, Klassner describes a
course he developed that builds upon agent paradigm popu-
larized by Russell and Norvig (Klassner 2002). The content
includes stimulous-response robots, sensor accuracy and
functional simulation, robot odometry using encoders, and
robot algorithms that used hill-climbing, knowledge repre-
sentation, and probabilistic modeling. Also, in the final
unit, students confronted the difficulty of translating AI al-
gorithms for execution on limited hardware. As such, this
final project blends AI and engineering themes.

In another example, Greenwald and Artz describe partic-
ular algorithmic content that can effectively be taught with
low-cost robots. If robots are equipped with wheel rota-
tion sensors, then the trigonometry required for forward and
inverse kinematics can be developed. Map-building and
vector-field histograms can then be taught and demonstrated.
But as they note, “While these approaches to localization are
educational, they are not considered to be a part of a modern
artificial intelligence curriculum.” (Greenwald & Artz 2004)

Other work focuses on knowledge-based AI algorithms
(Kumar 2004; Schafer 2004). Typical projects include
AI topics such search, expert systems (forward- and
backward-chaining), simulated annealing, planning, and
game-playing.

In these two papers, the authors are concerned about ex-
cessive student time being spent on engineering or play.
Even when students report having enjoyed these activities,
it is problematic if they are spending inordinate amounts of
time on the course, or if their work is insufficiently focused
on appropriate content.

Both authors also report problems that students have in
getting robots to perform properly. For example, in the
Schafer course, students were supposed to be complet-
ing robot development and separate software-only AI pro-
gramming simultaneously. When the robot work appar-
ently required too much time, Schafer cut back on required
software-only assignments. But then students might be
missing this necessary content.

Schafer then postulates that programming time can be re-
duced by providing students with a “calibrated robot con-
trol package” which then might allow students to complete
more sophisticated coding. Then students could tackle more
complex labs that incorporated the previously software-only
content. This package would then:

replace a series of calls such as
motorA.setVoltage(9);
motorB.setVoltage(8);
motorA.forward();
motorB.forward();



with a single call to a helper method such as
RobotControlPackage.robotForward();

Schafer realizes that “development of this package is ex-
pected to be non-trivial,” but let me go further—the quest for
such a package is actually a wild goose chase!

Kumar also has students developing traditional AI-style
control programs for their robots. He has a couple of cre-
ative solutions for the problem of robots that don’t work
right. Students are encouraged to have their robots announce
their internal state before each gesture. This is to help the
student and instructor “evaluate the correctness of the un-
derlying knowledge-based algorithm.” Kumar also uses pli-
able performance environments for the robots: “A flexible
environment can significantly alleviate the problems arising
from the unpredictability of robot behavior.” He explains
further:

In a fixed-wall maze, if a robot turns by 75 instead of
90 degrees, the robot may end up in a room other than
the one it intended to visit. In a moveable-wall maze,
if a robot is found to turn incorrectly, the wall that it
should have encountered can be moved into its path,
essentially making the room it visits the one it intended
to visit!

Kumar summarizes: “As long as the focus of the robot
project is a knowledge-based algorithm (and not robotics),
and the robot announces its state and intention before each
movement, moving walls to address errors in the naviga-
tion of a robot is inconsequential to the correctness of the
project.”

Kumar’s paper also includes an exemplary student-
learning evaluation. In short, students like the class, andare
learning reasonably well. In figuring out why their robots
don’t work—caused by a composition of issues from both
the hardware domains and their own programming of the AI
algorithms—students may confront the AI algorithms and
understand them more deeply.

But, these students are not learning AI that can powerfully
applied to solving the real robotics problems they are facing.
They are learning AI algorithms, but they are not learning
problem domains for which they are, in fact, suited. It may
even be argued they they are learning ways in which AI fails!

In contrast, consider the Greenwald/Artz work mentioned
earlier. The main theme of this paper is the development
of neural and Bayesian networks to perform processing of
IR reflectance sensors on low-cost robots. The result is
the transformation of seeming unreliable—and definitely
noisy—sensor data into useful information.

The paper not only presents the work itself, but also
demonstrates an application of modern AI theory that is
deeply connected with the capabilities of the pedagogical
hardware (classroom robots). Indeed, the work itself draws
out latent capabilities of the inexpensive hardware, which
are revealed by powerful techniques of modern AI.

To summarize,mobile robotics changes AI. Because of
profound uncertainties in sensing the world and modeling it,
knowledge-based AI can be quite difficult to apply to build-
ing effective mobile systems. This was Brooks’ key observa-
tion in his seminal work in behavior-based robotics (Brooks

1986). One of the great strengths of classroom robotics as
pedagogical tool is that students’ robots become real sys-
tems, not just classroom exercises. We must pay attention to
which ideas from our field do help our students build effec-
tive machines.

Conclusion
For many teenagers, LEGO Mindstorms is much more than
a toy. It is part of a crucial formative experience in engineer-
ing and robotics that carries them toward a career path into
technology. For many of our college students, robotics can
also serve a crucial role. We have all noticed the extravagant
amounts of time that many devote to their robot projects.
The values and ideals embedded in the materials and practi-
cal challenges that we give to our students—whatever their
age—do matter.

Returning to the central theme of feedback, no biologi-
cal or engineered system ever moves in a straight line. As
biological systems, we personally get better and better at
correcting our navigation movements, until we perceive our-
selves as “walking straight” or “driving straight.” Over time,
our ability to engineer feedback systems has also steadily
improved, to the point where vehicles and processes that
would normally be highly unstable (e.g., a fighter jet air-
craft) can be made to “fly straight.”

But in practice, both biological and engineered systems
do make constant corrections, be they minimal to the edge
of perception. As educators, we must introduce students to
this central principle, not hide it from them. Real robots
don’t drive straight.
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