
Design for a Tag-Structured Filesystem

Adrian Sampson

May 12, 2008

Abstract

Tagging is an organizational system commonly used
as an alternative to hierarchical systems. Many au-
thors have recognized the desirability of a filesystem
accessed with a tagging interface, as opposed to or in
addition to a traditional directory interface. Exist-
ing tagging filesystems universally use conventional,
hierarchical filesystems as a backing store. This pa-
per examines the challenges in designing interfaces,
on-disk structures, and file layout in tag-structured
filesystems and proposes various solutions.

1 Introduction

Tags, sometimes called keywords, are arbitrary meta-
data strings used to organize collections of objects. In
a tagging system, objects are annotated with an ar-
bitrarily large set of tags; the collection can then be
queried to find all objects possessing a certain tag.
In more complex systems, more sophisticated queries
are possible: tag intersections query the collection for
objects matching several tags and so on.

Tags have recently gained popularity through their
use in social Web applications such as del.icio.us [1]
and Flickr [2]. In these applications, a tagging sys-
tem can be seen an alternative to a hierarchical sys-
tem of organization. In fact, from the point of view
of a desktop user, hierarchies present many usabil-
ity problems that are not present in tagging orga-
nizational systems [5, 17, 18]. For instance, tagging
systems do not require that objects have a single “lo-
cation” like a pathname and can allow objects to be
grouped in multiple meaningful ways.

That filesystems are traditionally organized in a
directory structure encourages exploration of filesys-
tems organized primarily by tags instead. While work
on filesystems with extensible metadata is not a re-
cent phenomenon [4, 10, 11, 19], the use of tags as a
primary mode of access is a somewhat less-explored
area. In particular, prior work primarily concerns it-

self with developing interfaces to tagging filesystems.
To the best of our knowledge, no work has been pub-
lished examining the design of a filesystem’s on-disk
layout and data structures according to a tag-based
organizational strategy. This paper synthesizes previ-
ous work on tagging filesystem interfaces as a motiva-
tion for exploring the deeper design issues in creating
efficient implementations for those interfaces.

We will henceforth refer to filesystems with tag-
based organization interfaces as tagging filesystems.
Filesystems whose block-level storage design reflects
this type of organization (i.e., the type of filesystem
proposed in this paper) will be referred to as tag-
structured filesystems (TSFS).

1.1 Related Work on Tagging Filesys-
tems

SFS [10] and HAC [11] are early examinations of sev-
eral concepts used in tagging filesystems. In partic-
ular, they introduce the concept of the virtual direc-
tory, a pseudo-directory that “contains” the list of
files matching a query defined by the directory name.
By using virtual directories, users and programs ac-
customed to a directory-based organizational scheme
can easily query the filesystem’s metadata. These
systems also promote the use of virtual directory hi-
erarchies for query refinement.

More recently, SemDAV [17] and TagFS [18] have
directly addressed the construction of interfaces to
filesystems based primarily on metadata queries.

A wide variety of work on tagging filesystems has
recently occurred outside academia. Several imple-
mentations of tagging filesystem interfaces have been
published [3,6,13–15]. Each system includes a method
for encoding tag queries as virtual directory names.
Universally, the systems use a traditional filesystem
as a backing store for files and an auxiliary database
to store tags.

1



2 A Tagging Filesystem Inter-
face

In the design of our TSFS, we will assume that the
system may be queried with arbitrary logical expres-
sions on tag strings. In particular, we assume that
the filesystem exposes a native, non-POSIX-like in-
terface for these queries that allows them to be ar-
bitrarily complex. A secondary, POSIX-compatible
interface may also provided, but it will be at most
equally as expressive as the native interface.

We will further assume that no directory structure
exists alongside the tag-based organizational struc-
ture. While such a hybrid model may be useful in
some settings, this simplification frees us from the
complexities of considering the two models’ interac-
tions.

Furthermore, our TSFS will implement no tradi-
tional metadata outside of the tagging system. Tags
act as arbitrary metadata fields and storing certain
types of metadata separately is unnecessary. The
modification or creation timestamps traditionally as-
sociated with files, for instance, may be easily en-
coded as strings and stored as tags. The operating
system could enforce special treatment of certain tags
using prefixes; it might, for instance, store modifica-
tion times as tags beginning with mtime: and prevent
user-space tools from modifying tags with this prefix.
Separating this logic from the on-disk structure of
the filesystem permits compatible changes to the set
metadata fields in future or specialized systems. It
also provides uniform methods of access to metadata,
simplifying the structure of metadata queries.

The filename attribute is particularly difficult to
support in a tagging filesystem. Because no direc-
tory structure exists to distinguish files with the same
name, filenames would need to be globally unique.
Such a requirement is unnecessarily restrictive. File-
names can be easily approximated in tags if necessary
by using “singleton” tags. Directory structures them-
selves can also be simulated using tag conjunctions.
Because the set of files with both of a pair of tags, T1

and T2, is a subset of the set of files with one of the
tags, T1 ∧ T2 can be seen as a “subdirectory” of T1

or T2. By building up these structures, the user can
systematically identify files without filenames.

Based on this interface, our TSFS design will at-
tempt to optimize the following basic tag operations:

• Inode-to-tags. Look up all the tags associated
with an inode.

• Tag-to-inodes. Find all the inodes associated
with a tag.

• Add tag to inode. This must be supported effi-
ciently whether or not any other inodes in the
filesystem have the same tag.

• Delete tag from inode. The filesystem must con-
sider the possibility of “orphaned” tags, those
associated with no inodes. These must be cleaned
up efficiently where necessary.

• Tag conjunction and disjunction. In a less com-
mon usage scenario, the intersection or union of
the sets of inodes associated with multiple tags
may be requested.

3 Metadata Storage

In designing the data structures for our proposed
TSFS, we will assume that tags are short strings. As
they are intended to be efficiently matchable and are
not intended to replace more general metadata like
extended attributes, we will assume that their length
is on the order of that of filenames.

3.1 High-Level Tag Association Model

In a tagging filesystem, two types of objects must
be stored: inodes, which list the addresses of blocks
containing a single file’s data, and tags, which rep-
resent files’ metadata. A tag-structured filesystem
must have a mechanism for storing tags, inodes, and
the relationships between them. Three basic, high-
level approaches to storing this data exist:

• One table. The inode table is the only table.
Each inode retains (that is, contains or refers
to) a list of tags that apply to the inode.

• Two tables. In addition to the inode table, a
tag table is stored. Entries in the tables refer
to one another in order to associate inodes with
tags. Two basic two-table models exist.

– Two tables with inode-side references. Each
inode retains a list of references to entries
in the tag table that apply to the inode.

– Two tables with tag-side references. Tags
retain references to inodes they apply to;
no reference exists from inodes to tags.

2



• Three tables. Neither tags nor inodes contain
references to one another. Instead, a third table
associates tags with inodes. Each entry in the
tag/inode association table contains a reference
to a tag and a reference to an inode.

Each model has advantages and disadvantages for
performance. The one-table model and the two-table
model with inode-side references both allow fast inode-
to-tag operations. In both, however, tag-to-inode
lookups must search the entire inode table for match-
ing inodes; the tag-to-inode run time is linear in the
size of the inode table. Conversely, the two-table
model with tag-side references allows fast tag-to-inode
operations but prohibits fast inode-to-tag lookups for
systems with many tags. In the three-table model,
both operations must perform lookups in the tag/inode
association table and are bounded by that table’s
lookup speed.

The approaches also vary in their efficiency with
respect to storage space. The one-table model, for
instance, can be seen as inefficient because it must
store tag names multiple times—once for each inode
to which a given tag applies. Because tags are short,
however, this overhead is small.

To efficiently support all common tag operations,
a hybrid approach must be used. In particular, we
propose a two-table model with both inode-side ref-
erences and tag-side references. The inode-side ref-
erences to tags take the form of the tag string itself;
because tags are assumed to be short, we contend
that the overhead incurred by the duplicate storage
of tags will be small.

We will evaluate the merits of this approach and
its implementation details in section 3.2.3.

3.2 Low-Level Data Structures

In this section, we will propose on-disk data struc-
tures to store the two basic units in a TSFS: the inode
and the tag.

3.2.1 The Inode Structure

The inode data structure in the proposed TSFS re-
sembles the one in the UNIX File System (UFS) [16]
and contains:

• The inode number.

• A constant number of fields that may contain
block addresses that in turn contain the file’s
data. If the number of data blocks is less than

the number of fields available, the unused fields
are set to zero.

• A constant number of fields that may contain
block addresses. The first such block is a singly
indirect block, containing a list of block num-
bers which in turn contain file data. The sec-
ond block is a doubly indirect block, containing
a list of addresses of indirect blocks. Each sub-
sequent field introduces an additional level of
indirection.

• A fixed number of tag strings applying to the
inode.

• Addresses of blocks with increasing levels of in-
direction that contain lists of tag strings asso-
ciated with the inode, as above.

The ability to store tag strings directly in the tag
structure optimizes for the case in which few tags are
associated with a given inode; that external blocks
are also possible allows for larger numbers of tags to
be associated with a given inode.

Inodes and data blocks are stored on disk as in
the Berkeley Fast File System (FFS) [12]. At filesys-
tem creation time, the disk is divided into “cylinder
groups” (ranges of contiguous blocks) and space is
allocated at the beginning of each cylinder group for
inodes. Data blocks are allocated in the non-inode
space of cylinder groups; blocks are marked as free or
used by bitmaps present in each cylinder group.

3.2.2 The Tag Structure

The tag data structure must contain a tag string and
references to the inodes to which the tag applies. We
propose a constant-size data structure that contains:

• The tag name, stored in a constant-size string
field. If the tag string is shorter than the size
of the field, it is null-terminated.

• A constant number of fields that may contain
inode numbers of the files to which the tag ap-
plies.

• A constant number of fields that may contain
block addresses of increasing levels of indirec-
tion. The blocks store additional inode num-
bers to which the tag applies.

As in the inode structure, this structure allows
efficiency with small numbers of tags while still per-
mitting larger tag sets.

3



Several efficient alternatives exist for efficiently
storing the system’s tag structures. Extensible hash-
ing [9], for instance, would allow fast lookups at the
expense of occasional slow expansions and a complex
implementation. For simplicity, we propose the use
of a B-tree (or a variant) indexed by the tag string. A
B-tree supports efficient lookups and insertions while
not requiring that the tags be stored contiguously.
This flexibility is important because the filesystem
has statically allocated data, such as the cylinder
group headers and inodes, that must be accommo-
dated by a dynamically allocated tag table.

3.2.3 Performance

As a rough evaluation of our design choices, we will
briefly discuss the steps required to perform each of
the common tagging operations defined in section 2.

• Inode-to-tags. The inode is read from disk. If
the number of tags is small (less than the num-
ber of tag string fields in the inode), they can
be read from the inode itself. Otherwise, ad-
ditional blocks must be accessed; the number
of additional accesses depends on the number
of tags and the filesystem’s block size. Ap-
propriate selection of the number of direct tag
string fields can optimize this operation for an
expected number of inodes.

• Tag-to-inodes. The tag structure must be looked
up in the tag B-tree. Then, a process similar to
the inode-to-tag operation occurs: for a small
number of associated inodes, the inodes may
be read from the tag structure itself; otherwise,
additional blocks must be accessed. Again, this
operation may be tuned by adjusting the num-
ber of inode fields in the tag structure.

• Add tag to inode. The inode is looked up. De-
pending on the number of existing tags, the new
tag is written to the inode itself, a new block is
allocated for the tag, or the tag is written into
an existing external block.

• Delete tag from inode. The inode is read from
disk. If the tag string is present directly in
the inode structure, it is erased. Otherwise,
a search through the inode’s tag string blocks
occurs until the tag can be found and erased. If
the erased tag was not the last tag on the inode,
the last tag must be moved to the newly erased
position to maintain consistency. This may re-
quire additional lookups into tag string blocks.

Finally, the tag structure is looked up in the tag
B-tree and the inode in question removed from
it in a similar manner. If the tag no longer has
any inodes, it is removed from the B-tree.

• Tag conjunction and disjunction. Two indepen-
dent tag-to-inodes operations must occur; the
results are then manipulated in memory.

The first three operations are clearly supported
efficiently. Deleting tags, conjunctions, and disjunc-
tions are areas in which the design may be improved
in the future.

4 Inode and File Allocation

One major innovation of FFS is its attempt to place
data on disk nearby other data that might be ac-
cessed at nearly the same time [12]. It accomplishes
this by, for instance, placing inodes together in the
same cylinder group when they are allocated in the
same directory. Directories give strong hints about
the temporal locality of file accesses.

This paradigm does not easily extend to tagging
filesystems because they have no single most promi-
nent determiner of file “relatedness” like the direc-
tory. Inodes may have more or less similar sets of
tags; some tags may be more or less important to
users when determining locality of file access. Inter-
preting users’ selection of tags to infer file related-
ness is clearly a large and difficult problem. For this
reason, we propose several design alternatives that
warrant closer examination.

Note that, because these policies do not affect the
on-disk format of the filesystem, systems could have
different policies but remain interoperable when read-
ing and writing TSFS volumes.

1. Single tag. The user is allowed to tag each file
with at most one tag beginning with a prede-
fined prefix such as groupby:. Files are related
if they share this tag; when the tag is added
or changed, it is looked up in the tag structure
B-tree to determine which inodes are related
and should thus be placed nearby. This allows
files to be clustered by a single criterion as they
are in FFS. To optimize performance, the user
must carefully select this specially designated
tag for each new file. If the user does not use
groupby: tags, files will be placed arbitrarily,
possibly randomly, into cylinder groups. This

4



behavior may be acceptable in some systems
with large or unpredictably accessed files.

2. Raw tag similarity. When an inode is created
or tags are added to it, the inode’s tags are each
looked up in the tag structure B-tree. A list of
inodes that share tags is constructed. The new
inode or file data is placed as near as possible
to the inode that shares the most tags with it.

3. Manual tag priority. The user provides the
filesystem with a ranking of tags according to
their importance when determining file related-
ness. The process proceeds as in the previous
design but the relatedness of inodes is weighted
by the provided ranking.

4. Automatic inference. Systems have been pro-
posed that observe user behavior to optimize
file layout [7,8]. Such a system could be used to
analyze which files are accessed together most
often. The tags these inodes share could then
be inferred to be strong determiners of file re-
latedness. The tag priority that is manually
specified in the previous design might then be
automatically determined.

5. Wait for SSDs. The advent of solid-state, ran-
dom access storage technologies limits the util-
ity of optimizing file locality. If a TSFS is de-
signed with such technology in mind, no locality
mechanism must be implemented.

Clearly, all but designs 1 and 5 will incur signifi-
cant performance overhead when creating inodes and
manipulating tags. Designs 3 and 4 especially can
be expected to require large numbers of lookups in
the tag structure B-tree. While some of this perfor-
mance overhead may be hidden by caching the results
of tag-to-inodes and inode-to-tags lookups, these so-
lutions may be best suited to situations in which slow
tag manipulation is acceptable. In particular, this
might be acceptable in desktop settings wherein only
user can be expected to issue tag-manipulation com-
mands. Without careful optimization, sophisticated
similarity algorithms will be impractical in settings
where tag operations are likely to be automated.

5 Future Work

Many avenues for future work in the design of tag-
structured filesystems remain. Design choices in this
space will remain vague until more information is

made available about the ways in which tagging filesys-
tems are used.

While tagging organizational systems have clearly
succeeded in some spaces including modern Web ap-
plications, it is not clear how users and developers
will interact with a tagging filesystem. User studies
should be conducted to measure the usability benefits
of tagging filesystems and to determine which oper-
ations users tend to invoke most often. The habits
of users could then be used to make decisions about
both the interface and the structure of new filesys-
tems. Similarly, efforts should be made to develop
or port applications that take advantage of tagging
filesystem interfaces. Profiles and traces of these ap-
plications will help to inform the design of optimized
tag-structured filesystem.

With this new information, deeper exploration
will be possible into mechanisms for predicting tem-
poral locality of access in tagging filesystems and se-
lecting cylinder groups for file allocation. In section
4, alternatives are presented that portray tradeoffs
between performance and sophistication of file allo-
cation techniques. With more information about tag-
ging filesystems’ use patterns, assumptions may be
made that help determine the importance of perfor-
mance and prediction accuracy in different situations.
These assumptions will help simplify this particularly
difficult aspect of TSFS design. A simple first step in
this area might be to develop simple, efficient heuris-
tics for locating files with similar sets of tags (with
some similarity metric). Even if these techniques are
not deterministic, their effectiveness in predicting lo-
cality of access may be assessed.

Further exploration is also needed into the opti-
mization of logical operations on tags. With simple
TSFS designs, including the one outlined in this pa-
per, finding the intersection of two tags requires two
complete tag-to-inodes operations followed by an in-
memory conjunction. If intersections are often used
with common tags to identify small groups of files,
this design is wastefully inefficient. Algorithms, data
structures, or both must be developed to support this
kind of operation efficiently. Inspiration for such so-
lutions may be found in database techniques that
attempt to efficiently support logical operations in
queries.

6 Conclusion

As previous authors have observed [17, 18], tagging
filesystems offer desirable advantages to desktop users

5



as an alternative to traditional, hierarchical filesys-
tems. Tag-structured filesystems must be created in
order to make a tagging interface practical. However,
the design of a TSFS presents many interesting chal-
lenges, most notably the policy for optimizing tem-
poral locality among inodes and data.

References

[1] del.icio.us. http://del.icio.us/. Accessed
May 2, 2008.

[2] Flickr. http://www.flickr.com/. Accessed
May 2, 2008.

[3] Tagsistant. http://www.tagsistant.net/how_
works.shtml. Accessed May 2, 2008.

[4] A. Ames, C. Maltzahn, N. Bobb, E.L. Miller,
S.A. Brandt, A. Neeman, A. Hiatt, and
D. Tuteja. Richer file system metadata using
links and attributes. Mass Storage Systems and
Technologies, 2005. Proceedings. 22nd IEEE /
13th NASA Goddard Conference on, pages 49–
60, 2005.

[5] Deborah Barreau and Bonnie A. Nardi. Finding
and reminding: file organization from the desk-
top. SIGCHI Bull., 27(3):39–43, 1995.

[6] Stefan Berndtsson. LAFS. http:
//www.nocrew.org/~stefan/lafs/lafs-1.0.
1.tar.gz. Accessed May 2, 2008.

[7] S. D. Carson. A system for adaptive disk rear-
rangement. Softw. Pract. Exper., 20(3):225–242,
1990.

[8] P. Eaton, D. Geels, and G. Mori. Clump: Im-
proving file system performance through adap-
tive optimizations, May 2000.

[9] Ronald Fagin, Jurg Nievergelt, Nicholas Pip-
penger, and H. Raymond Strong. Extendible
hashing—a fast access method for dynamic files.
ACM Trans. Database Syst., 4(3):315–344, 1979.

[10] David K. Gifford, Pierre Jouvelot, Mark A. Shel-
don, and Jr. James W. O’Toole. Semantic file
systems. SIGOPS Oper. Syst. Rev., 25(5):16–25,
1991.

[11] Burra Gopal and Udi Manber. Integrating
content-based access mechanisms with hierarchi-
cal file systems. In OSDI ’99: Proceedings of

the third symposium on Operating systems de-
sign and implementation, pages 265–278, Berke-
ley, CA, USA, 1999. USENIX Association.

[12] Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, and Robert S. Fabry. A fast file
system for UNIX. Computer Systems, 2(3):181–
197, 1984.

[13] Stanislav Ochotnický. µTagFS. http://
www.kmit.sk/devel/utagfs/. Accessed May 2,
2008.

[14] Pts Oldalai. movemetafs. http://freshmeat.
net/projects/movemetafs. Accessed May 2,
2008.

[15] Mayuresh Phadke. dhtfs - readme.
http://code.google.com/p/dhtfs/source/
browse/trunk/README. Accessed May 2, 2008.

[16] D. M. Ritchie and K. Thompson. The UNIX
time-sharing system. The Bell System Technical
Journal, 57(6 (part 2)):1905+, 1978.

[17] Bernhard Schandl and Ross King. The SemDAV
project: metadata management for unstructured
content. In CAMA ’06: Proceedings of the 1st
international workshop on Contextualized atten-
tion metadata: collecting, managing and exploit-
ing of rich usage information, pages 27–32, New
York, NY, USA, 2006. ACM.

[18] Simon Schenk, Olaf Görlitz, and Steffen Staab.
TagFS - tag semantics for hierarchical file sys-
tems. In Proceedings of I-KNOW. 6th Interna-
tional Conference on Knowledge Management.,
pages 304–312, 2006.

[19] Zhichen Xu, Magnus Karlsson, Chunqiang Tang,
and Christos Karamanolis. Towards a semantic-
aware file store. In HOTOS’03: Proceedings of
the 9th conference on Hot Topics in Operating
Systems, pages 31–31, Berkeley, CA, USA, 2003.
USENIX Association.

6


