
Capabilities on Venti

Adrian Sampson

May 2, 2008

Abstract

This paper concerns the feasibility of implementing a
capability security system on the Venti archival stor-
age system. Venti’s use of unforgeable, cryptograph-
ically secure fingerprints as block addresses imme-
diately recalls capability-based security systems. Its
write-once property, however, complicates the imple-
mentation of a usable read-write capability system
on Venti. Three alternative methods for overcom-
ing this limitation are presented and evaluated sub-
jectively. Two solutions require active enforcement
by the operating system. One solution, by modify-
ing Venti minimally, succeeds without requiring OS
bookkeeping.

1 Background

The Venti archival storage system [2] addresses blocks
in a unique way. Rather than using a predictable, se-
rial address for each block in the physical storage,
blocks are assigned fingerprints when they are writ-
ten. Fingerprints are cryptographically secure hashes
of block contents.

Thus, addresses in Venti are based on block con-
tents rather than any external notion of block loca-
tion. Among the consequences of this scheme are
a write-once policy (if a block changes, its address
changes) and that addresses are unforgeable (as a
consequence of being cryptographically secure). The
latter property recalls capability-based security sys-
tems’ requirement for unforgeability. However, the
former property of immutability complicates Venti’s
use as a complete read-write capability system.

A robust capability system for Venti increases the
system’s viability in contexts beyond enterprise archival
storage. Many other applications requiring similar se-
mantics may benefit from a meaningful security sys-
tem.

1.1 Formulation of Capabilities

Capability-based security systems divide entities into
two groups: subjects and objects [1]. An object is
a passive resource that active subjects may access
and manipulate. This distinction is intentionally ab-
stract. For the scope of this paper, however, an object
will always be a simple repository of data—a linear
sequence of bits. A subject will be any active en-
tity whose memory is distinct from other subjects—a
process, for instance, or perhaps a user.

The third primitive in a capability-based system
is the capability itself. A capability is an unforge-
able entity that grants subjects access to objects. A
capability determines which right it grants and on
which object it grants that right. It does not inter-
nally determine to which subject it grants that right.
Instead, a subject’s possession of a capability grants
it that capability’s rights. For the scope of this pa-
per, only two rights will be considered: reading and
writing.

In order to be useful, a capability system must
allow transfer of capabilities among subjects. Again
for simplicity, we will assume that any subject with
capability C may grant C to any other subject. This
paper will not consider revocation of capabilities.

A capability system, then, has the following prop-
erties:

1. A subject possessing a “read” capability for ob-
ject O, denoted CO,r, may read from O.

2. A subject possessing a “write” capability for
object O, denoted CO,w, may write to object
O.

3. A subject may grant a capability it possesses to
another subject.

4. Capabilities are unforgeable. That is, in order
for subject S to possess a capability C, another
subject must grant C to S or S must be the
creator of the object on which C grants rights.

1



5. A subject may only read or write an object if
it possesses the appropriate capability.

Our implementations of capability systems in sec-
tion 2 will satisfy each of these requirements.

1.2 Objects in Venti

In our proposed system, subjects are independent
constructs defined by the operating system such as
processes or users. The details and implementation
of capabilities will be discussed in section 2. Here we
define the final construct, the object, in the context
of the Venti archival storage system.

An object must be abstractly interpretable as a se-
quence of bytes. As proposed in [2], arbitrarily-sized
byte sequences may be stored in Venti as trees whose
vertices are Venti blocks. A non-leaf node in such a
tree is an indirect block containing fingerprints of its
children. Leaf nodes are direct blocks and contain
the object’s data. A tree thus defined will be consid-
ered an object in our system. The fingerprint of the
tree’s root node will be called the object’s fingerprint
or address.

If the object’s data is changed, at least one leaf
node in its tree will be changed and its fingerprint
updated. The leaf node’s parent will, in turn, need
to be updated to reflect this change. Inductively, all
vertices on the path from the modified leaf node to
the root node must be updated. The root node will
then have a new fingerprint. Thus, “writing” to an
object changes that object’s fingerprint.

1.3 Fingerprints as Capabilities

As Venti’s authors observe, “a fingerprint does act
as a capability since the space of fingerprints is large
and the Venti protocol does not include a means of
enumerating the blocks on the server” [2]. A naive
first approach, then, might be to use the fingerprint
itself as a capability.

The requirements for a capability system are listed
in section 1.1. Clearly, a fingerprint allows read-
ing the object to which it refers (requirement 1). If
subjects may communicate, they may transmit fin-
gerprints to each other, accomplishing the granting
of capabilities (requirement 3). Fingerprints, being
cryptographically secure hashes, are unforgeable (re-
quirement 4). Relatedly, a fingerprint is required in
order to read an object; objects are inaccessible oth-
erwise (requirement 5). The only requirement that is

not obviously satisfied is the existence of a “write”
capability (requirement 2).

If a subject writes to an object, the newly up-
dated object has a new fingerprint. Other subjects,
because they possess the fingerprint of the older ver-
sion of the object, will not see any changes to the
object. Subjects are thus unable to write to objects
in a meaningful way: changing an object creates a
new object to reflect the changes rather than modi-
fying it in place.

This limitation prevents unadorned Venti finger-
prints from usefulness as full capabilities. The re-
mainder of this paper will explore additions to the
Venti system to allow its use as a complete capability
system.

2 Robust Capabilities

Due to the inherent write-once property of Venti as
originally proposed, a useful capability system will
require some modification to Venti. Such a system
must entail a method for writing to objects that may
be shared among subjects. We aim to accomplish
this with minimal modifications to Venti’s semantics
or implementation.

We present, ordered from most naive to most de-
sirable, three alternatives for accomplishing this goal.

2.1 OS-Managed Object Wrappers

The principal problem with writing to objects in Venti
is that the object’s “address”—its fingerprint—changes
whenever its data changes. One obvious approach to
this problem is to “wrap” fingerprints with constructs
that can be consistently addressed. A wrapper con-
tains the fingerprint of an object but, unlike a Venti
block, is accessed in a manner that does not change
if the contained fingerprint changes.

Our first approach, in order to avoid modifying
Venti itself, places object wrappers in the hands of the
operating system. An object wrapper in this case is
a data structure stored in a consistently-addressable
persistent data store (i.e., a traditional filesystem).
To read an object, the OS looks up the fingerprint
stored in the wrapper and reads the associated object
from Venti. To write an object, it again looks up
the fingerprint, performs the modification as specified
in section 1.2, and stores the new fingerprint in the
wrapper.

Under this system, however, the OS must con-
trol access to object wrappers. Without active ac-

2



cess control, OS-managed object wrappers have no
provision for distinguishing subjects that are allowed
to read a given object from those allowed to write it.
A security system implemented this way, then, does
not take advantage of the capability-like properties of
Venti itself.

2.2 Block Version Linking

To avoid using a secondary data store aside from
Venti, our second approach embeds information into
Venti’s storage system to support writes to objects.
In particular, we extend the “header” information al-
ready present for every Venti block.

The data in the header of a Venti block does not
affect the block’s fingerprint. Thus, we can modify
fields headers without changing any addresses in the
system. We introduce a new header field, next-version.
The field’s value is initially null for any newly writ-
ten block. Whenever the system “writes” to this
block, the updated content is stored with a new fin-
gerprint as previously discussed. The older block’s
next-version field is then updated to contain the
fingerprint of the updated block.

When reading a block, the system first examines
the block’s next-version field. If the field’s value
is null, the data in the requested block is returned.
Otherwise, the block identified by the fingerprint in
the next-version field is read recursively. By follow-
ing this fingerprint chain, reading a block will always
return the block’s most recent version.

A basic implementation of this scheme may re-
quire time linear in the number of versions to read
a block’s most recent version. The system, however,
may be optimized in two simple ways. First, when
the chain of blocks is traversed, any blocks that do
not refer to the most recent version may be updated
to do so. This way, the next read of older blocks will
require less chain traversal. Second, subjects may be
informed of the fingerprint of the most recent block
version whenever they attempt to read an older block.

This solution, however, presents the same main
drawback as the first design. The operating system
is again charged with distinguishing between subjects
authorized to read and write a given object. It must
implement an access control system in order to pre-
vent subjects from modifying the next-version field
of blocks to which they do not have the “write” ca-
pability.

2.3 Venti-Managed Object Wrappers

To avoid the limitations of the previous two solu-
tions, our final solution must distinguish the “read”
and “write” capabilities for any object. We again use
“wrapper” constructs that refer indirectly to objects
in Venti but this time store them within Venti itself.

As originally proposed, Venti has only one type
of block. We propose adding two additional types:
read-wrappers and write-wrappers. These blocks dif-
fer from ordinary data blocks one important way:
their fingerprints are random numbers in the range
of the hash function used to generate fingerprints for
data blocks. This is necessary because the wrapper
blocks have no immutable data that may be hashed
to generate a fingerprint. This policy introduces no
greater danger of hash collision than an unmodified
Venti system.

A write-wrapper stores the fingerprint of an ob-
ject. A read-wrapper stores the fingerprint of a write-
wrapper. The system forbids the reading of wrap-
per blocks directly; thus, a subject possessing a read-
wrapper cannot gain the corresponding write-wrapper.

Reading and writing are supported using the fol-
lowing policies:

• Reading. The subject provides the system with
the fingerprint of a read-wrapper. The sys-
tem looks up the fingerprint stored in the read-
wrapper. This fingerprint is that of a write-
wrapper; the system then looks up the finger-
print stored in this write-wrapper. It reads the
data stored at this final fingerprint and returns
the result to the requesting subject.

• Writing. The subject provides the system with
the fingerprint of a write-wrapper and the new
data to store. The system stores the data in a
new block and writes the block’s fingerprint to
the provided write-wrapper.

Thus, knowledge of a read-wrapper’s fingerprint
only allows reading a object; knowledge of a write-
wrapper’s fingerprint only allows writing to a object.
Furthermore, when one subject writes to an object
using a write-wrapper, all other subjects possessing
the corresponding read-wrapper’s fingerprint can ob-
serve the changes. These respective fingerprints can
therefore be used as capabilities. Because the finger-
prints are small sequences of bits, they may easily be
transmitted between subjects.

This design alone avoids the requirement of op-
erating system interference. If the Venti system is

3



provided with a read or write capability in the form
of a fingerprint, it can safely allow the corresponding
action. No further overhead is required to restrict
access.

3 Conclusion

Venti’s authors acknowledge that a fingerprint can
be seen as a capability for the data to which it refers.
However, they leave any more details of the system’s
security unexplored. We have derived additions and
modifications to the Venti system that allow it to im-
plement the common operations required by a capability-
based security model.

Our final design, incorporating Venti-managed ob-
ject wrappers, represents a low-overhead solution that
takes advantage of the unique properties of Venti’s
unforgeable fingerprints.

4 Acknowledgments

The author would like to thank Professor Everett Bull
and the students of CS182-1 at Pomona College in the
spring of 2008. Their lectures and discussion helped
introduce the author to the concepts of computer se-
curity drawn on this paper.

References

[1] Jack B. Dennis and Earl C. Van Horn. Program-
ming semantics for multiprogrammed computa-
tions. Communications of the ACM, 9(3):143–
155, 1966.

[2] Sean Quinlan and Sean Dorward. Venti: A
new approach to archival storage. In FAST ’02:
Proceedings of the Conference on File and Stor-
age Technologies, pages 89–101. USENIX Associ-
ation, 2002.

4


