
Wormhole Routing Techniques for Directly Connected
Multicomputer Systems
PRASANT MOHAPATRA

Iowa State University, Department of Electrical and Computer Engineering, 201 Coover Hall, Iowa
State University, Ames, IA 50011; email: ^prasant@iastate.edu.&

Wormhole routing has emerged as the most widely used switching technique in
massively parallel computers. We present a detailed survey of various techniques
for enhancing the performance and reliability of wormhole-routing schemes in
directly connected networks. We start with an overview of the direct network
topologies and a comparison of various switching techniques. Next, the
characteristics of the wormhole routing mechanism are described in detail along
with the theory behind deadlock-free routing. The performance of routing
algorithms depends on the selection of the path between the source and the
destination, the network traffic, and the router design. The routing algorithms are
implemented in the router chips. We outline the router characteristics and describe
the functionality of various elements of the router. Depending on the usage of
paths between the source and the destination, routing algorithms are classified as
deterministic, fully adaptive, and partially adaptive. We discuss several
representative algorithms for all these categories. The algorithms within each
category vary in terms of resource requirements and performance under various
traffic conditions. The main difference among various adaptive routing schemes is
the technique used to avoid deadlocks. We also discuss a few algorithms based on
deadlock recovery techniques. Along with performance, fault tolerance is essential
for message routing in multicomputers, and we thus discuss several fault-tolerant
wormhole routing algorithms along with their fault-handling capabilities. These
routing schemes enable a message to reach its destination even in the presence of
faults in the network. The implementation details of wormhole routing algorithms
in contemporary commercial systems are also discussed. We conclude by itemizing
several future directions and open issues.

Categories and Subject Descriptors: B.4.3 [Input/Output and Data
Communications]: Interconnections (Subsystems)—topology; C.1.4 [Computer
Systems Organization]: Parallel Architectures; C.2.1 [Computer-
Communication Networks]: Network Architecture and Design; C.2.2
[Computer-Communication Networks]: Network Protocols—routing protocols;
C.2.6 [Computer-Communication Networks]: Internetworking—routers

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Deadlock avoidance and recovery, directly
connected multicomputers, fault-tolerance, network topology, router design,
switching techniques, virtual channels, wormhole routing algorithms

This research was supported in part by the National Science Foundation through grants MIP-9628801,
CCR-9634547, and CDA-9617375.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1998 ACM 0360-0300/98/0300–0374 $05.00

ACM Computing Surveys, Vol. 30, No. 3, September 1998

1. INTRODUCTION

Large-scale parallel computers are po-
tential candidates for providing very
high computational power. These sys-
tems are usually organized as an en-
semble of nodes, each with its own pro-
cessor, local memory, and other
supporting devices. The nodes are inter-
connected using a variety of topologies
that can be classified into two broad
categories: direct and indirect. In direct
networks, each node has a point-to-
point or direct connection to some of the
other nodes, called neighboring nodes;
examples of direct network topologies
include hypercube, mesh, and tree. In
indirect networks, the nodes are con-
nected to other nodes or a shared mem-
ory through one or more switching ele-
ments. Examples of indirect networks
include crossbar, bus, and multistage
interconnection networks.

Direct networks have emerged as a
popular architecture for massively
parallel computers because of their scal-
ability. The total communication band-
width, memory bandwidth, and process-
ing capability of the system increase
with the number of nodes. Examples of

experimental and commercial systems
based on the direct interconnection net-
work include Intel’s iPSC, Touchstone
Delta [Intel 1990] and Paragon [Intel
1991], Ncube-2/3 [NCUBE Company
1990], Cray T3D [Kessler and Schwar-
zmeier 1993; Scott and Thorson 1994],
MIT J-Machine [Noakes et al. 1993],
and Stanford DASH [Lenoski et al.
1992]. The nodes of a direct-network-
based multicomputer communicate by
passing messages through an intercon-
nection network. Neighboring nodes
send messages to one another directly,
whereas nodes that are not connected
directly communicate with each other
by passing messages through intermedi-
ate nodes. Support hardware is essen-
tial to handle the transmission of mes-
sages between nodes. In most systems,
a router is associated with each node to
handle communication-related tasks.
Dedicated routers are also used to allow
overlapping of computation and commu-
nication within each node.

Figure 1 shows the architecture of a
generic node consisting of a processor, a
local memory, a router, interconnects,
and other functional units such as I/O
devices. The router has internal chan-
nels that connect it to the processor,
local memory, or other functional units.
The input internal channels are used to
absorb messages destined for the host
processor. The output internal channels
are used by the host processor to send
outgoing messages to remote nodes.
Some systems use multiple internal
channels to avoid communication bottle-
necks between the local processor or
memory and the router. The multiple
internal channels can have either all-
port or k-port architecture. In the all-
port architecture, every external chan-
nel has a corresponding internal
channel, thus allowing the node to send
and receive on all external channels si-
multaneously. A k-port architecture has
k internal channels, where k is less
than the total number of external chan-
nels. The internal channels in a k-port
router are multiplexed by the external
channels, which are used for messages

CONTENTS

INTRODUCTION
2. DIRECT NETWORK TOPOLOGIES
3. WORMHOLE SWITCHING

3.1 Switching Techniques
3.2 Virtual Channels
3.3 Router Characteristics

4. WORMHOLE ROUTING CHARACTERISTICS
4.1 Classifications
4.2 Deadlock-Free-Routing Theory
4.3 Performance Evaluation

5. DETERMINISTIC WORMHOLE ROUTING
6. ADAPTIVE WORMHOLE ROUTING

6.1 Fully Adaptive Algorithms
6.2 Partially Adaptive Algorithms
6.3 Deadlock Recovery in Fully Adaptive Algorithms

7. FAULT-TOLERANT WORMHOLE ROUTING
8. WORMHOLE ROUTINE IN COMMERCIAL SYS-

TEMS
9. CONCLUSIONS AND OPEN ISSUES

Computing Surveys • 375

ACM Computing Surveys, Vol. 30, No. 3, September 1998

in transit. Usually a crossbar switch is
used in the router to connect the input
external channels to the output external
channels. The control unit is responsi-
ble for flow control of the messages tra-
versing the router.

In direct-network-based multicomput-
ers, a task is allocated to a group of
nodes that communicate for successful
execution of the task. The speed of exe-
cution depends on the processor as well
as on the communication performance.
The latency incurred by a message tra-
versing from a source node to a destina-
tion node affects the overall perfor-
mance of the multicomputer system.
Because of the interprocessor interac-
tions, the communication latency also
affects the granularity of parallelism
that can be exploited in the system.
Thus it is essential to devise techniques
that reduce the communication latency
incurred in direct networks.

The communication latency is the
most important performance metric in
direct networks. It comprises start-up
latency, network latency, and the block-
ing time [Ni and McKinley 1993]. The
start-up latency is the time required for
the system to handle the message at the
source and destination nodes and de-
pends primarily on the design of the

interface between the local processors
and routers. Network latency, defined
as the time spent by a message in the
network, is computed as the time be-
tween the instant when the message
head is injected into the network by the
source and the instant when the mes-
sage tail is absorbed by the destination
node. Both start-up and network laten-
cies are fixed for a given network. The
blocking time of a message is the time
spent waiting for a channel currently
being used by another message. Thus
the blocking time depends on the re-
source contentions that a message en-
counters in its path. Blocking time can-
not be determined statically, as it
depends on the network traffic distribu-
tion and the path taken by a message.

The communication latency of direct
networks depends on several factors in-
cluding switching, routing, flow control,
and topology. Several switching tech-
niques have been proposed for direct
networks. Wormhole switching has
emerged as a popular technique and has
been used in both commercial and ex-
perimental systems. Wormhole switch-
ing can be employed in both direct and
indirect networks. It is widely used in
contemporary multicomputers because
of its low latency and requirement of

Figure 1. Node architecture in a multicomputer system.

376 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

small buffers at the nodes. Theories
have been developed for designing cost-
effective, efficient, deadlock-free, and
livelock-free wormhole routing algo-
rithms. Based on these theories, several
deterministic and adaptive routing algo-
rithms have been proposed in the litera-
ture. In this article, we survey different
techniques of wormhole routing along
with the theory behind the design of
deadlock-free algorithms. Complemen-
tary techniques for deadlock recovery
are also described. In addition, we re-
view fault-tolerant wormhole routing
schemes that can route messages in the
presence of faults. Details of wormhole
routing schemes implemented in several
commercial systems are also included.

A preliminary survey on wormhole
routing was given by Ni and McKinley
[1993]. Since then, several advances
have been made in wormhole-routed
networks. Furthermore, the present re-
port discusses several issues not cov-
ered by the earlier survey report, such
as fault-tolerant routing, deadlock re-
covery techniques, router designs, and
implementation in commercial systems.
Topics not discussed in this survey in-
clude collective communication and
routing in indirect networks. Collective
communication could itself be the sub-
ject of a survey; indeed, one such work
is by McKinley et al. [1995]. We focus
primarily on direct network topologies
such as meshes and k-ary n-cubes be-
cause of their widespread adoption in
commercial systems. However, we also
discuss the implementation of wormhole
routing in some recent commercial sys-
tems (CM-5 and IBM SP1/SP2) that are
based on indirect networks.

The rest of the survey is organized as
follows. The properties of direct network
topologies are outlined in Section 2. Sec-
tion 3 discusses various switching tech-
niques along with wormhole switching,
which forms the basis of wormhole rout-
ing. Virtual channels, flow control
mechanisms, and router characteristics
are also described in this section. The
classification of wormhole routing algo-
rithms and deadlock-free routing theory

are presented in Section 4. Section 5
discusses various deterministic worm-
hole routing algorithms, followed by a
discussion of adaptive routing algo-
rithms in Section 6 and of fault-tolerant
routing algorithms in Section 7. In Sec-
tion 8, we discuss the implementation of
wormhole routing algorithms in com-
mercial parallel computers, and give
concluding remarks and a discussion of
open issues in Section 9.

2. DIRECT NETWORK TOPOLOGIES

The topology of a network defines how
the nodes are interconnected and is gen-
erally modeled as a graph in which the
vertices represent the nodes and the
edges denote the channels. Multidimen-
sional meshes and k-ary n-cubes, the
basic topologies used in most parallel
computers, are defined as follows [Ni
and McKinley 1993].

Definition 1. An n-dimensional mesh
is an interconnection structure that has
k0 3 k1 3 . . . 3 kn 2 1 nodes, where ki
denotes the number of nodes in the ith
dimension. Each node in the mesh is
identified by an n-coordinate vector (x0,
x1, . . . , xn 2 1), where 0 # xi # ki 2 1.
Two nodes (x0, x1, . . . , xn 2 1) and (y0,
y1, . . . , yn 21) are connected if and only
if there exists an i such that xi 5 yi 6
1, and xj 5 yj for all j Þ i. Thus the
number of neighbors of a node ranges
from n to 2n, depending on its location
in the mesh.

Definition 2. A k-ary n-cube is de-
fined as an interconnection structure of
n dimensions having k nodes in each
dimension. Each node in the k-ary n-
cube is identified by an n-coordinate
vector (x0, x1, . . . , xn 2 1), where 0 #
xi # k 2 1. Two nodes (x0, x1, . . . ,
xn 2 1) and (y0, y1, . . . , yn 2 1) are
connected if and only if there exists an i
such that xi 5 (yi 6 1) mod k, and xj 5
yj for all j Þ i. There are wraparound
channels in the k-ary n-cubes (specified
by the use of modulus in the definition),
which are not present in n-dimensional
meshes. If k 5 2, then every node has n

Computing Surveys • 377

ACM Computing Surveys, Vol. 30, No. 3, September 1998

neighbors, one in each dimension. If k .
2, then every node has 2n neighbors,
two in each dimension.

The hypercube and torus are two
other popular topologies for direct net-
works. Hypercubes are special cases of
an n-dimensional mesh in which ki 5 2,
for all i, 0 # i # n 2 1; they can be
termed 2-ary n-cubes. A k-ary n-cube is
called a torus when n 5 2. Figure 2
shows a three-dimensional (3-D) hyper-
cube and a two-dimensional (2-D) mesh.
A torus can be constructed by connect-
ing the corresponding end nodes of the
2-D mesh with wraparound connections.

Several issues are associated with the
mesh, torus, and hypercube topologies.
The mesh is an asymmetrical topology
in which the node degree depends on its
location. Interprocessor communication
performance depends on the location of
source and destination. The channels
near the center of the mesh experience
higher traffic density than those on the
periphery. The torus and hypercube are
symmetrical topologies in which the de-
gree of a node is the same irrespective
of its location in the network. Thus,
unlike the mesh, all the nodes in tori
and hypercubes are identical in connec-
tivity. The network diameter of a mesh
is greater than that of the torus, which
in turn has a greater diameter than the
hypercube for the same number of
nodes.

The bisection width of a network is

defined as the number of channels that
must be removed to partition the net-
work into two equal subnetworks. The
bisection width has a significant effect
on the interprocessor communication
performance [Dally 1990]. The bisection
width (BW) of a 2n 3 2n 2-D mesh, 2n 3
2n 2-D torus, and a 2n-cube hypercube
are BWmesh 5 2n, BWtorus 5 2n11,
BWhypercube 5 22n21, respectively. The
bisection density, which is the product
of the bisection width and the channel
width, can be used as a measure of the
network cost [Ni and McKinley 1993].
For the same cost, the 2-D mesh can
support wider channels than the 2-D
torus, which in turn can support wider
channels than the hypercube [Ni and
McKinley 1993]. Thus the channel
bandwidth of the three topologies can be
expressed as: mesh . torus . hyper-
cube.

In general, low-dimensional meshes
are preferred because they have low
fixed-node degrees and fixed-length
channel wires, which make them more
scalable than high-dimensional meshes
and k-ary n-cubes. Low-dimensional
meshes also have higher channel band-
width per bisection density and have
lower contention and blocking latencies,
which results in lower communication
latencies and higher hotspot throughput
[Dally 1990]. Furthermore, two or three
topological dimensions are easier to im-
plement in the three physical dimen-

Figure 2. Topology of a hypercube and a mesh: (a) three-dimensional hypercube; (b) two-dimensional
mesh (8 3 8).

378 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

sions. On the other hand, high-dimen-
sional meshes and k-ary n-cubes have
lower diameters, which shortens the
path lengths. High-dimensional topolo-
gies also have more paths between pairs
of nodes, which permits more adaptivity
and fault tolerance.

A class of shuffle networks known as
de Bruijn (dB) graphs have become pop-
ular recently. They are suitable for
large networks and can be defined for
any number of nodes, including prime
numbers [Samatham and Pradhan
1989]. For a specific node degree, dB
networks, in most cases, have the small-
est diameter compared to the contempo-
rary network topologies. Formally, a
unidirectional dB network can be de-
fined as follows [Samatham and
Pradhan 1989].

Definition 3. An r-radix unidirec-
tional de Bruijn digraph dBD(r, rm) has
the total number of nodes N 5 rm and
the address of a node X is represented
as (xm21, xm 2 2, . . . , x0) where xi [{0,
1, . . . , (r 2 1)} for 0 # i # m 2 1. Its
neighboring nodes are (xm22, xm23,
. . . , a), where a 5 0, 1, . . . , r 2 1.

Several other topologies based on Ca-
ley graphs have been also proposed [Ak-
ers and Krishnamurthy 1989]. How-
ever, here we focus primarily on k-ary
n-cubes and multidimensional meshes.
Wormhole routing techniques for dB
networks and other topologies based on
the Caley graphs are reported in Bop-
pana and Chalasani [1995] and Park
and Agrawal [1995].

3. WORMHOLE SWITCHING

Nodes in a direct network communicate
by passing messages from one node to
another. A message may be divided into
one or more equal or variable-size pack-
ets. A packet is the smallest unit of
information that contains routing and
sequencing information. In this section,
we discuss various switching techniques
used in or proposed for multicomputer
systems.

3.1 Switching Techniques

In most multicomputer systems, a mes-
sage enters the network from a source
node and is switched or routed towards
its destination through a series of inter-
mediate nodes. Four types of switching
techniques are usually used for this
purpose: circuit switching, packet
switching, virtual cut-through switch-
ing, and wormhole switching.

In circuit switching, a dedicated path
is established between source and desti-
nation before the data transfer initiates.
Once the data transfer is initiated, the
message is never blocked. As the chan-
nels creating the path are reserved ex-
clusively, buffering of data is not re-
quired. On the other hand, establishing
the path requires significant overhead:
during the data-transmission phase, all
channels are reserved for the entire du-
ration of message transfer. Circuit
switching thus degrades performance
and is no longer used in commercial
multicomputer systems.

In packet switching, a message is di-
vided into packets that are indepen-
dently routed towards their destination.
The destination address is encoded in
the header of each packet. The entire
packet is stored at every intermediate
node and then forwarded to the next
node in its path. The main advantage of
packet switching is that the channel
resource is occupied only when a packet
is actually transferred. Each packet
contains the routing information and
alternative paths can be selected upon
encountering network congestion or
faulty nodes. The major drawback of
packet switching is that, since the
packet is stored entirely at each inter-
mediate node, the time to transmit a
packet from source to destination is di-
rectly proportional to the number of
hops in the path. Furthermore, at each
intermediate node, we need buffer space
to hold at least one packet.

In order to reduce the time to store
the packets at each node, Kermani and
Kleinrock [1979] introduced a technique
called virtual cut-through in which,

Computing Surveys • 379

ACM Computing Surveys, Vol. 30, No. 3, September 1998

while routing toward its destination, a
message is stored at an intermediate
node only if the next channel required is
occupied by another packet. Now, the
distance between the source and desti-
nation has little effect on communica-
tion latency. In an extreme case, when a
message encounters blocking at all the
intermediate nodes, the virtual cut-
through technique reduces to packet
switching. The disadvantage of the vir-
tual cut-through technique is its imple-
mentation cost: each node must provide
sufficient buffer space for all the mes-
sages passing through it, and because
multiple messages may be blocked at
any node, a very large buffer space is
required at each node. This implemen-
tation constraint limits the use of the
virtual cut-through technique.

Wormhole switching is a variant of
the virtual cut-through technique that
avoids the need for large buffer spaces.
In wormhole switching, a packet is
transmitted between the nodes in units
of flits, the smallest units of a message
on which flow control can be performed.
The header flit(s) of a message contains
all the necessary routing information
and all the other flits contain the data
elements. The flits of the message are
transmitted through the network in a
pipelined fashion. Since only the header
flit(s) has the routing information, all
the trailing flits follow the header flit(s)
contiguously. Flits of two different mes-
sages cannot be interleaved at any in-
termediate node. Successive flits in a
packet are pipelined asynchronously in
hardware using a handshaking protocol.

When the header flit is blocked, then all
the trailing flits occupy the buffers at
the intermediate nodes. The general for-
mat of a message and the units of pack-
ets and flits are shown in Figure 3(a).
Figure 3(b) shows the routing mecha-
nism using wormhole switching, where
the header flit H contains the destina-
tion address and the data flits D follow
H contiguously in a pipelined fashion.

The main advantage of wormhole
switching derives from the pipelined
message flow, since transmission la-
tency is insensitive to the distance be-
tween the source and destination. More-
over, since the message moves flit by flit
across the network, each node needs to
store only one flit. Some implementa-
tions, however, require storage of multi-
ple flits at each node to improve routing
performance. The reduction of buffer re-
quirements at each node has a major
effect on the cost and size of multicom-
puter systems.

The main disadvantage of wormhole
switching comes from the fact that only
the header flit has the routing informa-
tion. If the header flit cannot advance in
the network due to resource contention,
all the trailing flits are also blocked
along the path and these blocked mes-
sages can block other messages. This
chained blocking can also lead to dead-
lock where messages wait for each other
in a cycle and hence no message can
advance any further. Prevention of
deadlock is one of the main issues in
wormhole switching, and is usually ac-
complished by a suitable choice of rout-
ing function that selectively prohibits

Figure 3. Message format and routing in wormhole switching.

380 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

messages from taking all the available
paths, thus preventing cycles in the net-
work. Selection of a routing algorithm is
thus a major issue in wormhole-
switched networks.

3.2 Virtual Channels

The primary problem associated with
wormhole routing is the blocking of
messages. A message may be blocked
behind another message destined for a
node in a different direction. In Figure
4(a), message B, whose destination is in
the east direction, is blocked behind
message A, which is blocked while trav-
eling in the south direction. This type of
blocking reduces network performance
drastically and can also lead to dead-
lock. Virtual channels can be used in
wormhole-switched networks to prevent
deadlock and reduce the effects of
chained blocking [Dally 1992]. A virtual
channel is a logical abstraction of a
physical channel. All the virtual chan-
nels associated with a physical channel
have individual flit buffers and are
time-multiplexed for message transmis-
sion using the physical channel. Virtual
channels dissociate the buffers associ-
ated with the channels from the actual
physical channels. Figure 4(b) shows

two virtual channels associated with a
physical channel in one direction. Even
if message A is blocked by some other
message down the path, message B can
move forward using the other virtual
channel. Virtual channels reduce the
effect of blocking and are used widely in
multicomputer systems to improve per-
formance as well as to design deadlock-
free routing algorithms.

Virtual channels are implemented
with a single flit or multiple flits along
with an appropriate flow-control proto-
col. The flow-control protocol of a net-
work determines how resources (buffers
and channel bandwidth) are allocated
and how message collisions are re-
solved. A message collision occurs when
a packet cannot proceed because the
buffer it needs is held by another mes-
sage. The flow control strategy allocates
buffer and channel bandwidth to flits.
Because flits have no routing or se-
quencing information, the allocation
must be done in a manner that keeps
the flits associated with a particular
message together.

3.3 Router Characteristics

As wormhole routing is implemented in
hardware, the design and characteris-

Figure 4. Performance improvement using virtual channels: (a) packet B is blocked behind packet A
while all physical channels remain idle; (b) virtual channels provide an additional buffer, allowing
packet B to pass the blocked packet A.

Computing Surveys • 381

ACM Computing Surveys, Vol. 30, No. 3, September 1998

tics of the router unit are significant in
determining routing algorithm perfor-
mance. A detailed study of various de-
sign issues related to the routers is re-
ported in Chien [1993]. The primary
functions of wormhole routers include
switching, routing, flow control, multi-
plexing physical and virtual channels,
interchip signaling, and clock recovery.
Figure 5 depicts various components of
a generic wormhole router [Chien 1993].
The essential components of a wormhole
router and their functionality are de-
scribed in the following.

Crossbar: Crossbar switches enable
the switching of router inputs to out-
puts. Single or multiple crossbar
switches are used, based on cost-perfor-
mance tradeoffs. The size of the cross-
bar may be proportional to the number
of inputs and outputs.

Routing Arbitration (RA) Logic: This
logic unit does arbitration for the router
outputs. It chooses the path and con-
nects and disconnects the input to an
appropriate output based on the routing
algorithm and network status. The com-
plexity and latency incurred in the rout-
ing arbitration logic are proportional to
the degree of freedom (number of possi-
ble choices) of the routing algorithm.

Address Decoder (AD): This unit
checks the message header and gener-
ates the set of possible routes based on
the routing algorithm. AD also com-

putes and updates the header informa-
tion.

Flow Control (FC) Units: These units
are implemented using control logic and
buffers and perform the flow control
between the routers. The buffers hold
the flits while flow-control signals are
being exchanged between the routers.
The buffers are also used for holding the
flits if a message is blocked.

Virtual Channel (VC) Controllers: Vir-
tual channel controllers are imple-
mented in those routers that support
virtual-channel flow control. These con-
trollers multiplex the physical channels
to provide a set of independent virtual
channels that enables the flow of differ-
ent messages. The complexity and la-
tency of the controllers increase with
the number of virtual channels due to
increased buffering and arbitration re-
quirements.

Messages flow through the routers as
follows. Messages arriving at the router
inputs encounter the address decoder,
which checks the message header and
generates a set of possible outputs for
the message. The routing arbitration
logic tries to match all the inputs to the
output channels based on the output
sets generated by the address decoder.
If a suitable match is not found for a
message then it is blocked. Once an
appropriate output has been selected,
the switch connection is made for the

Figure 5. Block diagram of a wormhole router.

382 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

entire message. The connection is termi-
nated following the last flit.

The performance of wormhole routers
can be characterized by two attributes:
internal router latency and bandwidth.
Internal router latency, defined as the
time to create a valid path through the
router, has contributions from the fol-
lowing factors: address decoding, arbi-
tration, updated header selection, cross-
bar switching, and virtual channel
control delay. The selection policies
used at the routers also have a signifi-
cant impact on network routing perfor-
mance. Several input and output selec-
tion policies have been compared by
Glass and Ni [1992b]. A router’s chan-
nel bandwidth depends on the size of
the flow-control unit (flit) and the time
required for a flow-control operation.
Although higher bandwidth can be
achieved by increasing the flit size, such
a choice increases router complexity by
introducing separate logical and physi-
cal signaling rates, requiring additional
buffering, slowing backpressure, and in-
creasing routing latency. The internal
flow-control latency limits the flit flow
rate in the network channels. Flits are
units of resource multiplexing, so flow-
control latency determines the net-
work’s ability to share internal connec-
tions and external channels among
different packets. The unit of multiplex-
ing directly affects the responsiveness
of the network. In addition, flow-control
speed determines the amount of buffer-
ing needed. The flow-control delay in-
cludes the latency of flow-control units,
the crossbar switch delay, and the vir-
tual channel controller delay.

4. WORMHOLE ROUTING
CHARACTERISTICS

The insensitivity to distance, pipelined
flow of messages, and small buffer re-
quirements are some of the main advan-
tages of the wormhole routing scheme.
Its primary disadvantage is the intro-
duction by the pipelined flow of mes-
sages of blockings that can lead to dead-
lock. In this section, we present our

classification of wormhole routing
schemes and then formalize the theory
behind deadlock-free routing algo-
rithms. We also survey the performance
parameters used to evaluate wormhole
routing schemes.

4.1 Classifications

Routing algorithms can be classified
with respect to several characteristics.
They can be classified as source routing
or distributed routing according to the
location of routing decisions. In source
routing, the entire path for message
routing is decided at the source node
before the message is sent. Each mes-
sage carries the complete routing infor-
mation in its header, thus increasing
the overall message size. In distributed
routing, routing decisions are made at
the intermediate nodes through which
the message traverses. Upon receiving a
packet, each router decides whether to
deliver it to the local processor or for-
ward it to a neighboring router. The
routing algorithm helps in deciding to
which neighbor the packet should be
sent.

Routing also can be classified as de-
terministic or adaptive based on the
path selection process. In deterministic
routing, also called oblivious routing,
the path is determined by the current
and destination addresses. Determinis-
tic routing provides only one path from
a source to a destination. Adaptive rout-
ing, on the other hand, provides multi-
ple paths from the source to the destina-
tion, and the path taken by a particular
message depends on network conditions
and the routing algorithm.

The routing algorithm can be minimal
or nonminimal. In minimal routing, the
message is routed through one of the
shortest paths between the source and
the destination. The message traverses
closer to its destination after every hop.
In nonminimal routing a message can
take any path between the source-desti-
nation pair, and thus might take a
longer path because of congestion or
faults in the minimal paths. While de-

Computing Surveys • 383

ACM Computing Surveys, Vol. 30, No. 3, September 1998

signing nonminimal routing algorithms,
care should be taken to avoid livelock
situations where a message continues to
be routed through the network but
never reaches its destination.

4.2 Deadlock-Free-Routing Theory

Deadlock occurs when a set of messages
is blocked forever in the network. In
such a situation, the packets are hold-
ing certain resources and requesting
other resources held by other messages
involved in the deadlock configuration.
Figure 6 shows deadlock in a two-di-
mensional mesh. Four messages are be-
ing routed from sources S1, S2, S3, and
S4 to destinations D1, D2, D3, and D4,
respectively. All messages are thus
waiting for a channel that will never be
available, resulting in a deadlock.

Recovery and avoidance are two ways
to handle the deadlock problems associ-
ated with wormhole routing. Deadlock
recovery requires deadlock detection
ability as well as preemption of mes-
sages. Deadlock detection mechanisms
increase the complexity of interproces-
sor communications, and preemption of
messages increases the latency. Thus,
most routing algorithms are designed to
avoid the possibility of deadlock config-

urations. Before we discuss the theory
behind deadlock-free routing, some ter-
minology is needed. We employ the
terms and definitions introduced by
Duato [1994a].

Definition 4. A routing function R:
N 3 N 3 r(C), where r(C) is the power
set of C, supplies a set of alternative
output channels to send a message from
the current node nc to the destination
node nd. If the size of r(C) is always 1,
the function R is deterministic; other-
wise it is an adaptive routing function.
For a given interconnection network, R
is connected iff, for any pair of nodes x,
y [N, it is possible to establish a path
P(x, y) , r(C) between them using
channels supplied by R.

Definition 5. A routing subfunction
R1 for a given routing function R is a
routing function that supplies a subset
of channels supplied by R. Thus R1 re-
stricts the routing options supplied by
R. The set of all the channels supplied
by R1 is C1 5 ø@x,y[NR1(x, y).

Definition 6. Given an interconnec-
tion network, a routing function R, a
routing subfunction R1, and a pair of
channels ci, cj [C, there is a direct
dependency from ci to cj iff cj can be
used immediately after ci by messages
destined for some node x.

Definition 7. Given an interconnec-
tion network, a routing function R, a
routing subfunction R1, and a pair of
channels ci and cj supplied by R1 for
some destinations, there is an indirect
dependency from ci to cj iff it is possible
to establish a path from si to dj for
messages destined for some node x. ci
and cj are the first and last channels in
that path and the only ones supplied by
R1. Thus, cj can be used after ci by some
messages. As ci and cj are not adjacent,
some other channels not supplied by R1
are used between them.

Definition 8. A channel dependency
graph D for a given interconnection net-
work I and routing function R is a di-
rected graph, D 5 G(C, E). The vertices

Figure 6. A deadlock situation involving four
messages.

384 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

of D are the channels of I. The arcs of D
are the pairs of channels (ci, cj) such
that there is a direct dependency from ci
to cj.

Definition 9. An extended channel
dependency graph DE for a given inter-
connection network I and routing sub-
function R1 of routing function R is a
directed graph, DE 5 G(C1, EE). The
vertices of DE are the channels supplied
by the routing function R1 for some
destinations. The arcs of DE are the
pairs of channels (ci, cj) such that there
exists a direct, indirect, direct cross-
dependency, or indirect cross-depen-
dency from ci to cj.

The following assumptions are also
required to derive necessary and suffi-
cient conditions for deadlock freedom
[Dally and Seitz 1987; Duato 1993].

(1) A node can generate messages des-
tined for any other node.

(2) A message arriving at its destina-
tion node is eventually consumed.

(3) A node can generate messages of
arbitrary length. Messages are gen-
erally longer than a single flit.

(4) An available queue may arbitrate
among messages that request that
queue, but may not choose among
waiting messages.

(5) Once a queue accepts the first flit of
a message, it must accept the re-
mainder of the message before ac-
cepting any flits from another mes-
sage.

(6) A queue cannot contain flits belong-
ing to different messages. After ac-
cepting a tail flit, a queue must be
emptied before accepting another
header flit.

(7) In deterministic routing, a route
taken by a message is determined
by its destination only. For adaptive
routing, the route taken by a mes-
sage depends on its destination and
the status of the output channels.

Dally and Seitz [1987] have proposed
the following necessary and sufficient

conditions for deadlock-free determinis-
tic routing.

THEOREM 1. A deterministic routing
algorithm for an interconnection net-
work I is deadlock-free iff there are no
cycles in the channel-dependency graph D.

Although Theorem 1 is also a suffi-
cient condition for deadlock-free adap-
tive routing, it is not a necessary condi-
tion. In adaptive routing, even if there
are cycles in the channel-dependency
graph, the routing can be deadlock-free
if there exists at least one escape path
with no cyclic dependency. The neces-
sary and sufficient conditions for dead-
lock-free adaptive routing proposed by
Duato [1994a] can be stated as follows.

THEOREM 2. A coherent, connected,
and adaptive routing algorithm R for an
interconnection network I is deadlock
free iff there exists a routing subfunction
R1 that is connected and has no cycles
in its extended channel dependency
graph DE. The proof of Theorem 2 and
related definitions are discussed in de-
tail in Duato [1994a].

We analyze an example to illustrate
the terminology defined in this section
and the application of Duato’s [1994a]
theorem. Consider a unidirectional ring
with four nodes ni, 0 # i # 3 (Figure
7a). There are two channels in each
direction except north. Let CAi, 0 # i #
3, and CHi, 0 # i # 2, be the outgoing
channels from node ni. The routing al-
gorithm R can be stated as follows. If
the current node ni is equal to the des-
tination node nj, consume the message.
Otherwise, use either CAi, @j Þ i, or
CHi, @j . i. Thus CAi channels can be
used to forward messages to all the
destinations, but CHi channels can be
used only if the destination is higher
than the current node.

Consider a routing subfunction R1
that is equal to R, except that CA0
cannot be used and CA1, CA2 can be
used only to forward messages to desti-
nations lower than the current node.
The routing subfunction R1 is connected

Computing Surveys • 385

ACM Computing Surveys, Vol. 30, No. 3, September 1998

because messages at node ni destined
for a higher node will be forwarded
through CHi and messages destined for
a lower node will be sent across CAi.
Figure 7(b) shows the extended chan-
nel-dependency graph for R1. As there
are no cycles in the graph, we can con-
clude that R is deadlock-free.

Alternative theoretical formulations
of necessary and sufficient conditions
for deadlock-free adaptive routing are
proposed by Lin et al. [1993] and
Schwiebert and Jayasimha [1996].

4.3 Performance Evaluation

Routing algorithms are evaluated pri-
marily by measures of average message
latency and average system throughput.
The hardware requirements in terms of
the buffer size required per node and
the number of virtual channels per
physical channel are also used in com-
paring routing algorithms.

Message latency is the time between
generation of its header flits and arrival
of the tail flit at its destination.
Throughput is measured as the average
number of packets that finish routing
per unit time. Both these parameters
depend on the communication pattern,
that is, the distribution of source-desti-
nation pairs, which is largely applica-
tion-dependent. Usually a few predeter-
mined patterns are used to evaluate
algorithm performance. The most com-

monly used communication patterns are
uniform, hotspot, transpose or center
reflection, and local. With uniform dis-
tribution, a source node sends messages
to all other nodes with equal probabil-
ity. In hotspot distribution, the proba-
bility that a message is sent to some
nodes (called hotspot nodes) is higher
than to other nodes. In the center reflec-
tion or transpose pattern, messages are
directed to the diagonally opposite
nodes. In the local traffic pattern, a
message is sent only to the nodes within
a certain neighboring region; this pat-
tern reflects normal application behav-
ior in which there is a large degree of
locality in the internode communica-
tion. The overall performance of the al-
gorithm under these varied patterns
usually reflects its behavior for any
given application.

Routing algorithms are also compared
on the basis of their flit buffer and
virtual channel requirements. Intu-
itively, algorithms that use more virtual
channels should give better results, but
detailed analysis has shown that the
overhead associated with the virtual
channels is usually very high and that
the actual performance may even de-
grade [Aoyama and Chien 1998].

Most performance studies on worm-
hole routing have resorted to simulation
and measurements. Development of an-
alytical models for performance evalua-

Figure 7. (a) Network for the example; (b) its extended channel-dependency graph.

386 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

tion is difficult because of the multiple
and simultaneous resource possession
as well as the chained blockings during
pipelined routing. However, approxi-
mate analytical models based on simpli-
fying assumptions can give reasonable
performance estimates.1

5. DETERMINISTIC WORMHOLE ROUTING

In deterministic routing, the path from
source to destination is determined by
the current node address and the desti-
nation node address: for the same
source-destination pair, all packets fol-
low the same path. Deadlocks are
avoided in deterministic routing by or-
dering those channels that a message
needs to traverse. Messages traverse
the channels either in ascending or de-
scending order, avoiding cycles in the
channel dependency graph.

Dimension-order routing [Dally and
Seitz 1987] is a deterministic routing
scheme in which the selected path
traverses network dimensions in se-
quence. The network dimensions are ar-
ranged in a predetermined monotonic
order. A message traverses channels in
the lowest or highest dimension with
nonzero displacement until that dimen-
sion displacement reduces to zero; then
it traverses in the next dimension, con-
tinuing until it reaches its destination.
As the messages never traverse in re-
verse direction of the dimension order-
ing, cycles cannot form and deadlock-
free routing is guaranteed.

Dimension order routing in hyper-
cubes, also called e-cube routing, is min-
imal in nature. The nodes of an n-cube
are represented by n-bit binary ad-
dresses. The destination address for a
message is encoded in its header. When
a node receives a message, the destina-
tion address is bit-XORed with the cur-
rent node address. If the result of the
XOR operation is zero, the message is
absorbed by the processor in the current

node; otherwise, the message is for-
warded in the dimension corresponding
to the rightmost (or leftmost if using
reverse ordering) 1 in the result. For
example, a message originating from
source node 0010 in a 4-cube to destina-
tion node 1101 traverses the nodes in
the sequence 0010 3 0011 3 0001 3
0101 3 1101.

Dimension-order routing in two-di-
mensional meshes, called XY routing, is
minimal in nature. The two dimensions
of a mesh are labeled as X and Y. A
message is first routed in the X direc-
tion completely and then in the Y direc-
tion. Figure 8 clearly indicates that cy-
cles cannot be formed with XY routing,
and hence it is deadlock-free. Examples
of routing paths between two source-
destination pairs are also shown in Fig-
ure 8. In multidimensional meshes, sim-
ilarly, routing is completed in one
dimension before proceeding to the next
dimension. All the dimensions are or-
dered and the routing is done through a
predetermined sequence of dimensions
until the message reaches its destina-
tion.

Dimension-order routing in k-ary n-
cubes is not minimal in nature. Because
of the wraparound connections, mes-
sages may get involved in deadlocks
while routing through the shortest
paths. In fact, messages being routed
along the same dimension (a single di-
mension forms a ring) may be involved
in a deadlock due to cyclic dependency.
However, nonminimal deadlock-free de-
terministic routing algorithms can be
developed for k-ary n-cubes by restrict-
ing the use of certain edges so as to
prevent the formation of cycles [Dally
and Seitz 1987]. Minimal deadlock-free
dimension-order routing can also be im-
plemented in k-ary n-cubes using vir-
tual channels [Dally and Seitz 1987].

Dimension-order routing generally
distributes the shortest paths through-
out the network. It is thus well suited
for uniform traffic distribution. For
asymmetrical workloads, some channels
are more overloaded than others. As the
algorithm restricts message routing to a

1 Please see Adve and Vernon [1994], Agrawal
[1991], Dally [1990], Draper and Ghosh [1994],
Kim and Chien [1995], and Kim and Das [1991].

Computing Surveys • 387

ACM Computing Surveys, Vol. 30, No. 3, September 1998

fixed path, it cannot exploit possible
multiple paths between source-destina-
tion pairs during congestion or faults.

6. ADAPTIVE WORMHOLE ROUTING

Deterministic algorithms provide one
and only one path between any source-
destination pair. To avoid network con-
gestion and enhance fault tolerance, it
is preferred that the routing algorithm
provide alternative paths to the mes-
sage. Algorithms that adapt to the net-
work and traffic conditions are called
adaptive routing algorithms and are
classified as fully or partially adaptive
depending on whether they allow all
possible paths between the source and
destination or only a subset of them.
Although messages can take nonmini-
mal adaptive paths [Konstantinidou
and Snyder 1991], we discuss here only
minimal adaptive routing.

6.1 Fully Adaptive Algorithms

Fully adaptive algorithms let a message
use all possible physical paths between
source and destination. Deadlock is usu-
ally avoided in the fully adaptive rout-
ing schemes by using virtual channels
(VCs). Here we classify fully adaptive
routing algorithms on the basis of the
number of VCs required per physical

channel (PC) for a k-ary n-cube net-
work. Schemes that employ more than
two VCs per PC include Linder and
Harden [1991] and Dally and Aoki
[1993], the routing algorithms reported
in Boura and Das [1994], Duato [1993],
Su and Shin [1993], and Upadhyay et
al. [1995a] use exactly two VCs per PC,
and algorithms using fewer than two
VCs are reported in Glass and Ni
[1992a], Gravano et al. [1994], and
Schwiebert and Jayasimha [1995].

Algorithms Requiring More than Two
VCs per PC. Linder and Harden [1991]
have extended the concept of virtual
channels to virtual interconnection net-
works in order to develop fully adaptive
and fault-tolerant routing algorithms. A
virtual interconnection network has two
components: the virtual topology is de-
fined by identifying the virtual nodes
and channels of the network and speci-
fying which nodes are the sources and
destinations of each channel; and the
edges of the channel-dependency graph
are listed to specify the connections
available to the routing functions. The
scheme uses a separate virtual intercon-
nection network for each of the possible
turns a message might make, and the
number of virtual channels required de-
pends on the total number of virtual

Figure 8. Dimension-order routing in a 2-D mesh.

388 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

networks. Message routing within a vir-
tual network is deadlock-free and mes-
sages are routed through the virtual
networks in a predefined order. The au-
thors examine three k-ary n-cube topol-
ogies: unidirectional, torus-connected
bidirectional, and mesh-connected bidi-
rectional.

In a unidirectional k-ary n-cube, the
virtual nodes in the virtual interconnec-
tion network are identified by their
level. To eliminate deadlock due to
wraparound connections, the physical
networks are split into multiple levels.
A flit travels on a new level each time it
crosses a wraparound connection. In
torus-connected bidirectional k-ary
n-cubes, levels are also used to break
the cycles formed by the wraparound
connections. Because of the bidirec-
tional nature of the physical network,
additional cycles due to multidimen-
sional loops can be formed. To break
these cycles, the bidirectional networks
are split into several virtual networks
similar to the unidirectional networks.
The deadlock avoidance mechanism in
mesh-connected bidirectional networks
is similar to that for torus-connected
bidirectional k-ary n-cubes, but no lev-
els are required in mesh-connected sys-
tems because of the absence of wrap-
around connections. The disadvantage
of the algorithms proposed by Linder
and Harden is that they require a large
number of virtual channels: in general,
the algorithm requires 2n21 subnet-
works with n 1 1 levels per subnetwork
for a k-ary n-cube network.

Dally and Aoki [1993] have proposed
an adaptive routing scheme based on
the concept of dimension reversal. A
message is allocated to virtual channels
using a count of dimension reversals
(DR). All messages start with a DR of
zero. Each time a message goes to a
lower dimension, the DR of a message is
incremented. Two allocation algorithms,
static and dynamic, were proposed. The
static algorithm separates the virtual
channels into classes numbered zero to
r, where r is the maximum number of
dimension reversals permitted. Mes-

sages with DR , r are allowed to route
freely only in a virtual channel of class
DR. If a message has DR 5 r, it must be
routed in dimension order in the virtual
channels of class r. The dynamic algo-
rithm routes messages in any direction
with no limit on the number of dimen-
sion reversals. The virtual channels are
divided into two classes, adaptive and
deterministic. Messages are routed first
on the adaptive channels. A message
with a higher DR cannot wait for a
channel labeled with a lower DR; if all
channels with equal or lower DR are
occupied, a message must change to the
deterministic channels and is not al-
lowed to use the adaptive channels again.

The hop-based adaptive routing
scheme recently proposed by Boppana
and Chalasani [1996] shows that the
approach taken by Dally and Aoki is a
special case of the hop-based schemes.
Boppana and Chalasani have developed
new wormhole routing algorithms based
on store-and-forward (SAF) hop schemes
that can be employed for a variety of
network topologies including k-ary n-
cubes, multidimensional meshes, dB
networks, and Caley graphs. In hop-
based schemes, the class of a message
at any time depends on the hops it has
taken up to that point. A hop-based
adaptive routing scheme called nega-
tive-hop (NHOP) is based on the NHOP
SAF algorithm [Gopal 1985]. In the
NHOP SAF algorithm, the network is
partitioned into several subsets such
that none of the subsets contains two
adjacent nodes. All subsets are labeled
and the nodes in the subsets are
marked or colored with the label num-
ber. A hop is considered negative if it is
from a node with a higher label to a
node with a lower label; otherwise, it is
nonnegative. A message occupies buff-
ers corresponding to its label number.
The algorithm can be modified for
wormhole routed k-ary n-cubes as fol-
lows [Boppana and Chalasani 1996].

Algorithm NHOP

Initialize: current-class 5 0;
current-host 5 source of the mes-

Computing Surveys • 389

ACM Computing Surveys, Vol. 30, No. 3, September 1998

sage;
If (current-host Þ destination)
then {
1. If label of current-host is 0

or is identical to the previ-
ous-host, then increment cur-
rent-class by 1.

2. Select any neighboring node
that is a shortest path to
destination as next-host.

3. Reserve the virtual channel of
class current-class.

4. If the virtual channel is
available, change current-host
to previous-host, next-host to
current-host, and route the
message; otherwise go to 2.

} Else consume the message.

Figure 9 shows the NHOP routing for
a message from (2,2) to (0,0) in a 4 3 4
mesh using four virtual channels. The
second and fourth hops are negative
hops, and the message class is incre-
mented after the second hop.

The number of virtual channels
needed for a k-ary n-cube network with
the NHOP wormhole routing algorithm
is 1 1 n k/2 [Boppana and Chala-
sani 1996]. Boppana and Chalasani
[1996] also analyze buffered wormhole
routing and describe its implementation
in IBM SP1 and SP2.

Gravano et al. [1994] have proposed a
fully adaptive minimal routing algo-
rithm called *-Channels that needs only
five virtual channels per bidirectional

link for n-dimensional torus networks.
The *-Channel algorithm involves two
subnetworks, one composed of star
channels and one of nonstar channels.
The star channels are used for dimen-
sion-order oblivious routing. The non-
star channels are used when taking any
of the turns that are not allowed by the
oblivious routing scheme. The star
channels implement a complete oblivi-
ous subnetwork that acts as a “release
valve” or “drain” for the subnetwork
built from the nonstar channels. Figure
10 shows the paths available in a 2-D
torus between the nodes (1,0) and (4,2)
and between the nodes (6,3) and (1,6)
with the *-Channel algorithm. The links
have different types of virtual channels
associated with them. The star channels
with prefix i, 1, 1 are used for dimen-
sion-order routing; channels with prefix
i, 1, 0 are used in correcting the dimen-
sion and making a wraparound along
the X-dimension.

Gravano et al. [1994] have also pro-
posed an algorithm called 4-classes for
bidirectional torus networks. The algo-
rithm divides all source-destination
pairs into four classes and creates a
virtual network for each class using all
minimal paths in the network. It re-
quires eight virtual channels per bidi-
rectional physical link and the routing
scheme is as follows.

Consider a two-dimensional torus
with dimensions X and Y, and a mes-
sage with source node (x, y) and desti-
nation node (x9, y9). A minimal path
from (x, y) to (x9, y9) is built in such a
way that the message must travel
through at most k/2 links along di-
mension X and through at most k/2
along the dimension Y. The correct ori-
entation along each dimension must be
chosen to find such minimal paths. If k
is odd, there is only one possible orien-
tation of each dimension for the mini-
mal paths. If k is even and a message is
k/2 steps away from its destination
along dimension X, then either orienta-
tion along the X dimension can be taken
in order to follow minimal paths toward
the message destination. This choice is

Figure 9. NHOP routing in a 4 3 4 mesh [Bop-
pana and Chalasani 1996].

390 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

independent of the dimensions. There-
fore, the set of minimal paths between
any pair of nodes is determined by a
correct choice of the direction in which
to change each of the dimensions.

Algorithms Requiring Exactly Two
VCs per PC. Duato [1993] has devel-
oped a theoretical background for dead-
lock-free adaptive routing algorithms
for wormhole networks and has pro-
posed fully adaptive routing algorithms
that split a physical channel into virtual
channels. At least two virtual channels
are required to support adaptivity. The
technique increases the number of valid
alternative paths for a message without
increasing the number of physical chan-
nels. Duato gives the following system-
atic methodology for designing dead-
lock-free adaptive routing algorithms.

(1) Define a deadlock-free minimal-
path-connected deterministic or
adaptive routing function R1 for the
network.

(2) Split each physical channel into a
set of additional virtual channels.
Define a new routing function R
that can use any of the new chan-

nels belonging to a minimal path or
the channels supplied by R1.

(3) Verify that the extended channel de-
pendency graph for R1 is acyclic. If
it is, then the routing algorithm is
valid. Otherwise, it must be dis-
carded and the steps repeated.

Using his proposed methodology,
Duato [1993] has developed a fully
adaptive routing algorithm for hyper-
cube computers; the methodology also
can be applied to other topologies in-
cluding meshes and k-ary n-cubes
[Duato and Lopez 1994]. The steps in-
volved in the design process are ex-
plained as follows. In the first step, the
conventional static routing algorithm
for binary n-cube (e-cube) is used. Mes-
sages are forwarded using the channels
in decreasing order of dimensions. Thus
the routing function is connected and is
deadlock-free. In the second step, each
physical channel ci is split into k virtual
channels, namely, ai,1, ai,2, . . . , ai,k21,
bi. Let C1 be the set of b channels. The
new routing function defined in Step 2
can be stated as follows. Route over any
useful dimensions using any of the a

Figure 10. Message routing using the *-Channel algorithm in a 2-D torus.

Computing Surveys • 391

ACM Computing Surveys, Vol. 30, No. 3, September 1998

channels. If all of them are busy, route
over the highest useful dimension using
the corresponding b channel (a useful
dimension is one that sends a message
closer to its destination).

Su and Shin [1993] have proposed an
adaptive routing algorithm for mesh
networks that also uses two virtual
channels per physical channel. They
propose three protocols (3P) defining
the relationship between messages and
channel resources: request-then-hold,
request-then-wait, and request-then-re-
linquish. Their fully adaptive routing
scheme is based on the logical division
of the set of virtual channels into two
sets—waiting channels (fully adaptive
channels) and nonwaiting channels (de-
terministic channels). At each interme-
diate step, the packet is first routed in
any direction that it can take to
progress toward the destination using
the fully adaptive channels. If no such
channels are available, it waits for the
deterministic channel. The approach is
guaranteed deadlock-free as it always
provides an escape path from the cycles
in the form of deterministic channel
routing, which allows deadlock-free
routing.

Boura and Das [1994] have proposed
a wormhole routing technique called the
mesh_route algorithm similar to the 3P
algorithm for n-dimensional meshes.
This algorithm also divides the set of
virtual channels into waiting channels
and nonwaiting channels. A packet is
first routed along any dimension using
a free nonwaiting channel. If no non-
waiting channel is available, the packet
is routed on the lowest positive dimen-
sion using the waiting channels. The
mesh_route algorithm is efficient in us-
ing a greater proportion of virtual chan-
nels than the 3P routing scheme.

Upadhyay et al. [1995a] show that, in
addition to adaptivity, the traffic distri-
bution created by the algorithm also
plays an important role in the perfor-
mance of the routing algorithm. Uneven
traffic distribution leads to early net-
work saturation. They propose a new
algorithm called PFNF (positive-first,

negative-first) for two-dimensional
meshes that uses two virtual channels
per physical channel. The physical in-
terconnection network is logically di-
vided into two virtual networks, VN1
and VN2, such that the two virtual
channels associated with the same
physical channel are in different virtual
networks. Routing is done positive-first
in one virtual layer and negative-first in
the other. The PFNF algorithm is not
only more adaptive than the 3P and
mesh_route algorithms but also creates
a balanced traffic distribution in the
network.

Algorithms Requiring Fewer than
Two VCs per PC. Ni and McKinley
[1993] propose fully adaptive routing
algorithms that require two virtual
channels per physical channel along
only one of the dimensions, typically
taken as the y dimension. These dou-
ble-y routing algorithms are imple-
mented in double-y routers. A typical
double-y router structure is shown in
Figure 11(a) and the turns allowed by
double-y routing are shown in Figure
11(b). Glass and Ni [1992a] modify
these algorithms by eliminating the un-
necessary restrictions and propose a
new algorithm, called the maximally
adaptive double-y (mad-y), which makes
better use of the virtual channels and
improves adaptiveness. The turns al-
lowed by the mad-y algorithm are
shown in Figure 11(c). The mad-y algo-
rithm is deadlock-free and provides bet-
ter performance than the double-y rout-
ing algorithms [Glass and Ni 1992a].

Schwiebert and Jayasimha [1995]
propose an optimal fully adaptive rout-
ing algorithm, opt-y, that extends the
mad-y algorithm. The mad-y algorithm
requires an acyclic channel dependency
graph, but the opt-y routing algorithm
removes this restriction to allow cycles
in the channel-dependency graph. The
router structure for the opt-y algorithm
is the same as in Figure 11(a), and the
turns describing the opt-y algorithm are
shown in Figure 12. Restricted turns
are those that allow routing only under

392 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

certain constraints as defined in the
following. The authors show that the
opt-y algorithm is deadlock-free and op-
timal with respect to the number of
virtual channels per router and number
of routing restrictions on the virtual
channels. The optimally fully adaptive
routing algorithm can be generalized to
n-dimensional meshes by using the fol-
lowing steps.

• Assign a channel to both directions of
each dimension.

• Number the dimensions in some order
and add a second virtual channel to
both directions of all dimensions ex-
cept the first.

• Allow a message to route along the
second virtual channel at any time.

• For each dimension except the last,
select one of the two directions as the
chosen direction for that dimension.
Prohibit a message from routing on
the first virtual channel of any direc-
tion until it has completed routing in
the chosen direction of all the lower
dimensions.

• Allow a message to make a 0-degree
turn between the two virtual channels
of a direction only after the message
has completed routing in the chosen
direction of all lower dimensions.

The flexibility provided by adaptive
routing improves performance for non-
uniform workloads, but greater com-
plexity is required to support the addi-
tional routing flexibility while assuring
deadlock freedom. The increase in hard-
ware complexity can significantly re-

Figure 11. A router in a double-y network and the associated routing algorithms: (a) router in a
double-y network; (b) double-y routing; (c) mad-y routing. Dashed lines indicate prohibited turns.

Figure 12. Optimally fully adaptive routing
turns. Dashed lines indicate restricted turns; dot-
ted lines indicate prohibited turns.

Computing Surveys • 393

ACM Computing Surveys, Vol. 30, No. 3, September 1998

duce router speed, thereby decreasing
overall network performance. A compar-
ison of various adaptive wormhole rout-
ing schemes reveals that adaptivity
does not necessarily improve network
performance in low-dimensional net-
works [Boppana and Chalasani 1993;
Upadhyay et al. 1997], but does improve
performance of high-dimensional net-
works such as hypercubes [Duato 1993]
and for nonuniform traffic patterns
[Lopez and Duato 1993].

6.2 Partially Adaptive Algorithms

Several approaches based on limited
adaptivity have been proposed to reduce
the cost of adaptive routing. These par-
tially adaptive algorithms allow routing
freedom to be traded for router speed
while assuring deadlock freedom. Par-
tially adaptive algorithms use only a
subset of the physical channels between
source and destination.

A seminal work in partially adaptive
wormhole routing is the turn model pro-
posed by Glass and Ni [1994]. The turn
model defines a set of partially adaptive
routing algorithms based on finding all
the possible turns a message might
make and then forbidding some mini-
mum number of turns so as to avoid
cyclic dependency. East-first, north-last,
positive-first, and negative-first are
some partially adaptive routing algo-
rithms based on the turn model. The
steps for designing routing algorithms
using the turn model are the following.

(1) Partition the channels into sets ac-
cording to the directions in which
they route messages. If each node
has v channels in a topological di-
rection, treat these channels as be-
ing in v distinct virtual directions
and divide them into v distinct sets
accordingly. Put any wraparound
channels in a separate set to be
incorporated during Step 5.

(2) Identify the possible turns from one
virtual direction to another, omit-
ting 0-degree and 180-degree turns.
(A 0-degree turn is possible only

when there are multiple channels in
a topological direction. It represents
a transition from one set of channels
to another, where the two sets are in
the same topological directions but
different virtual directions.)

(3) Identify the cycles that the turns
can form. Generally, identifying the
simplest cycles in each plane of the
topology is adequate.

(4) Prohibit a minimum number of
turns so that at least one turn is
prohibited in each cycle. The turns
must be chosen carefully in order to
break every possible cycle, including
very complex cycles. A useful ap-
proach is first to break the cycles in
each plane and then check whether
doing so allows more complex cycles.

(5) Incorporate as many turns as possi-
ble involving the set of wraparound
channels, without reintroducing cy-
cles. At least one turn involving
each wraparound channel can al-
ways be incorporated.

(6) Incorporate as many 0-degree and
180-degree turns as possible, with-
out reintroducing cycles.

Routing algorithms that route pack-
ets along the set of channels identified
in Step 1 and use only the turns from
one set to another allowed by Steps 4
through 6 are deadlock free, livelock
free, and highly adaptive.

We now explain the basic concept of
the turn model for 2-D meshes. Call the
directions 2x, 1x, 2y, and 1y west,
east, south, and north, respectively.
Eight possible turns can be made,
shown as the abstract cycles in Figure
13(a). The xy routing prevents deadlock
by preventing four turns, as shown in
Figure 13(b). However, deadlock can be
avoided by prohibiting two turns, one
from each abstract cycle. This relax-
ation allows partial adaptiveness and is
the crux of the turn model. Prohibiting
any two turns will not prevent deadlock.
Of the 16 different ways to prohibit two
turns, 12 prevent deadlock and 3 are
unique if symmetry is taken into ac-

394 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

count. These three types correspond to
three routing algorithms—west-first,
north-last, and negative-first. The turns
allowed in these algorithms are illus-
trated in Figures 14 (a) through (c), and
examples of the west-first and north-
last algorithms are shown in Figures 15
(a) and (b). These algorithms can also be
extended for deadlock-free routing in
n-dimensional meshes [Glass and Ni
1994].

Another efficient partially adaptive
routing algorithm, the planar adaptive
algorithm, was proposed by Chien and
Kim [1995] for n-dimensional meshes
and tori. Instead of providing adaptivity
in all dimensions, it restricts adaptivity
to two dimensions at a time. As the
message progresses toward its destina-
tion, it passes through a series of adap-
tive two-dimensional planes; eventually
the packet completes routing in all di-
mensions and is delivered to the desti-
nation. The adaptive routing planes in
three and four dimensions are illus-
trated in Figure 16. Within each adap-
tive plane, messages may use any chan-
nel leading toward their destination.
Because of the restricted routing free-
dom, the possibility of interdimensional
resource cycles is reduced, so that fewer
resources are needed to avoid deadlock.
Chien and Kim [1995] show that only
three virtual channels per physical
channel are required to avoid deadlock
using planar adaptive routing in a k-ary
n-cube with no wraparound paths.

Planar adaptive routing has two
phases: high-level routing corresponds
to routing between the adaptive planes
and low-level routing corresponds to
routing within the adaptive planes. Let

Ai represent the adaptive plane be-
tween dimension di and di 1 1. In the
high-level routing, the message is
routed successively in adaptive planes.
Routing in adaptive plane Ai reduces
the distance in di to zero. After routing
in all of the adaptive planes, the mes-
sage would reach its destination. In the
last dimension there cannot be any
adaptivity left for a minimal router, so
the packet is routed deterministically to
its destination. In low-level routing, the

Figure 14. Turns allowed in the three routing
algorithms: (a) the six turns allowed (solid lines)
by the west-first algorithm; (b) the six turns al-
lowed (solid lines) by the north-last algorithm; (c)
the six turns allowed (solid lines) by the negative-
first algorithm.

Figure 13. Abstract cycles and cycles in xy routing algorithm.

Computing Surveys • 395

ACM Computing Surveys, Vol. 30, No. 3, September 1998

scheme is adaptive, as multiple paths
can be chosen within each adaptive
plane. In each adaptive plane the
packet completes its routing in at least
one dimension: in plane Ai, the di11
distance is reduced to zero first, then
the routing continues in di exclusively
until the di distance is reduced to zero.

Boura and Das [1993] have proposed
another model for partially adaptive al-
gorithms for n-dimensional meshes, the
direction restriction model that is based
on dividing a system into two unidirec-
tional networks (e.g., positive and nega-
tive). The message is transmitted in
phases. In the first phase, the message
is routed adaptively to an intermediate
node using one unidirectional network;
in the second phase, it is routed adap-
tively to its destination using the other
unidirectional network. This model thus

defines a class of partially adaptive
routing algorithms for n-dimensional
meshes. There are 2n21 different pairs
of complementary networks in an n-
dimensional mesh. Depending upon se-
lection of these unidirectional networks,
Boura and Das show that 2n different
algorithms are possible for an n-dimen-
sional mesh without requiring any vir-
tual channels.

6.3 Deadlock Recovery in Fully Adaptive
Algorithms

Almost all the deadlock-prevention
mechanisms discussed so far use addi-
tional resources or implementations to
prevent the formation of cycles and
thereby avoid deadlock. However, stud-
ies have shown that potential deadlock
situations are rare in multicomputer

Figure 15. Examples of west-first and north-last algorithms [Glass and Ni 1994].

Figure 16. Adaptive routing planes.

396 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

systems2 and it may not be cost-effec-
tive to dedicate resources to handle rare
events. Deadlock recovery is an alterna-
tive to deadlock avoidance or preven-
tion. Using this concept, the messages
can be routed fully adaptively, allowing
the formation of cycles. A detection
mechanism identifies potential deadlock
configurations; once deadlock is de-
tected, a recovery scheme breaks the
deadlocked cycle. In this section, we re-
view the deadlock recovery mechanisms
proposed so far in the literature.

Reeves et al. [1989] have proposed an
adaptive routing scheme for hypercube
systems that uses an abort-and-retry
mechanism for recovering from dead-
lock and reducing traffic congestion.
They model a protocol that aborts a
message whenever it is blocked beyond
a threshold number of cycles. The mes-
sage is then reintroduced into the net-
work after a random number of cycles.
It is shown that the abort-and-retry
mechanism improves performance un-
der a broad range of traffic conditions.

Kim et al. [1994] report an adaptive

routing framework called compression-
less routing (CR) that supports adaptive
and fault-tolerant routing for a wide
variety of network topologies without
using any virtual channels. A feature of
wormhole routing that provides feed-
back in the form of flow control is ex-
ploited in the proposed mechanism. The
basic idea of CR is to use fine-grain flow
control and backpressure of wormhole
routing to communicate routing status
and error conditions to the network in-
terfaces. The network interface uses the
information to provide deadlock recov-
ery and end-to-end fault tolerance. Thus
if the message is long enough, the
sender can determine if the message
header has reached its destination; if
the message is not long enough, the
sender pads it to ensure that the header
reaches the destination before the last
flit is injected by the source. Figure 17
illustrates message routing in a CR net-
work. While routing, if a message is
blocked at a node for an interval larger
than a preset time-out, it is aborted by
the source and resent later.

The performance of CR depends on
the time-out interval. Simulation re-
sults also indicate that the CR torus
networks (with a single channel) give a

2 Please see Anjan and Pinkston [1995], Kim et al.
[1994], Pinkston and Warnakulasurya [1997], and
Reeves et al. [1989].

Figure 17. Message routing and padding in CR networks.

Computing Surveys • 397

ACM Computing Surveys, Vol. 30, No. 3, September 1998

comparable or better performance than
dimension-ordered networks (with two
virtual channels) under uniform traffic.
CR with two virtual channels signifi-
cantly outperforms dimension-ordered
networks.

Anjan and Pinkston [1995] propose a
deadlock-recovery strategy called disha
that provides a framework for support-
ing deadlock-free fully adaptive worm-
hole routing. The routing is done with-
out any virtual channels or turn
restrictions. However, virtual channels
can be used to increase throughput and
reduce deadlock frequency. Recovery
from deadlock is achieved through a
single additional flit buffer at each
node. This “deadlock buffer” is a special
input buffer central to each router used
only in potential deadlock situations; it
is a shared resource that can be ac-
cessed from all neighboring nodes. The
deadlock buffers form a deadlock-free
lane during recovery. When a deadlock
cycle is formed, one of the messages in
the cycle is switched to the deadlock-
free lane and routed minimally along
the path until it reaches its destination
and is eventually consumed. Thus the
cycle breaks and all the other messages
proceed. Two versions of disha have
been proposed: one allows only sequen-
tial deadlock recovery [Anjan and Pink-
ston 1995]: access to deadlock buffers is
controlled by a circulating token; and
the other version allows concurrent
deadlock recovery [Anjan et al. 1996]: it
requires no token and is based on an
extension of the theory of deadlock
avoidance described in Section 4.2.
Deadlocks can be detected by a time-
dependent selection function or by a
counter associated with each input
channel [Duato 1992]. A time-out inter-
val determines the maximum time a
message can be blocked at a router.
After this interval, the message is con-
sidered “deadlocked.” The selection of a
proper time-out interval is important
for optimum performance. The counter
counts the number of cycles since the
header arrived. When the header waits
for longer than some threshold, it is

assumed to be deadlocked. Simulation
results indicate that disha provides bet-
ter performance than the deadlock-
avoidance schemes [Anjan and Pinkston
1995].

7. FAULT-TOLERANT WORMHOLE
ROUTING

With the trend toward large-scale paral-
lel systems, fault tolerance becomes im-
portant in routing algorithms. Ideally
the algorithm should be able to route a
message to its destination as long as the
source and the destination nodes are
connected. However, this is not always
possible due to the routing constraints
for avoiding deadlocks. This section
summarizes some of the fault-tolerance
algorithms presented in the literature.

The planar adaptive routing dis-
cussed in Section 6.2 can be modified to
support fault tolerance [Chien and Kim
1995]. As the algorithm does not allow
backtracking, a message may get
“trapped” in a concave faulty region.
This problem is solved by marking some
operational nodes as faulty in order to
convert the concave faulty regions to
convex. Then the planar adaptive rout-
ing can be used to route messages to all
the nodes that are connected. The basic
idea is to use the adaptivity to circum-
vent any faulty channels. Consider a
plane Ai in dimensions di and di11. The
high-level routing remains the same as
described in Section 6.2. The low-level
steps are the following.

(1) If not blocked by a fault, route as in
the fault-free case.

(2) If blocked by a fault in dimension
di11, route in di.

(3) If blocked by a fault in di, route in
di11.

(4) If blocked by a fault in di and the
di11 distance has already been re-
duced to zero, then misroute. If we
are routing in di11, continue to
route in the same direction. If we
are routing in di, pick an arbitrary
di11 direction and begin misrouting.
At the first opportunity, route in di

398 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

toward the destination. Continue to
route in di only until it is possible to
correct di11. At that point, route in
di11 to distance zero in this dimen-
sion, then revert to Step 1.

(5) We cannot be blocked in di11 and
have reduced the di distance to zero.
If this were the case, we would have
proceeded to the next adaptive
plane.

The CR scheme described in Section
6.2 also can be extended to handle
faults in wormhole routed networks
[Kim et al. 1994]. The basic idea in
fault-tolerant CR is to use the retrans-
mission mechanism to tolerate tran-
sient faults and to use unrestricted
routing flexibility to circumvent perma-
nent network faults. When a transient
fault is detected, the detecting router
sends kill signals in both forward and
backward directions along the message
path. The source node retransmits the
same message after receiving the kill
signal. When a message encounters a
permanent fault, it circumvents the
faults using alternative paths. To en-
sure reliable message transfer, each
message holds its path until the last
data flit reaches the destination.

Glass and Ni [1993] have proposed an
extension of the negative-first algorithm
to make it fault-tolerant. The negative-
first algorithm provides full adaptivity
to the message at all times except when

it is routing in the negative edge of the
mesh or in the last dimension. The
fault-tolerant extension of this algo-
rithm is aimed at removing these few
cases of nonadaptiveness. Their ap-
proach is based on certain restrictions:
(a) avoid routing a packet to the nega-
tive edge of the mesh as long as possi-
ble; (b) route a message around a faulty
node on a negative edge of the mesh; (c)
route a message further negative if the
destination node is in the negative di-
rection of the source; (d) avoid routing a
message in the positive direction from
the destination as long as possible. With
these restrictions, if a node ever finds it
impossible to route a message further, it
discards the packet and possibly re-
turns an acknowledgment of the error to
the sender. An example of a few paths
allowed by this fault-tolerant routing
algorithm is illustrated in Figure 18.
The main advantage of this scheme is
that it needs no virtual channels for
fault tolerance: it is a simple modifica-
tion of the negative-first algorithm that
enables it to tolerate n 2 1 faults in an
n-dimensional mesh.

Libeskind-Hadas and Brant [1995]
propose an origin-based fault-tolerant
routing scheme for mesh-connected sys-
tems. In origin-based routing, one of the
nodes is considered the origin and the
other nodes are represented with coordi-
nates with respect to this origin. The

Figure 18. Sample paths allowed by the fault-tolerant routing in a 2-D mesh.

Computing Surveys • 399

ACM Computing Surveys, Vol. 30, No. 3, September 1998

coordinates for the source node s and
the destination node t are (xs, ys) and
(xt, yt), respectively. The channels of
the network are partitioned into an IN
subnetwork and OUT subnetwork: the
IN subnetwork contains all channels di-
rected toward the origin and the OUT
subnetwork contains all channels di-
rected away from the origin. The follow-
ing definitions are helpful for explain-
ing origin-based routing [Libeskind-
Hadas and Brant 1995].

Definition 10. The outbox for a desti-
nation node t with coordinates (xt, yt),
(xt, yt # 0) is the set of all nodes n with
coordinates (xn, yn) such that 0 # xn #
xt and 0 # yn # yt.

Definition 11. A node v is safe with
respect to destination node t if

(1) node v is in the outbox for t; and
(2) for any pattern of faults in which v

and t are nonfaulty, there exists a
fault-free path in the OUT subnet-
work from v to t.

Definition 12. The diagonal band for
destination node t is the set of all nodes
v satisfying the properties:

(1) node v is in the outbox for t; and
(2) if (xt, yt) and (xv, yv) are the coordi-

nates of t and v, respectively, then
xt 2 xv 5 yt 2 yv 1 e, where e [
{21, 0, 1}.

The origin-based fault-tolerant rout-
ing scheme has three phases. In the
first phase, a message is routed adap-
tively using the IN subnetwork while
the header flit is not in the outbox for
its destination node t. When the header
flit enters the outbox, the second phase
starts. While the header flit is not at a
safe node, the distance to the nearest
safe node in each direction is computed
and compared with the distance to the
nearest fault in that direction. If the
safe node is closer than the fault, the
message is routed to the safe node; oth-
erwise, message routing continues in
the IN subnetwork. The message enters
the third phase of routing when it ar-

rives at a safe node v. If v has a safe
nonfaulty neighbor, the header flit is
forwarded to that node. Otherwise,
since v must be on the edge of a fault
region, v advances along the edge of the
faulty region towards t and turns to-
wards the diagonal band when it
reaches the corner of the faulty square.
Thus, the message returns to a safe
node as the nodes on the diagonal band
for t are safe with respect to t. Origin-
based fault-tolerant routing is deadlock-
free as well as livelock-free [Libeskind-
Hadas and Brant 1995]. Figure 19
shows an example of the origin-based
fault-tolerant routing algorithm.

Boppana and Chalasani [1995] have
enhanced the e-cube algorithm for fault-
tolerant routing in mesh networks.
Their algorithm, the f-cube algorithm, is
based on the concept of fault rings and
fault chains, which are formed using
fault-free nodes and links around each
faulty region. The fault-free nodes form
either rings (f-rings) or chains (f-chains)
in a faulty network, as shown in Figure
20. Messages are routed around the f-
rings and f-chains following dimension-
ordered routing. They have shown that
if fault rings do not overlap (i.e., if the
links in the fault rings are pairwise
disjoint), two virtual channels per phys-
ical channel are sufficient to make the

Figure 19. Sample origin-based fault-tolerant
routing in a mesh.

400 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

e-cube algorithm tolerant of any num-
ber of faulty blocks. For cases where
fault rings overlap, three to four virtual
channels are required. Boppana and
Chalasani [1995] have further extended
their algorithms for adaptive fault-tol-
erant routing using four additional vir-
tual channels.

Gaughan and Yalamanchili [1995]
have proposed a family of fault-tolerant
routing protocols for direct multiproces-
sor networks. Their scheme is based on
pipelined circuit switching (PCS), which
is a variant of the wormhole routing
mechanism. In PCS, data flits do not
immediately follow the header flits into
the network. After the header reaches
the destination, an acknowledgment is
sent to the source and then the data
flits are transmitted as in wormhole
routing. By relaxing some of the routing
constraints imposed by wormhole rout-
ing, PCS makes possible routing behav-
ior that cannot otherwise be realized.
For example, rather than blocking on
busy channels, the header may “back-
track,” release previously reserved
channels on the path, and attempt an
alternative path to the destination.
Thus, using PCS, the authors have de-
veloped fault-tolerant routing algo-
rithms—misrouting backtracking with
m misroutes (MB-m). Results indicate

that this methodology provides perfor-
mance approaching that of wormhole
routing unless messages are very short,
while realizing resilience to static faults
that is difficult to achieve with worm-
hole routing.

A new flow-control mechanism called
scouting has been proposed by Duato et
al. [1994] for improving fault tolerance.
In scouting, a probe is sent to reserve
the path. The probe is allowed to back-
track, as in PCS. Instead of waiting for
an acknowledgment, however, data flits
follow the header at a distance that can
be dynamically adjusted from 0 (as in
wormhole routing) in fault-free regions
of the network to a value equal to the
diameter of the network when the mes-
sage is crossing a region with faults. A
detailed performance analysis with re-
spect to the dynamically adjustable dis-
tance is reported in Dao et al. [1995].

Duato [1994b] has also developed nec-
essary and sufficient conditions for
deadlock avoidance in fault-tolerant
routing algorithms by analyzing the
channel redundancy as well as the net-
work redundancy and defining redun-
dancy levels. The network redundancy
level is the maximum number of chan-
nels that can fail in the worst case such
that the resulting routing algorithm
remains connected and deadlock-free.
Using these analyses, Duato [1994b]
proposed necessary and sufficient condi-
tions for a routing algorithm to achieve
a given redundancy level. The same
work also studies the effect of faults in
physical channels on virtual channels
and node failures.

Varavithya et al. [1995] study com-
bining virtual cut-through with worm-
hole routing to achieve fault tolerance
by extending the PFNF algorithm
[Upadhyay 1995a] to handle faults
without using any additional virtual
channels. Upon encountering a faulty
node, a message uses alternative paths
provided by the routing function unless
it is in the last dimension. In the final
dimension, when a message is blocked
by faulty nodes, it is completely stored
at one of the adjacent nodes from which

Figure 20. Examples of f-cube and f-rings in a
mesh. Unshaded nodes are faulty nodes, solid bold
lines are f-rings, and dotted bold lines represent
an f-chain.

Computing Surveys • 401

ACM Computing Surveys, Vol. 30, No. 3, September 1998

it is subsequently retransmitted. It is
shown that under normal circum-
stances, this approach results in much
better performance, with the added ad-
vantage that it does not need any addi-
tional hardware specifically for fault
tolerance. A similar scheme was also
proposed independently by Suh et al.
[1995].

The Reliable Router (RR) reported by
Dally et al. [1994] is an excellent router
design that addresses a practical imple-
mentation of fault-tolerant routing algo-
rithms. It is designed to run at 100 MHz
and reaches a useful link bandwidth of
3.2 Gbit/sec. RR uses adaptive routing
coupled with link-level retransmission
and a unique-token protocol to increase
both performance and reliability. The
RR can tolerate a single node or link
failure anywhere in the network with-
out interruption of service.

8. WORMHOLE ROUTING IN
COMMERCIAL SYSTEMS

In this section, we describe the imple-
mentation of wormhole routing schemes
in commercial parallel computers. The
algorithms, hardware requirements,
flow control, and other implementation
details of wormhole routing in the
nCUBE-2, CM-5, Cray T3D, Intel Para-
gon, and IBM SP1/SP2 are then de-
scribed.

Wormhole Routing in the nCUBE-2

The nCUBE-2 parallel computer series
supports a hypercube configuration of
up to 8,192 nodes in 13 dimensions
[NCUBE Company 1990]. Interproces-
sor communication is handled through a
network communication unit (NCU),
which includes 14 DMA ports that sup-
port the hypercube interconnection
scheme. The DMA ports include 13 bidi-
rectional interprocessor communication
ports (26 unidirectional channels) for
communicating with processors that are
part of the local hypercube and one bidi-
rectional system interconnect I/O port,
consisting of two unidirectional chan-

nels, for communicating with remote or
other systems.

The NCU architecture has three lay-
ers: the interconnect layer, the routing
layer, and the message layer. The inter-
connect layer provides the hardware to
establish physical communication links:
28 independent serial DMA channels
provide 14 full-duplex I/O ports, allow-
ing systems to be designed with up to a
13-dimensional hypercube. The variable
communication speed of I/O ports allows
matching of the port speed to the signal
propagation time of the interconnect.
The routing layer provides the arbitra-
tion and switching logic for creating,
maintaining, and removing communica-
tion paths between processors in the
network. The wormhole switching tech-
nique routes messages between the
nodes. The routing layer assumes that
each processor has a unique processor
ID and that the IDs of two processors
connected to each other through port k
vary only in the kth bit. The software
establishes a communication path by
sending an address packet over a chan-
nel. The hardware passes the address
from node to node. Each processor com-
pares the destination node address with
its own ID and sends the address packet
out through the port number corre-
sponding to the bit position of the first
difference, starting at bit n 1 1, where
n is the number of the port on which the
message was received. Thus, while us-
ing the hardware default routing, mes-
sages are always sent out on a port with
a number higher than the port on which
the message was received. An estab-
lished routing path blocks all messages
that try to use the same channels until
the hardware clears the path with an
end-of-transmission (EOT) packet. The
nCUBE uses the dimension-order
e-cube routing algorithm to route mes-
sages from one node to another; as
shown previously, this algorithm en-
ables deadlock-free message transfers.

The message layer provides for reli-
able and efficient point-to-point data
transfer between the nodes. The NCU
can buffer up to two packets on each

402 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

incoming channel and requests another
packet as soon as it has space for it,
until an EOT packet arrives.

Wormhole Routing in the CM-5

The basic topology of the CM-5 data
network is a 4-ary fat tree in which each
internal node is made up of several
router chips [Leiserson et al. 1992]. The
fat-tree topology provides adaptable
bandwidth between the nodes. Each
router chip is connected to four child
chips and either two or four parent
chips; each connection provides a link to
another chip with a raw bandwidth of
20 Mb/sec in each direction. Flow con-
trol is provided on every link.

Message routing in the CM-5 data
network uses an adaptive wormhole
routing mechanism. The network design
provides many alternative paths from a
source to the destination. As a message
goes up the tree, it may have several
choices for taking a parent connection.
A pseudorandom selection process se-
lects a link that is not occupied by other
messages. After the message attains the
height of the least common ancestor of
the source and destination processors, it
takes the single available path of links
from that chip to its destination. The
random selection at each level balances
network load and avoids congestion. On
average, each processor can provide
data into and out of the network at a
rate in excess of four Mb/sec; higher
bandwidths are achievable for localized
communication patterns. Network la-
tency ranges between three and seven
microseconds, depending on the size of
the machine.

The data router chip has an eight-bit-
wide bidirectional link (four bits in each
direction) to each of its four child chips
lower in the fat tree, and four eight-bit-
wide bidirectional links to its parent
chips higher in the fat tree. The chip
can be viewed as a crossbar connecting
the eight input ports to the eight output
ports. When a message is blocked from
its desired output port, it is buffered.
Flow control information is passed in

the reverse direction of message traffic
to prevent buffer overflow. When multi-
ple messages compete for the same out-
put port, the arbitration is fair and pre-
vents any link from being starved.

The data network in CM-5 has a con-
tract with the processors that guaran-
tees delivery of all messages. The con-
tract promises to accept and deliver all
messages injected into the network by
the processors as long as the processors
promise eventually to eject all messages
from the network when they are deliv-
ered to them. The data network is acy-
clic from inputs to outputs, which pre-
cludes deadlock if the contract is
obeyed. Each processor has two outgo-
ing and two incoming FIFOs in its inter-
face to the data network: a left port and
a right port. The topology of the net-
work is such that all links reachable
from the left port are unreachable from
the right port and vice versa. Thus, the
data network is really two independent,
interleaved networks. Requests can be
sent on the left side of the network, and
responses returned on the right side. If
a processor cannot send a response on
the right side and its constant-size
buffer is full, it stops receiving on the
left side. Since any processor requesting
data has a place to put it, however, the
processors can satisfy the contract on
the right side and the responses will
eventually clear out. A processor can
eventually accept every request that ar-
rives on the left side, and thus satisfy
the contract on the left side. Conse-
quently, deadlock cannot occur.

Wormhole Routing in the Cray T3D

The Cray T3D is a distributed shared-
memory system in which the nodes are
interconnected through a bidirectional,
3-D torus network [Kessler and Schwar-
zmeier 1993]. The network links are 24
bits wide (16 data, 8 control) and are
clocked at 150 MHz. The latency per
hop in the absence of contention is two
clock cycles. The network ports have the
same capacity as the internode links,
and are shared by two PEs at each node.

Computing Surveys • 403

ACM Computing Surveys, Vol. 30, No. 3, September 1998

The T3D network uses a deterministic,
dimension-order, e-cube wormhole rout-
ing scheme. The router is physically
partitioned into three ECL gate arrays,
one for each dimension (see Figure 21).
Packets route in the X direction first,
the Y direction next, and then the Z
direction. The flits are usually of eight
16-bit phits or less. Packet sizes range
from 3 to 26 phits, and carry header
information plus zero, one, or four 64-
bit data words. Virtual channel buffers
are one flit deep.

Each physical channel is associated
with four virtual channels, two of which
are used for request traffic and the
other two for response traffic. For clar-
ity, only two virtual channels are shown
in Figure 21. Deadlocks are avoided by
a combination of the following factors:
(a) separate virtual networks for re-
quests and responses remove cyclic de-
pendencies between these traffic class-
es; (b) dimension-order routing removes
cyclic dependencies involving multiple
dimensions; and (c) two virtual chan-
nels per traffic class are used to remove
cyclic channel dependencies involving
the wraparound connection within a
given dimension. Routing in T3D em-
ploys end-to-end routing tables. Each
node contains a table, stored in dedi-
cated hardware, that provides a routing
tag for every destination node in the
machine specifying a direction, offset,
and virtual channel for each of the three
dimensions. The routing tables are

loaded by software but are used directly
by the hardware. They also allow alter-
nate routes to be taken (i.e., the long
way around a torus) to avoid faulty
nodes and links. The routing tables let
us individually specify the virtual chan-
nels used for every source-destination
pair in the machine. Thus, two packets
traveling along exactly the same seg-
ment on a ring (as identified by the
source and destination nodes on that
ring) could use different virtual chan-
nels, depending upon their original
source and final destination.

The primary use of virtual channels
in the T3D is to prevent deadlock. Since
request and response packets are routed
on separate virtual networks, the di-
mension-order routing breaks cycles be-
tween dimensions. Thus, we need be
concerned only about avoiding deadlock
within a single ring of the torus. This
can be done using two virtual channels,
VC0 and VC1, and through logical date-
lines, which are imaginary lines cutting
a ring that can only be crossed by traffic
on the appropriate virtual channel. A
packet stays on the same virtual chan-
nel while routing on a given ring. No
traffic ever switches between virtual
channels. Therefore, if datelines are en-
forced for both VC0 and VC1 in both
positive and negative directions for each
ring, there can be no cyclic dependen-
cies among VC buffers, and thus no
deadlock. The datelines are logically
placed at carefully selected nodes so

Figure 21. Architecture of the Cray T3D router.

404 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

that the traffic through the two virtual
networks is more or less balanced. Bal-
anced traffic enforces load balancing
among the two virtual channels, which
results in improved performance over
the unbalanced usage proposed in sev-
eral adaptive routing schemes.

Wormhole Routing in the Intel Paragon

The Intel Paragon has a two-dimen-
sional mesh topology and can be config-
ured as a 16 3 4N mesh, where N is the
number of cabinets. Each node in the
Paragon is connected to a mesh router
chip (MRC) as shown in Figure 22.
There are 10 unidirectional ports per
MRC. A pair of ports are in each of the
four directions—north, south, east, and
west—for communicating with neigh-
boring nodes; the fifth pair is used for
communicating with the node associ-
ated with the router. The ports enable
16-bit parallel transfers plus parity,
providing a total bandwidth of more
than 200 Mb/sec per port. Data flow
through the MRC takes about 10ns for a
straight path and a little longer for a
turn.

Messages in the Paragon are routed
deterministically using the wormhole
switching technique. Messages are
packetized prior to hardware transfer
and the XY routing algorithm is used to
send the packets from a source node to
the destination. Signed horizontal and
vertical displacements are used for

routing the packets of a message. The
horizontal and vertical displacements
are computed at the source node. The
packet is routed first in the horizontal
dimension until the horizontal displace-
ment is zero, and then in the vertical
dimension until the vertical displace-
ment becomes zero. The message is then
absorbed at the destination node. All
ports in the MRC can be active simulta-
neously, and thus up to five message
packets can be routed simultaneously
without contention.

The message routing scheme in Para-
gon uses the deterministic XY algo-
rithm, so it is deadlock-free, as proved
earlier.

Wormhole Routing in the IBM SP1/SP2

The nodes of the IBM SP1 and SP2 are
interconnected by a multistage inter-
connection network (MIN) [Abali and
Aykanat 1994; Agerwala et al. 1995],
whose links contain two channels carry-
ing packets in opposite directions be-
tween two network devices. The MIN
comprises of 8 3 8 Vulcan switch chips
[Stunkel et al. 1994] (Figure 23). The
switch consists of eight receiver and
eight transmitter modules, an unbuf-
fered 8 3 8 crossbar, and a 1 Kb large
central queue. Each input and output
port consists of eight data lines and two
control lines, so that each port can pro-
cess one flit (one byte) per cycle. A
crossbar switch is implemented between
the input and output ports for transfer-
ring packets that encounter no conten-
tion for their desired output port. If
there is contention, the flits of a packet
are stored in a central queue that has a
1 Kb dynamically allocated shared
buffer. Larger portions of the shared
buffer are allocated to the busier input
ports. This dynamic behavior improves
the network performance. To match the
maximum possible bandwidth from the
input ports, it is necessary to write
eight flits per cycle into the central
queue. Thus, each input port queues a
chunk of eight flits at the deserializer
before requesting service from the cen-

Figure 22. Mesh router chip of the Intel Para-
gon.

Computing Surveys • 405

ACM Computing Surveys, Vol. 30, No. 3, September 1998

tral queue, and writes the entire chunk
in one cycle when the request is
granted. The serializer at the output
ports converts an eight-flit central
queue chunk into the flit-wide data
stream sent from the output port. As
long as the central queue is not full,
each input port can continue to receive
flits at full bandwidth.

Processor nodes of the IBM SP1/SP2
communicate by sending and receiving
message packets. Packets are of vari-
able length and up to 255 bytes in size.
The method of packet transfer is similar
to wormhole routing. The only differ-
ence is that when a packet is blocked
the packet bytes are not buffered in
place but are temporarily transferred to
the central queue until the blocked out-
put port is cleared. The first byte of
each packet indicates the packet length,
followed by a number of routing bytes,
followed by data. The complete routing
decision is made at the source node
(source-initiated routing). At each
switch, the first byte of the packet is
examined and the output port is deter-

mined. The corresponding switch strips
off the portion of routing information
pertaining to itself before sending the
packet forward. In the absence of output
contention, packet bytes pass through a
switch in five clock cycles. The switch
operates at 40 MHz, resulting in a peak
bandwidth of 40 Mb/s per port. The
corresponding input and output ports of
the switches are paired to form a full
duplex bidirectional channel. Thus the
4 3 4 bidirectional switch element can
forward a packet to any of the eight
output ports, including the output ports
on the same side of the input ports. This
implementation facilitates turnaround
routing.

The routing algorithm used in the
SP1/SP2 selects a single shortest path
between each pair of processor nodes
and is deterministic in nature. A modi-
fied breadth-first search algorithm is
implemented to build a breadth-first
spanning tree rooted at each source
node, and then the spanning tree paths
are followed to find the shortest path
from the source nodes to the rest of the

Figure 23. Architecture of the Vulcan switch in the IBM SP1/SP2.

406 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

processor nodes. A static load-balancing
technique is used to ensure that links
are included in the selected routes in a
balanced manner. The routes are stored
in a routing table in each processor’s
memory, which lets routing be done in a
topology-independent fashion. This ap-
proach differentiates the SP1/SP2 rout-
ing algorithm from the other determin-
istic routing schemes, namely, the XY
and e-cube: they are topology-depen-
dent, XY for mesh, and e-cube for hyper-
cube.

9. CONCLUSIONS AND OPEN ISSUES

Wormhole routing has emerged as the
most widely used switching technique
in massively parallel computer systems.
This article has given a comprehensive
survey of various algorithms and tech-
niques proposed to enhance its perfor-
mance. A number of open issues, how-
ever, remain.

• Performance of wormhole routed net-
works is not necessarily improved by
increasing the adaptivity of the rout-
ing algorithm. Adaptivity is incorpo-
rated in the routing algorithm at the
expense of additional hardware.
Other factors, such as balanced traffic
distribution, have a significant effect
on network performance and may well
be implemented at a lower cost. It is
thus necessary to investigate cost-ef-
fective methods to improve network
performance.

• The performance of wormhole routed
algorithms has been evaluated
through analysis or simulation with
generalized workloads. The behavior
of such algorithms should be studied
with real traces obtained from paral-
lel computers.

• The overhead associated with the de-
cision-making process at the router is
generally ignored but might have a
significant impact on the overall net-
work performance. Attempts in this
direction have already been made by
Chien [1993] and others. However, all
microoperations need to be evaluated

in detail for complete performance
evaluation.

• Fault-tolerant routing algorithms
have been evaluated assuming ran-
dom faults at the nodes. It might be
interesting to incorporate fault-injec-
tion mechanisms and evaluate the
performance of the network under
faulty links, nodes, routers, and inter-
faces.

• Collective operations that involve sev-
eral processing nodes occur frequently
in multicomputer systems, for in-
stance, in multicast, broadcast,
gather, scatter, and barrier synchro-
nization. A good survey of several al-
gorithms for collective communication
is given in McKinley et al. [1995].
Efficient hardware communication
support can be implemented for these
operations to reduce their latency fur-
ther. Additional work in this area is
needed.

• Research efforts on wormhole routing
in switch-based networks should con-
tinue because of the renewed interest
in such architectures [Ni et al. 1995].

• Finally, application-specific routing
algorithms are needed for specialized
systems, probably related to the rout-
ing of real-time traffic or multiple
classes of traffic [Rexford and Shin
1994].

This report has concentrated on hard-
ware routing algorithms. However,
some functionality can be implemented
in software to derive hybrid routing
schemes for cost-effective high-perfor-
mance networks.

ACKNOWLEDGMENTS

The author is grateful to Jatin Upadhyay and
Vara Varavithya for their help in preparing this
article: the comments and suggestions by Profes-
sor Lionel Ni have also improved its quality. An
extensive and detailed review of an earlier draft of
the article by Professor José Duato is greatly
appreciated. The author is thankful to Katrina
Avery for her editorial assistance, which improved
the readability of the article. The author also
thanks the referees for their valuable comments.

Computing Surveys • 407

ACM Computing Surveys, Vol. 30, No. 3, September 1998

REFERENCES

ABALI, B. AND AYKANAT, C. 1994. Routing algo-
rithms for IBM SP1. In Proceedings of the
Parallel Computer Routing and Communica-
tions Workshop, (May), 161–175.

ADVE, V. S. AND VERNON, M. K. 1994. Perfor-
mance analysis of mesh interconnection net-
works with deterministic routing. IEEE
Trans. Parallel Distrib. Syst. (Mar.), 225–246.

AGERWALA, T., MARTIN, J. L., MIRZA, J. H., SADLER,
D. C., DIAS, D. M., AND SNIR, M. 1995. SP2
system architecture. IBM Syst. J. 34, 2, 152–
184.

AGRAWAL, A. 1991. Limits on interconnection
network performance. IEEE Trans. Parallel
Distrib. Syst. 2, 4 (Oct.), 398–412.

AKERS, S. B. AND KRISHNAMURTHY, B. 1989. A
group-theoretic model for symmetric intercon-
nection networks. IEEE Trans. Comput.
(April), 555–566.

ANJAN, K. V. AND PINKSTON, T. M. 1995. An effi-
cient, fully adaptive deadlock recovery
scheme: DISHA. International Symposium on
Computer Architecture (June), 201–210.

ANJAN, K. V., PINKSTON, T. M., AND DUATO, J.
1996. Generalized theory for deadlock-free
adaptive routing and its application to disha
concurrent. In Proceedings of the Interna-
tional Parallel Processing Symposium (April).

AOYAMA, K. AND CHIEN, A. A. 1998. The cost of
adaptivity and virtual lanes in wormhole
router. J. VLSI Des., To appear.

BOPPANA, R. V. AND CHALASANI, S. 1996. A frame-
work for designing deadlock-free wormhole
routing algorithms. IEEE Trans. Parallel Dis-
trib. Syst. (Feb.), 169–183.

BOPPANA, R. V. AND CHALASANI, S. 1995. Fault-
tolerant wormhole routing for mesh networks.
IEEE Trans. Comput. (July), 848–864.

BOPPANA, R. V. AND CHALASANI, S. 1993. A com-
parison of adaptive wormhole routing algo-
rithms. In Proceedings of the International
Symposium on Computer Architecture (May),
351–360.

BOURA, Y. M. AND DAS, C. R. 1994. Efficient
fully adaptive wormhole routing in n-dimen-
sional meshes. In Proceedings of the Interna-
tional Conference on Distributed Computing
Systems, 589–596.

BOURA, Y. M. AND DAS, C. R. 1993. A class of
partially adaptive routing algorithms for n-
dimensional meshes. In Proceedings of the
23rd International Conference on Parallel
Processing, Vol. 3 (Aug.), 175–182.

CHIEN, A. A. 1993. A cost and speed model for
k-ary n-cube wormhole routers. In Proceed-
ings of Hot Interconnects.

CHIEN, A. A. AND KIM, J. H. 1995. Planar adap-
tive routing: Low-cost adaptive networks for
multiprocessors. J. ACM (Jan.), 91–123.

DALLY, W. J. 1992. Virtual channel flow con-
trol. IEEE Trans. Parallel Distrib. Syst. 3
(March), 194–205.

DALLY, W. J. 1990. Performance analysis of k-
ary n-cube interconnection networks. IEEE
Trans. Comput. 39, 6 (June), 775–785.

DALLY, W. J. AND AOKI, H. 1993. Deadlock-free
adaptive routing in multicomputer networks
using virtual channels. IEEE Trans. Parallel
Distrib. Syst. 4, 4 (April), 466–475.

DALLY, W. J. AND SEITZ, C. L. 1987. Deadlock
free message routing in multiprocessor inter-
connection networks. IEEE Trans. Comput.
36, 5 (May), 547–553.

DALLY, W. J., DENNISON, L., HARRIS, D., KAN, K.,
AND XANTHOPOULUS, T. 1994. The reliable
router: A reliable and high-performance com-
munication substrate for parallel computers.
In Proceedings of the Workshop on Parallel
Computer Routing and Communications
(May), 241–255.

DAO, B. V., DUATO, J., AND YALAMANCHILI, S.
1995. Configurable flow control mechanisms
for fault-tolerant routing. In Proceedings of
the International Symposium on Computer
Architecture (June).

DONGARRA, J. J., OTTO, S. W., SNIR, M., WALKER,
D. 1998. An introduction to the MPI stan-
dard. Commun. ACM, to appear.

DRAPER, J. AND GHOSH, J. 1994. A simple ana-
lytical model for wormhole routing in multi-
computer systems. J. Parallel Distrib. Com-
put. 20, 202–214.

DUATO, J. 1994a. A necessary and sufficient
condition for deadlock-free adaptive routing
in wormhole networks. In Proceedings of the
International Conference on Parallel Process-
ing, Vol. I, 142–149.

DUATO, J. 1994b. A theory of fault-tolerant
routing in wormhole networks. In Proceedings
of the International Conference on Parallel
and Distributed Systems, 600–607.

DUATO, J. 1993. A new theory of deadlock-free
adaptive routing in wormhole network. IEEE
Trans. Parallel Distrib. Systems 4, 12 (Dec.),
1320–1331.

DUATO, J. 1992. Improving the efficacy of vir-
tual channels with time-dependent selection
functions. In Proceedings of Parallel Architec-
tures and Languages Europe.

DUATO, J. AND LOPEZ, P. 1994. Performance
evaluation of adaptive routing algorithms for
K-ary N-cubes. In Proceedings of the Work-
shop on Parallel Computer Routing and Com-
munication (May).

DUATO, J., DAO, B. V., GAUGHAN, P. T., AND
YALAMANCHILI, S. 1994. Scouting: Fully
adaptive, deadlock-free routing in faulty pipe-
lined networks. In Proceedings of the Interna-
tional Conference on Parallel and Distributed
Systems (Dec.).

408 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

GAUGHAN, P. T. AND YALAMANCHILI, S. 1995. A
family of fault tolerant routing protocols for
direct multiprocessor networks. IEEE Trans.
Parallel Distrib. Syst. (May), 482–497.

GLASS, C. J. AND NI, L. M. 1994. The turn
model for adaptive routing. J. ACM 41 (Sept.),
874–902.

GLASS, C. J. AND NI, L. M. 1993. Fault-tolerant
wormhole routing in meshes. In Proceedings
of the International Symposium on Fault-Tol-
erant Computing, 240–249.

GLASS, C. J. AND NI, L. M. 1992a. Maximally
fully adaptive routing in 2D meshes. In Pro-
ceedings of the International Conference on
Parallel Processing (Aug.).

GLASS, C. J. AND NI, L. M. 1992b. Adaptive
routing in mesh-connected networks. In Pro-
ceedings of the International Conference on
Distributed Computing Systems, 12–19.

GOPAL, I. S. 1985. Prevention of store-and-for-
ward deadlock in computer networks. IEEE
Trans. Commun. (Dec.), 1258–1264.

GRAVANO, L., PIFARRE, G. D., BERMAN, P. E., AND
SANZ, J. L. C. 1994. Adaptive deadlock-
and livelock-free routing with all minimal
paths in torus networks. IEEE Trans. Paral-
lel Distrib. Syst. 5, 12 (Dec.), 1233–1251.

INTEL 1990. A Touchstone DELTA System De-
scription. Intel Corp., Santa Clara, CA.

INTEL 1991. Paragon XP/S Product Overview.
Intel Corp., Santa Clara, CA.

JESSHOPE, C. R., MILLER, P. R., AND YANCHEV, J. T.
1989. High performance communications in
processor networks. In Proceedings of the In-
ternational Symposium on Computer Architec-
ture (May), 150–157.

KERMANI, P. AND KLEINROCK, L. 1979. Virtual
cut-through: A new computer communication
switch technique. Comput. Netw. 3, 267–286.

KESSLER, R. E. AND SCHWARZMEIER, J. L. 1993.
CRAY T3D: A new dimension for Cray re-
search. Compcon (Spring), 176–182.

KIM, J AND DAS, C. R. 1991. Modeling worm-
hole routing in a hypercube. IEEE Trans.
Comput. (Dec.), 1052–1060.

KIM, J. H. AND CHIEN, A. A. 1995. Network per-
formance under bimodal traffic loads. J. Par-
allel Distrib. Comput. 28, 43–64.

KIM, J. H., LIU, Z., AND CHIEN, A. A. 1994. Com-
pressionless routing: A framework for adap-
tive and fault-routing. In Proceedings of the
International Symposium on Computer Archi-
tecture (April), 289–300.

KONSTANTINIDOU S. AND SNYDER, L. 1991. Chaos
router: Architecture and performance. In Pro-
ceedings of the International Symposium on
Computer Architecture (May), 212–221.

LEISERSON, C. E., ABUHAMDEH, Z. S., DOUGLAS,
D. C., FEYNMAN, C. R., GANMUKHI, M. N., HILL,
J. V., KUSZMAUL, B. C., PIERRE, M. A. S.,
WELLS, D. S., WONG, M. C., YANG, S. W., AND

ZAK, R. 1992. The network architecture of
the connection machine CM-5. In Proceedings
of the ACM Symposium on Parallel Algo-
rithms and Architectures, 544–557.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WE-
BER, W., GUPTA, A., HENNESSY, J., HOROWITZ,
M., AND LAM, M. 1992. The Stanford DASH
multiprocessor. IEEE Computer (March), 63–
79.

LIBESKIND-HADAS, R. AND BRANDT, E. 1995.
Origin-based fault-tolerant routing in the
mesh. In Proceedings of the Symposium on
High Performance Computer Architecture
(Jan.), 102–111.

LIN, X., MCKINLEY, P. K., AND NI, L. M. 1993.
The message flow model for routing in worm-
hole-routed networks. In Proceedings of the
International Conference on Parallel Process-
ing, Vol. I, 294–297.

LINDER, D. H. AND HARDEN, J. C. 1991. An
adaptive and fault tolerant wormhole routing
strategy for k-ary n cubes. IEEE Trans. Com-
put. 40 (Jan.), 2–12.

LOPEZ, P. AND DUATO, J. 1993. Deadlock-free
adaptive routing algorithms for the 3D-torus:
Limitations and solutions. In Proceedings of
Parallel Architectures and Languages Europe.

MCKINLEY, P. K., TASI, Y., AND ROBINSON, D. F.
1995. Collective communication in worm-
hole-routed massively parallel computers.
IEEE Computer (Dec.), 39–50.

NCUBE COMPANY 1990. NCUBE-2 Processor
Manual.

NI, L. M. AND MCKINLEY, P. K. 1993. A survey
of wormhole routing techniques in direct net-
works. IEEE Computer 26, 2 (Feb.), 62–76.

NI, L. M., GUI, Y., AND MOORE, S. 1995. Per-
formance evaluation of switch-based worm-
hole networks. In Proceedings of the Interna-
tional Conference on Parallel Processing.

NOAKES, M., WALLACH, D. A., AND DALLY, W. J.
1993. The J-machine multicomputer: An ar-
chitectural evaluation. In Proceedings of the
International Symposium on Computer Archi-
tecture, 224–235.

PARK, H. AND AGRAWAL, D. P. 1995. Efficient
deadlock-free wormhole routing in shuffle
based networks. In Proceedings of the IEEE
Symposium on Parallel and Distributed Pro-
cessing, 92–99.

PINKSTON, T. M. AND WARNAKULASURYA, S. 1997.
On deadlocks in interconnection networks. In
Proceedings of the International Symposium
on Computer Architecture (June), 38–49.

REEVES, D. S., GEHRINGER, E. F., AND CHANDIRA-
MANI, A. 1989. Adaptive routing and dead-
lock recovery: A simulation study. In Proceed-
ings of the Fourth Conference on Hypercube
Concurrent Computers and Applications
(March).

REXFORD, J. AND SHIN, K. G. 1994. Support for

Computing Surveys • 409

ACM Computing Surveys, Vol. 30, No. 3, September 1998

multiple classes of traffic in multicomputer
routers. In Proceedings of the Parallel Com-
puter Routing and Communication Workshop,
LNCS 853, Springer, New York, 116–130.

SAMATHAM, M. R. AND PRADHAN, D. K. 1989. The
de Bruijn multiprocessor network: A versatile
parallel processing and sorting network for
VLSI. IEEE Trans. Comput. C-38, (April),
567–581.

SCHWIEBERT, L. AND JAYASIMHA, D. N. 1996. A
necessary and sufficient condition for dead-
lock-free wormhole routing. J. Parallel Dis-
trib. Comput. 32, 103–117.

SCHWIEBERT, L. AND JAYASIMHA, D. N. 1995. Opti-
mally fully adaptive minimal wormhole rout-
ing for meshes. J. Parallel Distrib. Comput.
27, 56–70.

SCOTT, S. AND THORSON, G. 1994. Optimized
routing in the Cray T3D. In Proceedings of the
International Workshop on Parallel Computer
Routing and Communication, 281–294.

STUNKEL, C. B., SHEA, D. G., ABALI, B., DENNEAU,
M. M., HOCHSCHILD, P. H., JOSEPH, D. J.,
NATHANSON, B. J., TSAO, M., AND VARKER,
P. R. 1994. Architecture and implementa-
tion of Vulvan. In Proceedings of the Interna-
tional Parallel Processing Symposium (April),
268–274.

SU, C. AND SHIN, K. G. 1993. Adaptive dead-

lock-free routing in multicomputers using
only one extra channel. In Proceedings of the
International Conference on Parallel Process-
ing, Vol. 1 (August), 227–231.

SUH, Y. J., DAO, B. V., DUATO, J., AND YALAMAN-
CHILI, S. 1995. Software based fault-toler-
ant oblivious routing in pipelined networks.
In Proceedings of the International Conference
on Parallel Processing (August).

UPADHYAY, J., VARAVITHYA, V., AND MOHAPATRA, P.
1997. A traffic-balanced adaptive routing
scheme for two-dimensional meshes. IEEE
Trans. Comput. (Feb.), 190–197.

UPADHYAY, J., VARAVITHYA, V., AND MOHAPATRA,
P. 1995a. An efficient and balanced rout-
ing in two-dimensitonal meshes. In Proceed-
ings of the First International Symposium on
High Performance Computer Architecture
(Jan.), 112–122.

UPADHYAY, J., VARAVITHYA, V., AND MOHAPATRA,
P. 1995b. Routing algorithms for torus net-
works. In Proceedings of the International
Conference on High Performance Computing,
743–748.

VARAVITHYA, V., UPADHYAY, J., AND MOHAPATRA,
P. 1995. An efficient fault-tolerant routing
scheme for two-dimensional meshes. In Pro-
ceedings of the International Conference on
High-Performance Computing, 773–778.

Received October 1995; revised April 1998; accepted April 1998

410 • Prasant Mohapatra

ACM Computing Surveys, Vol. 30, No. 3, September 1998

