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AbstractÐCut-through switching promises low latency delivery and has been used in new generation switches, especially in high

speed networks demanding low communication latency. The interconnection of cut-through switches provides an excellent network

platform for high speed local area networks (LANs). For cost and performance reasons, irregular topologies should be supported in

such a switch-based network. Switched irregular networks are truly incrementally scalable and have potential to be reconfigured to

adapt to the dynamics of network traffic conditions. Due to the arbitrary topologies of networks, it is critical to develop an efficient

deadlock-free routing algorithm. A novel deadlock-free adaptive routing algorithm called adaptive-trail routing is proposed to allow

irregular interconnection of cut-through switches. The adaptive routing algorithm is based on two unidirectional adaptive trails

constructed from two opposite unidirectional Eulerian trails. Some heuristics are suggested in terms of the selection of Eulerian trails,

the avoidance of long routing paths, and the degree of adaptivity. Extensive simulation experiments are conducted to evaluate the

performance of the proposed and two other routing algorithms under different topologies and traffic workloads.

Index TermsÐAdaptive routing, cut-through switches, deadlock-free routing, irregular networks, incremental scalability, performance

evaluation.
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1 INTRODUCTION

SWITCH-BASED networks have received much attention in
both local area networks (LANs) and wide area

networks due to their higher network bandwidth and
throughput, greater interconnect scalability and flexibility,
and better fault handling capability than shared-medium
networks. In switched networks, each host computer has a
network adapter connecting to a network switch. When the
scale of the network increases due to the increasing number
of host computers and the increasing demand of aggregate
network bandwidth, more switches can be added to the
network. The interconnection of those switches defines
various network topologies. For cost and performance
reasons, switched networks usually assume arbitrary
topologies. Although arbitrary topologies do provide the
needed flexibility and incremental scalability [1], routing
and flow control in such networks are not trivial and have a
great impact on the network performance, especially for
those emerging cut-through switches.

Several switching techniques have been used in switches

to forward packets. It is known that the traditional store-

and-forward switching, which buffers an incoming packet

entirely before forwarding the packet to an outgoing

channel, exhibits high latency. In order to reduce

communication latency, the trend of new generation

switches is to support cut-through switching. Many cut-

through switches are commercially available, such as the

DEC GIGAswitch [2] for FDDI networks, the Ancor FCS

266/1062 [3] switches for FCS (Fibre Channel Standards)

networks, the HP EtherTwist LAN switch and the IBM 8271

EtherStream switch for switched Ethernet [4], and the

Myricom Myrinet [5]. Unlike cell-based switches such as

ATM switches, the above frame-based switches allow large

packets and can increase the effective channel utilization.

We concentrate on these frame-based switches which can

support varying sizes of frames.
This paper considers high speed local area networks

using cut-through switches, which provide a lower network

latency and high incremental scalability. There are lots of

challenging issues in such a network environment. A major

difficulty in constructing a large-scale network with cut-

through switches is to avoid deadlock among simulta-

neously transmitting frames. The concept of cut-through

switching, also known as wormhole routing, has been used

in new generation scalable parallel computers, such as the

IBM SP [6], Cray T3D [7], MIT J-machine [8], Ncube-3 [9],

and Intel Paragon [10]. In order to avoid deadlock, those

scalable parallel computers have to use regular network

topologies, such as meshes, tori and hypercubes. Many

deadlock-free routing algorithms have been proposed for

such regular network topologies. Interested readers may

refer to [11] for a detailed survey. However, using regular

network topologies is impractical and uneconomical for

high speed switched networks as regular networks impose

stringent interconnect constraints and are not incrementally
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scalable. Thus, a natural approach is to allow irregular
switch interconnects like Myrinet [5] and ServerNet [12].

The main contributions of this study include a proposed
routing algorithm and comprehensive performance
evaluations among three routing algorithms in irregular
networks. Due to the irregular network topologies, it is not
trivial to develop an efficient routing algorithm with lower
transmission latency and higher network throughput. We
propose adaptive-trail routing (a novel deadlock-free
adaptive routing algorithm) for irregular networks using
cut-through switches. In order to avoid deadlock, we use
two unidirectional Eulerian trails to help maintain an order
of channel dependency and allow reasonable routing.
Shortcuts are added to the Eulerian trails to provide more
and shorter routing paths. Heuristics are suggested in order
to provide better performance. A critical issue is how to
increase network throughput and avoid deadlock at the
same time.

In order to understand the influence of routing
algorithms and network topologies to network perfor-
mance, we investigate the performance of three existing
routing algorithms proposed for cut-through switched
networks with arbitrary topologies. The routing algo-
rithms considered in this study are the up*/down*
routing [13] used in the DEC AN1 system, the smart-
routing [14] proposed for FCS switches, and our
proposed routing algorithm [15]. Due to the dynamic
nature of networking environments, analytic modeling is
unlikely to give any practical insight to the network
behavior and performance. Thus, our study is primarily
based on intensive simulation experiments under differ-
ent workloads. The simulation results show that
different routing algorithms may gain performance
benefits from different network topologies. However,
while the up*/down* routing is heavily dependent on
network topology, the smart-routing and the adaptive-
trail routing have a relatively stable performance under
different topologies.

The rest of the paper is organized as follows: In Section 2,
we present the background knowledge and review the
related routing algorithms. Our proposed routing algorithm
is presented in Section 3. Section 4 presents the simulation
environment and Section 5 demonstrates the influence of
different routing algorithms to network performance under
various topologies and traffic conditions. Section 6 con-
cludes the paper and indicates future work for this study.
Our algorithm is proved deadlock-free in the Appendix.

2 BACKGROUND aND RELATED WORK

In this section, we first describe the network environment

considered in this paper. Then we review the previous work

of routing algorithms in cut-through (wormhole) switched

networks. Two related routing algorithms for irregular

switched networks are briefly presented in order to make

a comparison.

2.1 Cut-Through Switched Networks

Fig. 1 shows a generic cut-through switch with k ports.

For networks considered in this study, k is usually
between 4 and 32. Each port is associated with a pair of

input and output channels (or a bidirectional channel).
Each port may connect to a node which generates and

consumes messages, to a port of another switch which
defines the network topology, or leave it open for a
future connection. A node can be a workstation, a

multiprocessor system, or a gateway to another network.
A port connecting to a node is called a terminal port, a

port connecting to another switch is called a trunk port,
and a channel connecting two switches is called a trunk

channel. There is no essential difference between a port
used to connect to a node and a port used to connect to

another switch. A nonblocking network (e.g., a crossbar)
is used within a cut-through switch to allow simul-

taneous connections between different input and output
channels [16].

In a cut-through switch, a packet can be transferred to an

available output channel as soon as its header has been

received and decoded. Most of the cut-through switches

support input FIFO buffering for each incoming channel.

The input buffer must be able to hold at least the header

field of an incoming packet to make a routing decision. A

message stays in the input buffer if there is no output

channel available. When an input buffer is full due to the

blocking of the selected output channel, the packet

occupying the input buffer may hold some preceding input

buffers in other switches on its path. Buffer capacity is one

important parameter influencing the network performance.

A larger buffer will reduce the probability of channel

blocking, because fewer channels are occupied by a blocked

message. Note that cut-through switching is different from

virtual cut-through switching [17], where a large buffer will

hold the entire packet when the outgoing channel is blocked.
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Typically, most of the commercial switches use input

FIFO buffers. The FIFO input buffering causes a limited

throughput due to output port contention and head-of-line

blocking. This problem can be alleviated by having output

buffers, shared channel buffers, or arbitrary access input

buffers. However, these solutions are quite complicated to

implement in practice, and usually can only handle fixed

size frames (packets) [18]. Since we consider variable size

frames, we adopt input FIFO buffers and will show the

impact of buffer capacity on performance.
As we mentioned earlier, regular network topologies do

not have good incremental scalability due to the stringent

interconnection constraints [1] and may not be able to use

the original routing algorithms with faulty nodes. Thus,

some arbitrary network topologies with good network

performance are highly demanded. An arbitrary network

topology is shown in Fig. 2a, where nine 8-port cut-through

switches are interconnected. An open port is either

connected to a node or open for future usage. The graph

in Fig. 2b is used to model this network, where each vertex

corresponds to a switch and each edge corresponds to a

trunk channel. All channels in the network and edges in the

corresponding graph are assumed to be bidirectional, and

multiple edges between two vertices are allowed. This

graph representation is used to represent network topolo-

gies and derive channel dependency graph in this paper.

2.2 Related Work

In a cut-through switch, based on the header information of

incoming packets, a routing algorithm selects an outgoing

channel to deliver or forward the packet. A critical issue in

designing an appropriate routing algorithm in cut-through

switched networks is to avoid channel deadlock. A

deadlock occurs when there is a cyclic dependency among

occupied channels and requesting channels. A well-known

solution for deadlock avoidance was proposed in [19] based

on restricting the routing algorithm. For example, the turn

model proposed in [20] provides deadlock-freedom via

prohibiting certain turns.

Some general methodologies [21], [22], [23], [24] have

been proposed to allow deadlock-free routing in arbitrary

networks. However, it is difficult to directly apply those

general ideas to an irregular network. Besides these general

methods, only two existing routing algorithms can be

directly applied to irregular networks using cut-through

switches: the up*/down* routing (UDR) used in the

DEC AN1 system [13] and the smart-routing (SR) [14]. In

order to avoid deadlock, the UDR and SR adopt the concept

of deadlock-prevention, which never allows the formation

of a dependency cycle. Our proposed adaptive-trail routing

algorithm (ATR) uses the philosophy in [21], [24], which

allows the existence of cycles, but does provide a channel to

escape from the cycles. Neither UDR nor SR considers

virtual channels. For simple and practical reasons, we do

not consider virtual channels in our routing algorithm , but

it is an interesting issue worth further study.
The up*/down* routing algorithm (UDR). As proposed

in [13], a breadth-first spanning tree is constructed from a

specified root. Each channel is assigned a direction based on

the spanning tree, with ªupº meaning ªtoward the rootº. A

tie is solved by comparing the ids of two end switches of a

channel. With this assignment, the directed channels do not

form loops. A legal route is defined to be one that never

uses a channel in the ªupº direction after it has used one in

the ªdownº direction. The UDR routing is easy to

understand and implement, but it may concentrate traffic

around the root switch and allow unnecessary long routing

paths. Thus, its performance is greatly dependent on the

network topology and the selected spanning tree. Since all

routing paths satisfying the up*/down* requirement are

allowed in the routing table, many very long routing paths

may exist and cause poor performance in many cases. We

have modified the original algorithm in the following way:

if there are multiple routing choices in a routing table entry

and the shortest distance among these paths is h, longer

routing paths, which have more than two hops and are
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longer or equal to 2h, will be discarded. The modified UDR

is called MUDR.
The smart-routing algorithm (SR). This algorithm was

proposed in [14]. Based on the network topologies, the SR

algorithm builds an explicit channel dependency graph and

searches the graph for cycles. For each cycle, a dependency

is broken to minimize a heuristic cost function. The

procedure terminates when the channel dependency graph

has no cycles. The routing is represented by the channel

dependency graph. The SR can be used as adaptive routing

(SRA) or deterministic routing (SRD). For the SRA an

adaptive routing table, which allows multiple routing paths

among the switch pairs, is created in each switch. For the

SRD a deterministic routing table, which provides only a

single path between any two switches, is created in each

switch. In this paper, the SR represents both SRA and SRD.

The smart-routing has done a good job to balance channel

utilization under uniform traffic. However, the traffic

balancing, which depends on a linear programming solver,

is the most time consuming part when calculating the

routing table. Such complexity may not gain significant

performance benefit in real networks, since nonuniform

(e.g., client/server) traffic is very commonly observed.

3 THE ADAPTIVE-TRAIL ROUTING ALGORITHM

Our proposed algorithm [15], [25] is called the adaptive-

trail routing algorithm (ATR) and is applicable to any

network topology with Eulerian trails. The basic idea of the

ATR is to find two opposite unidirectional Eulerian trails to

provide reasonable routing paths and control the order of

channel dependency. The Eulerian trail is a sequence of

channels, which visits each channel once and exactly once

so that it can maintain the order of channel dependency. In

order to maximize channel utilization and allow more and

shorter routing paths, shortcuts are added to the two

unidirectional Eulerian trails. The two unidirectional trails

with shortcuts are called adaptive trails. To avoid deadlock,

some shortcuts have to be removed or used in a restricted

way based on the channel dependencies along the adaptive

trails. However, a dependency cycle is allowed as long as

there is an escape channel [21], [24] for that cycle. The

allowed paths between pairs along the two adaptive trails

define all legal routes. A static routing table is maintained in

each switch to carry routing information.

3.1 Definitions

In order to simplify our presentation, we introduce the
following definitions.

Definition 1. Trail, path, and cycle: a trail is a finite sequence of
edges (channels) of the form v0 ! v1 ! � � � ! vmÿ1 ! vm, in
which all the edges are distinct. If vertices v0; v1; � � � vmÿ1; vm
are also distinct, it is called a path. When v0 � vm, it is
called a cycle.

A graph G is said to be connected if every pair of its
vertices are joined by a path. Obviously, all graphs con-
sidered in this paper are connected. The connectivity of a

vertex is defined as the number of edges connected to the
vertex. For a pair of vertices u; v in G, dG�u; v� denotes the
length of a shortest path from u to v in G. The diameter of a
graph is the maximum dG�u; v�.

Definition 2. Eulerian trail and Eulerian graph: An Eulerian
trail of a connected graph is a trail that contains all the edges of
the graph. A graph is called an Eulerian graph if and only if it
has an Eulerian trail. The sufficient and necessary condition is
that all vertices have even degrees or exactly two vertices have
odd degrees.

Definition 3. Channel, shortcut, and index in a unidirectional
Eulerian trail: given a unidirectional Eulerian trail ET �
v0 ! � � � ! vi ! � � � ! vj ! � � � ! vm in graph G, each
vertex (switch) along the trail is given an index beginning
from 0. In trail ET, a channel between any two subsequent
vertices vi and vi�1 is denoted as ci;i�1 (i.e., vi ! vi�1). Given
an Eulerian trail ET, a shortcut si;j between two
nonsubsequent vertices vi and vj exists if j > i� 1,
vj 6� vi�1, and the channel vi ! vj is in the edge set of G. A
shortcut si;i�1 exists between two subsequent vertices vi and
vi�1 if there are multiple channels between vi and vi�1 in the
network. Let C(ET) denote the set of all unidirectional physical
links in ET, which means vi ! vi�1 2 C(ET), but
vi�1 ! vi =2 C(ET).

In Definition 3 and the rest of this paper, all trails,

channels and shortcuts are unidirectional unless otherwise

specified. The concepts of channels and shortcuts are used

to logically distinguish physical links' positions in a trail.

Any channel or shortcut in an Eulerian trail corresponds to

a unidirectional physical link in the network. If vi and vj
represent the same switch in a network, we say vi � vj. We

use csi;j to represent either ci;j or si;j if applicable. If vi � vp,
vj � vq and there is no multiple channel between the two

switches, csi;j and csp;q represent the same physical link.
Let us consider an Eulerian trail

8! 1! 0! 6! 5!e 1! 3! 2! 5!e
0

1! 7! 8! 3
! 4! 5! 0

for the network in Fig. 2. For simplicity, only two shortcuts
are shown here using the arrowed lines over the trail:

8! 1! 0! 6! 5!e 1! 3
����������������������!

! 2! 5!e
0

1! 7! 8
�������!! 3

! 4! 5! 0:

In this example, shortcut s0;6 (i.e., 8! � � � ! 3
��������!

) and channel
c11;12 (i.e., 8! 3) represent the same physical link. Formally,
a shortcut sp;q 2 C(ET) if and only if there is a k such that
vk � vp and vk�1 � vq.
3.2 Eulerian Trail

Our ATR routing algorithm can be applied to any network
which has an Eulerian trail. The algorithm to find an
Eulerian trail is well-known. We adopt the same algorithm
in the book [26]. A network may have more than one
Eulerian trail. Our routing algorithm is based on any
Eulerian trail of the network.
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Since bidirectional channels are used to interconnect

switches, a bidirectional Eulerian trail is considered as two

opposite unidirectional Eulerian trails, called ET1 and ET2,

respectively. As illustrated in Fig. 4, one Eulerian trail, ET1,

for Fig. 2b is

0! 5! 4! 3! 8! 7! 1!e
0

5! 2! 3! 1!e 5! 6
! 0! 1! 8:

We use e and e0 to distinguish the two physical links

between switches 1 and 5. Another Eulerian trail ET2 can be

obtained if we look at the above trail in the reverse order:

8! 1! 0! 6! 5!e 1! 3! 2! 5!e
0

1! 7! 8! 3
! 4! 5! 0:

If a channel is in ET1, it cannot be a channel in ET2.
Obviously, deadlock is impossible if messages are

routed along either ET1 or ET2. However, some messages

may not be able to use the shortest paths to reach their

destinations. Therefore, shortcuts are added to each trail.

The trails with shortcuts are called adaptive trails. The

adaptive trails derived from ET1 and ET2 are called AT1

and AT2, respectively.

3.3 Adaptive Trail

Any channel in the network may be a shortcut in an

adaptive trail. However, deadlock is possible if shortcuts

are added without any restriction. A deadlock example is

shown in Fig. 3, where a shortcut s0;6 (i.e., 8! � � � ! 3
��������!

) is

added to ET2. As shown in the figure, deadlock happens

when s0;6 is occupied by m1 and m3 is waiting for c11;12

(i.e., 8! 3).
In order to avoid deadlock, shortcuts have to be used

with some restrictions. The concept of channel dependency

was first presented in [19]. A routing algorithm is deadlock-

free if there is no cyclic channel dependency in the network

[19]. However, such a condition is too restrictive for

adaptive routing, where more than one outgoing channel

is offered at many switches. It has been shown in both [24]

and [21] that an adaptive routing algorithm with cyclic

channel dependency can still be deadlock-free as long as

some necessary conditions are satisfied. For any detected

dependency cycle, we break it if it may cause deadlock, but

we allow it if it cannot cause deadlock.
The shortcuts are categorized into three different types:

free-style shortcut, destination shortcut, and source shortcut.

Fig. 4 shows how to add shortcuts step by step. For a partial
trail like� � �u1 ! � � � ! uj � � � ! v1 � � � ! vk � � � , where

ui � u�1 � i � j� ; vi � v�1 � i � k�;
and no v exists between u1 and uj, any allowed shortcut
u ÿ!shortcut

v is drawn from uj to v1. The order to add different
types of shortcuts facilitates deadlock avoidance.

Free-style shortcut (f-shortcut). Given an Eulerian trail

ET, a shortcut sp;q is a free-style shortcut if there is an i < p

such that vi � vp and vi�1 � vq. A free-style shortcut must be

in C(ET). This type of shortcut can be illustrated by the

arrowed line over u! � � � ! v in the following trail:

� � �u! v! a! � � � ! u! � � � ! v��������!! � � � .
To create adaptive trails, free-style shortcuts are first

added to each Eulerian trail as illustrated in the first step of

Fig. 4. Note that in ET1, the free-style shortcut s10;11 (from

switch 1 to switch 5) is channel e0, while channel c10;11 is e. A

free-style shortcut can be used by any message if it is on the

routing path.
Destination shortcut (d-shortcut). Given an Eulerian

trail ET, any shortcut of ET is a candidate destination

shortcut. In the second step of Fig. 4, there are many

destination shortcuts shown as solid lines below the

Eulerian trails. A destination shortcut sp;q can only be used

by messages whose destination is vq. For example, destina-

tion shortcut s3;8 (from switch 3 from switch 2) in AT1 can

only be used by messages whose destination is switch 2.
Source shortcut (s-shortcut). Given an Eulerian trail ET,

any shortcut of ET but not in C(ET) is a source shortcut. In

the third step of Fig. 4, there are many source shortcuts

shown as solid lines above the Eulerian trails. A source

shortcut sp;q can only be used by messages whose source is a

local host connected to switch vp. No message can hold a

channel and request for a source shortcut. For example,

source shortcut s2;7 (from switch 4 to switch 5) in AT1 can

only be used for messages generated by a host connected to

switch 4. Note that channel s6;15 (i.e., from switch 1 to switch

8) in AT1 is not a source shortcut, since 1! 8 is in C(ET1).
Given the above definitions, it is noted that a shortcut

sp;q may have more than one shortcut type. For example,
s3;8 (from switch 3 to switch 2) in AT1 is both a source
shortcut and a destination shortcut. In this case, si;j is
used for both purposes.

After adding different shortcuts, we have to detect cyclic

channel dependency. Any routing path allowed in the

corresponding Eulerian trail will be kept. Whenever a
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dependency cycle has to be broken to avoid deadlock, we

always remove a shortcut to break the cycle.
As we mentioned above, different types of shortcuts are

used for different purposes. A destination shortcut cannot

cause deadlock. Because whenever it is occupied as a

destination shortcut, it always delivers a message to the

destination and will be released finally. In Fig. 4, there is

a dependency

3�v3� ! 8�v4� ÿ!dÿshortcut
1�v6�

on AT1 and a dependency

8�v0� ! 1�v1� ! 0�v2� ! 6�v3� ! 5�v4� ! 1�v5� ! 3�v6�
ÿ!dÿshortcut

8�v11�
on AT2. The two dependencies cause a dependency cycle,

but the cycle cannot cause deadlock due to the following:
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If 8�v4� ! 1�v6� is used as a destination shortcut on AT1, it

will be released finally. If 8�v0� ! 1�v1� is used on AT2,

there is another path from 8 to 1 (i.e., 8�v4� ! 7�v5� ! 1�v6�)
available in AT1.

Dependency cycles due to free-style shortcuts may cause
deadlock. Consider the following trail, where u and u

represent a same node and v and v represent a same node.

� � �u! v! a! � � � d � � � ! x! u! � � � ! v��������!! � � � d � � �
Assume there is a free-style shortcut u ÿ!fÿshortcut

v.

Because u! v and u ÿ!fÿshortcut
v represent the same physical

link, there is no way to distinguish them when a message

arrives at switch v from u. Given the routing path u! v!
a! � � � ! d in the Eulerian trail, a message from source x to

destination d may take path

x! u ÿ!fÿshortcut
v! a! � � � ! d:

Such a path breaks the channel dependency order given by

the Eulerian trail and creates a dependency cycle together

with the dependency of a! � � � ! d! � � � ! x! u. It may

cause deadlock, so u ÿ!fÿshortcut
v has to be removed.

The problem here is that two paths exist to route a

message from u to d: one using the channel u! v and the

other using the f-shortcut u ÿ!fÿshortcut
v. When a message uses

u ÿ!fÿshortcut
v, switch v cannot tell if it is from u or u. This

results in route x! u ÿ!fÿshortcut
v! a! � � � ! d, which

breaks the channel dependency order along the unidirec-

tional trail. In Fig. 5, we show all the configurations where

there are two paths from u to d. Therefore, f-shortcut

u ÿ!fÿshortcut
v in these cases have to be removed to

avoid deadlock.

Deadlock may be caused by a dependency cycle due to

source shortcuts, too. In Fig. 6, there is a dependency

a ÿ!sÿshortcut
b! � � � ! c! d on AT1 and a dependency

c ÿ!sÿshortcut
d! � � � ! a! b on AT2. The two dependencies

create a cycle and may cause deadlock. Therefore, a source

shortcut (e.g., c! d on AT2) has to be removed to break the

cycle. Without loss of generality, we assume AT2 is used to

break such a cycle.

Fig. 5 and Fig. 6 have shown all the possible deadlock

configurations caused by adding shortcuts. The deadlock

detection algorithm will detect them and break a deadlock

cycle by removing a shortcut. The detailed proof given in

the Appendix shows that the adaptive-trail routing is

deadlock-free.

3.4 Routing Tables

After getting the adaptive trails, a static routing table will be

constructed in each switch. A routing table has many

entries and each entry is indexed by both the destination

switch and the incoming channel (port). Some entry may

have multiple options of outgoing channels, which are

selected by shortest path first policy. We first create routing

table for each trail separately; then combine them together

and remove redundant entries if any. Adjustment of the

routing table may be done according to the heuristics in

Section 3.5.

Our scheme scans each trail beginning from the largest

index to the smallest index. At the beginning, the routing

table for each switch is empty. When a switch is visited, the

corresponding entries will be added to the routing table

based on its position in the adaptive trail and the shortcuts

that could be used. If a switch occurs more than once in the

adaptive trail, new entries will be added to the routing table

when the algorithm visits it again. Note that the multiple

occurrences for a same switch have different indexes along

the trail. When a switch is first visited, the pseudocode of

the algorithm is shown in Fig. 7.

In Table 1, a routing table is created in switch 5 when it

(i.e., v11) is first visited along AT1 of Fig. 4. Note that

5�v11� ÿ!dÿshortcut
0�v13� and 5�v11� ÿ!dÿshortcut

1�v14� can only be

used for destination switches 0 and 1, respectively.

Since our algorithm scans the trail from largest index to

the smallest index, the algorithm will visit a switch again if

the switch has multiple occurrences in the trail. When a
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switch is visited again, a key point is to use the output

channels available for its current occurrence and the routing

entries in the existing routing table. However, we should

avoid routing a message to any switch more than once. Fig. 8

shows the pseudocode to create routing table entries when a

switch is multiply visited.

In AT1 of Fig. 4, switch 5 has three occurrences: v1, v7,

and v11. Since our scheme scans the trail from the highest

index to the lowest index, v11 (switch 5) is visited first and

the routing table entries are shown in Table 1. Then, v7 (also

switch 5) is visited and new entries are added by applying

Algorithm 8. These new entries for switch 5 are shown in

Table 2. Note that for destination switch 6, we do not allow

the path

5�v7� ! 2�v8� ! 3�v9� ! 1�v10� !e=e
0
5�v11� ! 6�v12�;

because it passes switch 5 twice.
A shortcut offers a shorter routing path, but it may not be

available for message routing. Consider that a message M

comes from 5�v7� ! 2�v8� ! 3�v9� ! 1�v10� (on AT1) and

goes to switch 0. Although 1�v10� !dÿshortcut
0�v13� is the

shortest path to M's destination, M may take

1�v10� !e 5�v11� ! 6�v12� ! 0�v13�
if 1�v10� !dÿshortcut

0�v13� is not available when M is routed

from switch 1. This results in passing switch 5 twice and

wastes channel utilization. Due to this reason, a heuristic in

Section 3.5 is suggested to handle such a case.
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3.5 Heuristics about Degree of Adaptivity

If a switch appears more than once along an Eulerian trail,

there will be more than one outgoing channels from the

switch to some destinations. Multiple routing paths from

this switch to a destination switch offers a higher degree of

adaptivity and redundant routing choices for fault-toler-

ance. However, if a path is very long, many messages may

be blocked due to the long path. Simulation results in [15],

[25] show that allowing long paths will cause low network

throughput and high message latency. Our heuristics

consider multiple routing options in a switch and decide

whether to keep a longer routing path or not. Two heuristics

are suggested: dual-path heuristic and source heuristic.
Dual-path heuristic. Suppose switch v appears more

than once along the trail. Let vi and vj �j > i� denote any

two of them. If vi and vj have different outgoing channels

for a destination d, the dual-path heuristic will decide if the

longer path is allowed.
One case is that d appears once:

� � � ! vi ! a! � � � ! vj ! b! � � � ! d! � � � :
In this case, vi can go to d from either vj ! b or vi ! a plus

some shortcut(s) if any. Suppose the later choice is used.

The shortcut may not be actually used in a route if it is not

available when a message is scheduled, which results in a

longer path and visiting switch v twice. An example is path

5�v7� ! 2�v8� ! 3�v9� ! 1�v10� !e 5�v11� ! 6�v12� ! 0�v13�
on AT1. Our dual-path heuristic will not keep such a path

unless its length is no longer than the path from vj.
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Another case is that d appears twice:

� � � ! vi ! a! � � � d � � � ! vj ! b! � � � ! d! � � � :
When a message comes from v0is incoming channel, it may
use either vi ! a or vj ! b. If one path is much longer than

the other, the longer path may not be good for performance
because it consumes many channel resources. If the length

of the shorter path is h, our dual-path heuristic will discard
the longer path if its length is greater than 2h.

Source heuristic. There may be more than one routing
path between a source and a destination. If the shortest

distance among these options is h, our heuristic will not
keep an option in the corresponding entry if its length is
greater than 2h. Such a heuristic is called the source heuristic,

which is only applied to terminal incoming ports. In Fig. 4,
since the shortest path from switch 0 to 1 is 0! 1 (on AT1),
the longer path 0! 6! 5! 1 (on AT2) will not be used by

messages coming from a terminal port in switch 0.

3.6 Effect of Eulerian Trails

So far, we use the well-known algorithm to randomly
choose an Eulerian trail. Different Eulerian trails may result
in performance difference, which has been observed in our

simulations [15], [25]. In order to get a better performance, a
heuristic to find an appropriate Eulerian trail is needed.

Given two bidirectional Eulerian trails, the following
method is used to choose one of them, which may provide a

better performance. First, the adaptive trails corresponding
to each bidirectional Eulerian trail are constructed. Let
r�u; v� be the shortest distance from u to v allowed by the

adaptive trails. Let

��u; v� � r�u; v� ÿ dG�u; v�
dG�u; v� ;

where dG�u; v� is the shortest distance from u to v allowed

by the network. Let � be the sum of all ��u; v�. In general,
adaptive trails with smaller � will have a better perfor-

mance. However, it is not guaranteed that the adaptive
trails with minimum � will provide the best performance.
Also, it is still an open issue about how to construct an

Eulerian trail with the minimum �.
In our simulations, we select several bidirectional

Eulerian trails by varying the starting switch and the way

to select the next channel (see [25]). For each bidirectional

Eulerian trail, we create the corresponding adaptive trails

and compute �. An Eulerian trail with the smallest �

is selected.

3.7 Time Complexity

The whole algorithm is simple to implement. Let m be the

number of trunk channels and n be the number of switches

in a network. As shown in [25], the time complexity of

finding an Eulerian trail, adding all shortcuts, removing

free-style shortcuts for deadlock avoidance, removing

source shortcuts for deadlock avoidance, and creating

routing tables are O�m�, O�m2�, O�m2�, O�m2�, and

O�mn�, respectively. Thus, the total time complexity

is O�m2�.

4 SIMULATION ENVIRONMENT AND PERFORMANCE

METRICS

A simulator has been implemented to demonstrate the

performance of UDR, SR, and ATR routing algorithms

under various topologies and traffic workloads. In order to

evaluate network performance, a simulator should consider

the following workloads: traffic patterns, message size

distributions, and temporal distribution [27]. There are

many network parameters (e.g., topologies, placement of

nodes, destination distributions, message size, buffer size,

message injection rate, location of servers, etc.) and

combinations of these parameters. However, due to the

space limitation, we can only show the performance under a

limited subset of parameter combinations.

4.1 Network Workload and Parameters

Two destination distributions (i.e., traffic patterns)
are considered:

1. Uniform traffic: a node uniformly communicates with
any other node. Two nodes connected to the same
switch may communicate with each other.

2. Client/server traffic: k nodes are servers and all the
other nodes are clients.

For a client, a certain rate (75 percent in this paper) of

traffic is sent uniformly among those servers and the rest of
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traffic is sent uniformly among those clients. A server

sends messages to the other clients and servers with

uniform distribution.
In a real network, a client may not uniformly commu-

nicate with all servers; instead, it may communicate with a

specific server more frequently. However, there are too

many cases in such a nonuniform client/server pattern. For

simplicity, we choose the above model. In terms of k, we use

four or five servers out of 75 nodes in our simulations.
We use two message size distributions:

1. Fixed size messages: the message size is always 1,000
bytes.

2. Bursty messages: bursty traffic happens at a specific
rate and bursty size is 10,000 bytes.

Other messages are 100 bytes long. The bursty rate is five
percent in this paper.

The fixed message size and the uniform traffic distribu-

tion are combined to demonstrate the maximum sustained

throughput or worst case latency. A client/server distribu-

tion is more realistic than uniform distribution and useful to

model network hot spots. In actual network applications,

the bursty message distribution and the hot-spot destina-

tion pattern are commonly observed.
A time unit is defined as the time needed to transmit a

byte via a channel, which is decided by channel bandwidth.

We assume the header for each message is 10 bytes. Thus,

the switch delay for a routing decision is 10 times the unit

(i.e., the input buffer should have at least 10 bytes to hold

the complete header field). The input FIFO buffer capacity

is 100 bytes by default. However, we also measure the

performance of 1,000 bytes buffer capacity to show the

effect of the buffer size.
In a cut-through switch, it is not necessary to limit the

size of a packet smaller than the input buffer capacity. We

assume variable size packets and consider each message as

a packet. Because the ATR uses escape channels to avoid

deadlock, a buffer cannot be assigned to a new packet

unless it is empty. However, it is not necessary for the SR

and UDR. Thus, the SR and UDR may take more benefits of

large buffer capacity, since a single buffer can hold more

than one packet. But this benefit may not be significant if

the buffer capacity is much smaller than the message size.
We use finite input source to model the message

generation in each node, because it is more realistic than

the infinite source model typically used by other

researchers. Moreover, due to the limitation of memory

space, the oversaturated behavior is extremely difficult to

measure using the infinite source model. A finite source

model may have up to K outstanding messages. In high

performance computing, most parallel programs use block-

ing send to deliver messages. Thus, the next send will not

be initiated until the previous one is completed. In a client/

server environment, a server may receive several requests

and have several messages waiting on the queue to send.

For simplicity, we consider the case of K � 1, which means

next message cannot be generated unless the previous

message has completely left the source.
Let x be the time duration between the time when the

current message has completely left the source buffer and

the time when the next message is generated in each node.

Thus, x is a random variable based on an exponential

distribution. The smaller x is, the heavier the workload is.

4.2 Network Topologies

The topologies used to measure network performance are
shown in Fig. 9, where shadowed switches will host servers
in client/server traffic. In order to make a rather fair
comparison, all topologies have the same number of
switches and nodes. There are 10 switches and 75 nodes
in each network. The number of trunk channels, the node
distributions, diameters, and average path length are shown
in Table 3. We assume that all switches have the same
number of bidirectional ports and the number of used ports
in each switch is similar. Open ports are left for future
usage. Based on the node distribution, each switch should
have at least 12 ports.
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The path length from node u to v is defined as the number
of trunk channels traversed by the path. For any two nodes

in a same switch, the path length between them is defined

as 0. The average path length is the average length of the
shortest paths between nodes over all pairs of nodes which

is defined asP
i;j2nodes shortest path length�i; j�

number of node pairs
:

Note that the average length of paths allowed by routing
may be longer than the average path length in the network

due to the deadlock avoidance and adaptive routing. A

good routing algorithm should keep the average length of
routing paths as small as possible.

In this paper, we do not intend to evaluate the effect of

network topology on performance. We choose several
topologies in order to demonstrate the performance trend

for our routing algorithms. Some differences among the six

topologies are briefly summarized in the following: A, B,
and C have the same number of trunk channels for each

switch, but they have different diameters and the average
path lengths. The number of trunk channels are unevenly

distributed among switches in D and E. Channels in F are

basically evenly distributed among switches except that
switch 9 has only two trunk channels, which may cause

bottleneck for traffic coming from or going to switch 9.
The performance of UDR and ATR depends on the

selection of the root switch and the selection of Eulerian
trails. For the ATR, we adopt all the heuristics in Sections
3.5 and 3.6 and select one bidirectional Eulerian trail with
the smallest � (see Section 3.6) among three randomly
selected bidirectional Eulerian trails. For the UDR, we
select the switch with the maximum number of trunk
channels as the root. If there is a tie, the root is selected
randomly from the switches with maximum number of
channels. To assign the direction for a channel whose
end switches are at the same level, we assume that the

ªupº direction is always from the switch with a smaller

id to the switch with a larger id. The MUDR selects the

same root as the UDR in the same topology.

4.3 Performance Metrics

From an application program's point of view, the most

important performance metric of a network is communica-

tion latency, which is the time interval between the instant

that a send command, either explicit or implicit, is issued

until the instant that the message is completely received by

the recipient. The metric communication latency consists of

network latency (including the blocking time due to

unavailable output channels) and software latency. Since

our purpose is to compare the network latency, we do not

consider software latency in this study.
From the network point of view, an important metric is

network throughput, which is defined as the total amount of

message data transmitted in the network per unit of time.

The maximum network throughput is obtained without the

consideration of network contention (due to limited channel

bandwidth, number of channels, network topology, and

routing) and output contention (due to destination

distributions). In our simulations, the maximum network

throughput is 75 bytes/time_unit, because there are

75 nodes in each network. However, due to the limitation

of network contention and output contention, the maximum

sustained network throughput is usually much smaller than

the maximum network throughput. The sustained network

throughput and average message transmission latency are

measured as follows:

. sustained throughput � total transmitted bytes
total time

. latency � last byte arrival timeÿmesÿ
sage generation time
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5 SIMULATION RESULTS AND OBSERVATIONS

Section 5 shows some typical simulation results based on

the simulation environment described in Section 4. To

demonstrate the performance behavior of different routing

algorithms, we run the simulations under different

workloads by varying the value of x from large to small.

The smaller the x is, the heavier the workload is. To make a

fair comparison, we use the same x for all algorithms under

the same combination of network parameters. Note that the

actual effective network workload, which depends on both

x and how fast a message leaves its source in each switch,

may not be exactly the same for different algorithms.

However, this should be enough to fairly and practically

evaluate the performance. For each run, at least 30,000

messages have been received and 95 percent confidence

interval on the average latency has been reached. The first

1,000 messages are passed to eliminate the start-up transient

effect. The latency/throughput curves are used as our

performance curves.

5.1 Uniform Traffic

In order to fully understand the effect of topologies and

routing algorithms to network performance under uniform

QIAO ET AL.: ADAPTIVE-TRAIL ROUTING AND PERFORMANCE EVALUATION IN IRREGULAR NETWORKS USING CUT-THROUGH... 13

Fig. 10. Performance under uniform traffic with fixed message distribution.



traffic, we have measured the network performance for all

six network topologies with fixed message size distribution

and bursty message size distribution. Fig. 10 shows the

performance curves with fixed message size distribution. It

is observed that most performance curves reach their

maximum sustained throughput under a certain workload.

Then, the throughput will be decreased but the latency is

still increased when the workload is further increased. For

those curves which have not shown such behavior, they will

do so if a heavier workload is given. Because channel

contentions are very serious under such over-saturated

workloads, many messages have to wait for a long time

before they are able to use free channels, which causes

higher transmission latency and lower network throughput.

In a real network, a good flow control mechanism should be

applied to avoid the over-saturated workloads.

5.1.1 The Effect of Routing Algorithms

Although these routing algorithms have different behavior

under different topologies, there are still common behaviors

for each algorithm. The SRA and SRD achieve good

performance in most of uniform cases, but they depend

on a linear programming solver [14], which is very time

consuming.
Although the ATR is much simpler than the SR, it

provides very close (even better in some cases) performance
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to the SR in all topologies except E. Because ATR uses

Eulerian trails and shortcuts to provide reasonable and

shorter paths, it is able to deliver a good performance. The

ATR uses two opposite Eulerian trails to avoid deadlock.

For E, some longer routing paths along the Eulerian trails

have to be kept in order to avoid deadlock. Those longer

paths consume more channel resources and may cause poor

performance.
The UDR provides a worse performance in most of the

topologies except E. First, it may concentrate traffic near the

root switch. If the root switch does not have enough

channels to transfer the traffic, serious contention may

cause poor performance, which is the case for A;B;C; and

F . Second, the UDR allows a routing path as long as it never

uses any ªupº channel after using ªdownº channels. This

may allow very long routing paths. For example, in E, 3!
4! 5! 7! 0 may be a legal path if switch 0 is the root.

The reason that the UDR performs very well in E is the

avoidance of the above two shortcomings. As shown in

Fig. 10, MUDR outperforms UDR because it eliminates very

long routing paths. Although the comparison between UDR

and MUDR is only made for A, C and D, the same trend

holds for B, E, and F . To reduce the number of curves in

the figures, we use MUDR curves for topologies A, C, and

D and UDR curves for the rest of the topologies.

5.1.2 Adaptive Routing vs. Deterministic Routing

It is interesting to compare the performance of the SRA and
SRD. Both of them are developed by the same philosophy
and have been made to balance channel utilization under
uniform traffic. For all the six topologies, the SRA achieves
lower latency under light workload but suffers from worse
performance under heavy workload. This is not a surpris-
ing observation because adaptive routing can provide an
alternative routing path and take advantage of multiple
paths between pairs under light workload. However,
adaptive routing may take a longer path when shorter
paths are not available. The misrouting can cause more
channel contentions under heavy workload and result in
poor performance. On the other hand, deterministic
routing, especially traffic balanced deterministic routing
like the SRD, always selects a unique and shorter path for a
source-destination pair. Thus, a message has to wait on a
busy channel while a free alternative path exists, which
results in higher latency under a light workload. Under a

heavy workload, such a disadvantage is gone because all
channels are busy on transmission and a shorter path is a
better choice.

5.1.3 Bursty Messages

As shown in Fig. 11, the performance comparison under the
bursty messages is similar to that under the uniform traffic
with fixed size messages. This is because they both have the
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same destination distribution. When long messages are
transmitted in a network, some channels are occupied by
these long messages and block many other messages, which
causes higher network latency and lower network through-
put for all topologies. The SRD causes higher latency
because it cannot choose another available path.

5.1.4 Buffer Size

In order to demonstrate the effect of buffer size on
performance, we measure the performance by using larger

buffer capacity of 1,000 bytes. As shown in Fig. 12, large
buffer capacity does improve the performance for all the
algorithms under uniform traffic with both fixed size
messages and bursty messages. This is because a larger
buffer will hold more bytes and reduce the number of
occupied channels by a blocked message. Due to the
limitation of empty buffer required by the ATR (see
Section 4.1), the UDR and SR gain more performance
benefit from the larger buffer than the ATR, especially for
bursty traffic.
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5.2 Client/Server Traffic

The performance under client/server traffic is shown in

Fig. 13. Let us look at Fig. 9 again. Four servers are assumed

in each network shown in Fig. 9, where two server nodes

are located at each of the shadowed switches with wider

border and one server node is located at each of the

shadowed switches with thinner border. Under client/

server traffic, the routing algorithms may have different

performance behavior from that of uniform traffic. For

example, the ATR has the worst performance under

uniform traffic in E, but it does provide a better

performance than the UDR and the SRA in the selected

client/server model. The reason is that many messages in

such a client/server model will go to switches 0 and 9 and

the ATR provides reasonable routing paths for these two

destinations. Such an observation shows that we have to

consider different traffic patterns and workload when we

evaluate the performance for a network.

5.2.1 The Effect of Routing Algorithms

Due to the limitation of output contention, the performance

difference under client/server traffic is not as significant as

that under uniform traffic. An interesting thing is that the

SRD delivers the best performance for E, but the worst

performance for D. The SRD is designed for uniform traffic

and it cannot adjust routing based on the traffic pattern due

to its deterministic feature. Thus, it may cause poor

performance for some specific traffic pattern. The SRA

does not show such extreme performance (although it is

also designed based on uniform traffic), but the SRA does

have more flexibility to deal with various traffic patterns. A

routing algorithm, which is based on uniform traffic and

performs well under uniform traffic, may not provide good

performance under client/server traffic.

5.2.2 Locations of Servers

The number of servers and the locations of servers both

influence the network performance. In Fig. 14, we show

their effects on performance in A and D, where three

different models shown in Table 4 are used to study the

effect for A and D, respectively. We select the SRD and the

ATR to show the performance of A and D, respectively.

Similar performance is observed in other routing algorithms
and other topologies.
A is a network where trunk channels are evenly

distributed among switches. Since no switch has extremely
high connectivity, it is better to distribute the servers among
different switches if possible. In Fig. 14, we compare the

performance under three client/server models: model 1 has
four servers located at four switches, model 2 has five

severs located at five switches, and model 3 has five servers
located at two switches. It is not surprising that model 2

achieves the best performance. Model 3 has the worst
performance because it concentrates the traffic near two

switches and channel bottlenecking becomes serious.
D is a network where switch 0 has full connection to all

of the other switches. Servers should be allocated at switch 0

in order to use those channels for it. Again, we compare
three models: model 1 has four servers located at four

switches with one server at switch 0, model 2 has four
servers located at three switches with two servers at switch

0, and model 3 has four servers located at two switches with
three servers at switch 0. As shown in Fig. 14, while model 1

shows the worst performance, model 2 shows the best
performance under light workload, and model 3 has the

best performance under heavy workload. When three
servers are located at switch 3, there is no client node in

switch 3, which cannot take advantage of short paths to
servers. That is why model 3 delivers higher latency with a

light workload. When the workload becomes heavier,
model 3 gains a little bit better performance, because it

QIAO ET AL.: ADAPTIVE-TRAIL ROUTING AND PERFORMANCE EVALUATION IN IRREGULAR NETWORKS USING CUT-THROUGH... 17

Fig. 14. Effect of server locations and number of servers.

TABLE 4
Three Models to Study the Effect of Server Locations

for A and D



has the highest bandwidth to release traffic near servers.

However, because output contention is the major bottleneck

in a client/server environment, the performance difference

among these three models is little.

5.2.3 Buffer Size

It is observed that buffer capacity does not have a big
effect on performance under client/server traffic. Fig. 15
shows the trend in Topology D. This phenomenon is
understandable, since the output contention and the
channel contention near the servers are main bottlenecks
in such an environment. To improve the performance
under client/server traffic, output contention should be
considered, and multiple ports may be used for a server
to reduce output contention.

6 CONCLUSIONS AND FUTURE WORK

Irregular networks using cut-through switches are a

promising network platform to build workstation clusters

for high performance computing. Such networks provide

low network latency and are incrementally scalable.

Without topological constraints, channels and switches

may be added, removed, or reconfigured to adapt to a

particular network traffic pattern of a given environment.
In order to allow irregular interconnection in such a

switched network, we have presented a novel adaptive

routing algorithm for irregular cut-through switched

networks. The routing algorithm is simple to implement,

and efficient to lead to reasonable performance for most

topologies and traffic workloads. In order to understand the

effect of routing algorithms and topologies on network

performance, we have demonstrated simulation results

comparing the performance of three different routing

strategies. The UDR is extremely simple to understand

and implement, yet leads to poor throughput for almost all

topologies. Our proposed algorithm, the ATR, is just

slightly more complicated to compute, yet leads to mostly

reasonable throughput for most topologies. Although the

SR spends much more time balancing channel utilization

under uniform traffic than the ATR, the SR and the ATR

actually have very close performance, except that the SRD

has better performance under an over-saturated workload.
There are many directions worth further exploration.

More simulations are needed to consider irregular network

topologies with different shapes, sizes, numbers of nodes,

and traffic distributions. In order to understand the effect of

the finite input source model, the case of K > 1 should

be studied.
It should not be difficult to apply our algorithm to many

non-Eulerian graphs, if not all of them. For example, we can

get an Eulerian trail by removing a small number of

channels and add them as shortcuts to the adaptive trails. If

virtual channels are allowed and two virtual channels are

used for each physical link, all nodes will have even

degrees. In this sense, our routing algorithm can be applied

to any topology.
One way to apply our algorithm is to implement it on

a commercial product such as Myrinet. We may have to
modify our algorithm, because the Myrinet switch is
using source routing and may not be able to support
routing tables.

APPENDIX

We are going to show that the ATR algorithm is deadlock-

free. In order to simplify our proof, we need the following

definition of deadlock-immune channel which was first

defined in [24].

Definition 4. A channel c is deadlock-immune for a packet M if
and only if, once M occupies the channel c, M will eventually
leave channel c and release it. For convenience, if a packet M
can never use channel c, c is also defined to be deadlock-
immune for packet M. A channel is said to be deadlock-
immune if and only if it is deadlock-immune for all packets.

As shown in [24], a routing algorithm is deadlock-free if

and only if every channel is deadlock-immune. This is

obvious, because the channels involved in a deadlock could

not be deadlock-immune.
In the ATR routing algorithm, a packet is transmitted to

its destination along AT1 and/or AT2. Although the
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routing tables are created separately based on each adaptive

trail, they are finally combined together to become

integrated routing tables. Due to the use of a source

shortcut, it is possible for a packet to start from one trail and

change its route to another trail. Note that this situation will

not happen unless there is a channel on its routing path,

which is also used as a source shortcut on another trail.
Let ET1 be

v0 ! v1 ! � � � ! vm

and ET2 be

u0 ! u1 ! � � � ! um;

where ui � vmÿi. In the following, c1
i;i�1 and s1

p;q represent a

channel in C(ET1) and a shortcut of AT1, respectively, and

c2
i;i�1 and s2

p;q represent a channel in C(ET2) and a shortcut

of AT2, respectively.

Lemma 1. If none of the channels c1
i;i�1 (i � k) in C(ET1) are a

source shortcut in AT2, all channels c1
i;i�1's (i � k) are

deadlock-immune.

Proof. Let us consider any packet, whether it is originally

routed along AT1 or AT2. There are three cases:

1. The packet holds a channel c1
i;i�1 (i � k) when it is

routed along AT1. Then its route can no longer be
changed to AT2, because none of c1

i;i�1 (i � k) is a
source shortcut in AT2. If any packet is holding
c1
mÿ1;m, the packet will arrive in destination vm

and release c1
mÿ1;m. After c1

mÿ1;m is released, any
packet holding c1

mÿ2;mÿ1 will go to its destination
(either vm or vmÿ1) and release c1

mÿ2;mÿ1. Even-
tually, c1

mÿ3;mÿ2; � � � ; and c1
k;k�1 will be released by

the packet because any packet holding c1
i;i�1 �i �

k� can always go to the destination via path
vi�1 ! vi�2 ! � � � ! destination. Therefore, all
channels c1

i;i�1 (i � k) are deadlock-immune for
such a packet.

2. The packet holds a channel c1
i;i�1 (i � k) when it

is routed along AT2. It means that c1
i;i�1 is used

as a destination shortcut in AT2 (because it is
not a source shortcut) for the packet. The
packet will go to the destination and release
the channel eventually. Therefore, each c1

i;i�1

(i � k) is deadlock-immune for such a packet.
3. The packet never takes any channel c1

i;i�1 (i � k).
By definition, c1

i;i�1 (i � k) is deadlock-immune
for such a packet.

Therefore, ci;i�1 is deadlock-immune. tu

Lemma 2. If none of the channels c2
i;i�1 (i � k) in C(ET2) are a

source shortcut in AT1, then all of the channels c2
i;i�1's (i � k)

are deadlock-immune.

The proof is similar to that of Lemma 1.

Lemma 3. Channel c1
mÿ1;m is deadlock-immune.

Proof. If c1
mÿ1;m is not a source shortcut in AT2, it is

deadlock-immune by Lemma 1. Otherwise, let s2
p;q be the

source shortcut, which corresponds to c1
mÿ1;m in AT2. We

claim that none of channel c2
j;j�1 (j � q) can be a source

shortcut in AT1. Because otherwise, there will be a

dependency cycle as follows, which is the same deadlock

configuration shown in Fig. 6 and should not be allowed

in our adaptive trails.

. A T 1 : v0 ! � � � ! vx ! � � � ! vy
����������!� � � vmÿ1 ! vm

(where s1
x;y � c2

j;j�1).
. A T 2 : u0 ! � � � ! up ! � � � ! uq

����������!� � �uj ! uj�1 !
� � �um (where s2

p;q � c1
mÿ1;m�.

Therefore, all c2
j;j�1 is deadlock-immune by Lemma 2.

In this case, if any packet holds s2
p;q as a source shortcut, it

will go to its destination via uq ! uq�1 ! � � � !
destination and eventually release s2

p;q. So, c1
mÿ1;m is

deadlock-immune for any packet. tu
Lemma 4. Channel c2

mÿ1;m is deadlock-immune.

The proof is similar to that of Lemma 1 .

Lemma 5. For any channel c1
k;k�1 in C(ET1), if all channels c1

i;i�1

�i > k� are deadlock-immune, c1
k;k�1 is deadlock-immune.

Proof. For any packet, there are the following four cases:

1. The packet never takes channel c1
k;k�1. Then by

definition, c1
k;k�1 is deadlock-immune for the

packet.
2. The packet holds channel c1

k;k�1 and its destination
is switch vk�1. In this case, the packet will finally
go to destination and free c1

k;k�1. So c1
k;k�1 is

deadlock-immune for the packet.
3. The packet holds c1

k;k�1 and requests c1
k�1;k�2 in

AT1. Since c1
i;i�1's (i > k) are deadlock-immune,

they will be available for the packet. Therefore,
the packet will eventually go through vk�1 !
vk�2 ! � � � ! destination and reach the destina-
tion. In this case, c1

k;k�1 is deadlock-immune for
the packet.

4. The packet holds c1
k;k�1 as a source shortcut in

AT2. Suppose the source shortcut is s2
p;q. Then the

packet requests c2
q;q�1. If none of c2

j;j�1 (j � q) is a
source shortcut in AT1, c2

j;j�1's are deadlock-
immune by Lemma 2. It means that the packet
can reach its destination via c2

j;j�1's. If some c2
j;j�1

is a source shortcut in AT1, let s1
x;y be a source

shortcut corresponding to c2
j;j�1 in AT1 and there

must be y > k. Otherwise, there will be a
dependence cycle as follows, which is the same
deadlock configuration shown in Fig. 6 and
should not be allowed in our adaptive trails.

AT1 : v0 ! � � � ! vx ! � � � ! vy
����������!� � � vk ! vk�1

! � � � vm�where s1
x;y � c2

j;j�1�

AT2 : u0 ! � � � ! up ! � � � ! uq
����������!� � �uj ! uj�1

! � � �um�where s2
p;q � c1

k;k�1�
Therefore, we must have y > k. Any packet

holding s1
x;y �y > k� will go to its destination by

path vy ! vy�1 ! � � � ! destination because all
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channels c1
i;i�1's �i > k� are deadlock-immune,

which in turn means that s1
x;y (i.e. c2

j;j�1) is

deadlock-immune. Therefore, the packet holding

s2
p;q (i.e., c1

k;k�1) can go to its destination via uq !
uq�1 ! � � � ! destination and release s2

p;q. So c1
k;k�1

is deadlock-immune for the packet in this case.

Therefore, c1
k;k�1 is deadlock-immune. tu

Lemma 6. For any channel c2
k;k�1 in C(ET2), if all channels c2

j;j�1

�j > k� are deadlock-immune, c2
k;k�1 is deadlock-immune.

The proof is similar to that of Lemma 5.

Theory 1. The ATR routing algorithm is deadlock-free.

Proof. Due to Lemmas 3, 4, 5, and 6, channels

c1
mÿ1;m; c

1
mÿ2;mÿ1; � � � ; c1

1;2, channels c1
0;1, channels

c2
mÿ1;m; c

2
mÿ2;mÿ1; � � � ; c2

1;2;

and channels c2
0;1 are proved to be deadlock-immune one

by one. Therefore, the routing algorithm is deadlock-free.

Otherwise, some channels must not be deadlock-im-

mune, because channels involved in a deadlock cannot

be deadlock-immune. tu
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