
Multi-Node Broadcasting in a Wormhole-Routed 2-D Torus Using an

Aggregation-then-Distribution Strategy

Yuh-Shyan Chen and Che-Yi Chen
Department of Computer Science and

Information Engineering
Chung-Hua University

Hsin-Chu, 30067, Taiwan
Email: chenys@csie.chu.edu.tw

Yu-Chee Tseng
Depart. of Computer Science and

Information Engineering
National Central University

Chung-Li 32054, Taiwan
Email: yctseng@csie.ncu.edu.tw

Abstract
This paper presents an efficient multi-node broadcasting al-
gorithm in a wormhole-routed 2-D torus, where there are
an unknown number of s source nodes located on unknown
positions each intending to broadcast a message of size m
bytes to the rest of network. The torus is assumed to use the
all-port model and the popular dimension-ordered routing.
Most existing results are derived based on finding multiple
edge-disjoint spanning trees in the network. The main tech-
nique used in this paper is an aggregation-then-distribution
strategy. First, the broadcast messages are aggregated into
some positions of the torus. Then, a number of independent
subnetworks are constructed from the torus. These sub-
networks, which are responsible for distributing the mes-
sages, can well exploit the communication parallelism and
the characteristic of wormhole routing. It is shown that such
an approach is more appropriate than those using edge-
disjoint trees for fixed-connection network such as tori. This
is justified by our performance analysis.

1. Introduction

A massively parallel computer (MPC) consists of a large
number of identical processing elements interconnected by
a network. One basic communication operation in such
a machine is broadcasting. Two commonly discussed in-
stances are: one-to-all broadcast and all-to-all broadcast,
where one or all nodes need to broadcast messages to the
rest of the nodes. A more complicated instance is the many-
to-all (or multi-node) broadcast, where an unknown num-
ber of nodes located in unknown positions each intending
to perform a broadcast operation. The focus of this paper
is the multi-node broadcast problem, whose applications
can be found in parallel graph algorithms, parallel matrix
algorithms, fast Fourier transformation, parallel compila-
tion, and cache coherence. In addition to multi-node broad-
casting, many collective communication patterns, such as
one-to-all broacasting, multicasting, all-to-all broadcasting,

complete exchange, scatter, gather, and reduction, have all
intensive attention recently, [5] [3].

The multi-node broadcast problem has been studied on a
variety of interconnection networks [6] [7] [8][10][12][2].
Saad and Schultz [6] [7] initially defined this problem and
proposed a simple routing algorithm for hypercubes. Sta-
moulis and Tsitsiklis [8] proposed to use n edge-disjoint
spanning trees in an n-cube to solve this problem. A dis-
tributed approach to improve the load imbalance problem
in [8] was presented by Tseng [10] for hypercubes and star
graphs. Efforts were made by Varvarigos [12] to solve the
more complicated problem where each source node may
have several messages (of the same length) to broadcast.
Recently, Susanne et al. [2] propose a scheme called s-to-p
broadcasting, where the authors tried to align the broadcast
messages into a regular pattern before they are distributed.

The aforementioned results are all based on finding edge-
disjoint spanning trees in a network and are appropriate for
non-fixed connection networks [1]. One problem with this
is that the number of edge-disjoint trees that could be of-
fered by a network is fixed [1]. The other problem is that
the characteristic of wormhole routing, which is assumed in
this paper, is not well exploited [11]. In this paper, we con-
sider 2-D tori, which have been adopted by Cray T3D and
T3E and are fixed-connection networks. The recently popu-
lar wormhole routing technology is assumed. In the litera-
ture, sending a packet involves two costs: start-up time and
transmission time. Attempts to minimize both these costs
are made.

Our approach is based on an aggregation-then-
distribution strategy. First, the network-partitioning
techniques proposed in [11] is used to get multiple indepen-
dent subnetworks (which are different from edge-disjoint
spanning trees) in a torus. The number of independent
subnetworks are actually an adjustable parameter. Given
a multi-node broadcast problem with an unknown num-
ber of s source nodes located on unknown positions in



an n � n torus each intending to broadcast an m-byte
message, our approach can solve it efficiently in time
O
���

log5 n � Ts � max � � log5 � n
h �
	 h ��� s

h mTc 
 	 where h is the
number of independent subnetworks. It is shown that this
number has outperformed the aforementioned schemes
using edge-disjoint-spanning-trees.

The rest of this paper is organized as follows. The basic
ideas are in Section 2. Section 3 presents our scheme. Tim-
ing analyses and comparisons are in Section 4. Conclusions
are drawn in Section 5.

2. Basic Idea

2.1. System Model

A massively parallel computer (MPC) is formally rep-
resented as G � �

V 	 C 
 , where V denotes the node set and
C specifies the channel connectivity. Each node contains a
separate router to handle its communication tasks. In this
paper, we consider G as a 2-dimensional torus Tn1 � n2 with
n1

� n2 nodes. Each node is denoted as Pi � j, 1 � i � n1,
1 � j � n2 and Pi1 � i2 has an edge connected P� i1 � 1 � modn1 � i2
along dimension one and an edge to Pi1 � � i2 � 1 � modn2

along di-
mension two. Each edge is considered consisting of two di-
rected communication links pointing in opposite directions.

The wormhole routing model is assumed [4]. Under such
model, each packet is partitioned into smaller units called
flits, which are sent in a pipelined manner. In the absence
of congestion, the communication latency in the networks is
proportional to factor of sum of message length and routing
distance. Specifically, the time required to deliver a packet
of L bytes from a source node to a destination node can be
formulated as Ts � LTc, where Ts is the start-up time contain-
ing the channel setup and software overhead, and Tc rep-
resents the transmission time per data byte. In this paper,
attempts will be made to counter the trade-off between the
start-up and the transmission costs.

In addition, we adopt the all-port model, in that a node
can simultaneously send and receive messages along all out-
going and incoming links, and the dimension-ordered rout-
ing [10], in that every message must travel links in a strictly
increasing order in terms of link dimensions.

2.2. Network Partitioning

Our work is based on partitioning the torus into some
subnetworks. In the following, we review some definitions,
which are based on the work in [11].

Consider a torus Tn1 � n2 . Suppose h is an integer which di-
vides both n1 and n2. We define k data-distribution network
DDNk � �

Vk 	 Ck 
 , k � 0 ��� h � 1 as follows:

Vk � � pi � j � i � ah � k 	 j � bh � k 	 for all a � 0 ��� � n1
h 


-1 and b � 0 ��� � n2
h 
 � 1 �

Ck � � all channels at rows ah � k and column bh � k �

Figure 1: Network partitioning scheme.

Intuitively, each DDN is a dilation-h torus of size
� n1

h 
 �� n2
h 
 , in the sense that each edge is dilated by a path of h

edges. An example is shown in Fig. 1 with four dilated-4,
4 � 4 tori embedded in a 16 � 16 torus.

Also, we partition the Tn1 � n2 into n1 � n2
h2 data collecting

network DCNa � b � �
Va � b 	 Ca � b 
 , a � 0 ��� n1 � 1, b � 0 ��� n2 � 1 	

as follows:

Va � b � � pi � j � i � a � h � x 	 j � b � h � y for all x 	 y � 0
��� h � 1 �

Ca � b � � the set of edges induced by Va � b in Tn1 � n2 �
Intuitively, these DDNs are obtained by evenly slicing the
torus into n1 � n2

h2 blocks, each being a square h � h submesh.
Fig. 1 illustrates this definition when h � 4.

3. The Multi-Node Broadcasting Scheme

This section presents a multi-node broadcasting scheme.
The work is constructed by a proposed aggregation-then-
distribution strategy. Two phase, aggregation and distribu-
tion phases, are separately discussed.

3.1. The Aggregation Phase

3.1.1. Step 1: Diagonal-Based Data-Aggregation Operation

This subsection describes the diagonal-based data-
aggregation, or namely data-aggregation, operation. The
size of DDN0, DDN1,..., DDNh � 1 and DCN0, DCN1,...,
DCNk � 1 are initially determined. It is a trade-off problem to
determine the value of h and k. Basically, the higher value
of h is, the lower latency will be.

Given a node Pi � j and an integer k, define D
�
Pi � j 	 k 
 to be a

sequence of k nodes as follows. For instance, the main diag-
onal in a square Tn � n torus passing node P0 � 0 is the sequence
D
�
P0 � 0 	 n 
 . If node Pi � j � P0 � 0 then the sequence of the di-

agonal nodes is P1 � 1 	 P2 � 2 	 ����� 	 and Pn � 1 � n � 1. A torus can be



Figure 2: Example of data aggregation operation.

viewed as n diagonals D
�
Pi � 0 	 n 
 or Li, i � 0 ��� n � 1. The pur-

pose of data-aggregation operation is to aggregate n diago-
nals into �L j diagonals, where j � 0 ��� � n

h � � 1 and �L j � L j
�

for j
� � j � � n

h � . In other words, data are aggregated into
main diagonal in every DCNs.

The time complexity of data-aggregation operation is to-
tally depended on value of h. During each data-aggregation
operation, every node Pi � j in main diagonal of each DCN are
aggregated messages from nodes Pi � 1 � j 	 Pi � 1 � j 	 Pi � j � 2 	 and
Pi � j � 2. This also implies that �L j or L j

� diagonals aggregates
messages from L � 2 � j

� 	 L � 1 � j
� 	 L1 � j

� and L2 � j
� . Clearly, all

of the communications are congestion-free. The communi-
cation latency is determined by the size of h, not value of
n. If h � 4 	 data-aggregation operation can be recursively
executed within

�
log5 h � time units. Generally, we have fol-

lowing result if h � 4.

Lemma 1 Diagonal-based data-aggregation operation can
be recursively performed on a Tn � n within

�
log5 h � Ts �

�
log5 h � � 1

∑
i � 1

5i � 1mTc � �
log5 h � Ts � 5

�
log5 h � � 1

4
mTc

, where h � 4.

Further, each data-aggregation operation may aggregate
messages from partial nodes by four neighboring nodes if
it is one of source nodes. For instance, consider 20 source
nodes intending to send message to rest of network as shown
in Fig. 2(a). After data-aggregation operation, the result is
shown in Fig. 2(b). Assume that h � 5 	 the number of copies
of distinct messages in DDN0, DDN1, DDN2, DDN3, and
DDN4 are 1, 6, 9, 2, and 2. Obviousely, it is not load bal-
ance.

3.1.1. Step 2: Balancing-Load Operation

Prefix-Sum Procedure: The main function of prefix-
sum procedure is to exchange the information of amount of

Figure 3: Prefix-sum procedure.

collected messages to calculate the prefix-sum value. Using
prefix-sum value allows us to do the balancing-load oper-
ation well. This procedure only propagates control mes-
sage across the 2-D tori network. The prefix-sum procedure
needs (1) forward stage, and (2) backward stage. For ease of
presentation, a simple prefix-sum procedure on five nodes is
initially explained.

1. Basic forward stage: Node Pk � k containing message c
receives messages a 	 b 	 d 	 and e from nodes Pk � k � 2, Pk � 1 � k,
Pk � 1 � k, and Pk � k � 2 	 as illustrated in Fig. 3(a). Note that
node Pk � k must keeps values of a, b, c, d, and e on each
forward stage to calculate partial prefix-sum in future back-
ward stage.

2. Basic backward stage: Assume that node Pk � k gets a
local partial prefix-sum value c

�
(from previous backward

stage), then node Pk � k must sends backward value c
�

plus
partial prefix-sum to nodes Pk � k � 2, Pk � 1 � k, Pk � 1 � k, and Pk � k � 2 	
according to the order as shown in Fig. 3(b). That is, node
Pk � k sends value of c

� 	 c � � a 	 c � � a � b 	 c � � a � b � c 	 and
c

� � a � b � c � d to nodes Pk � k � 2, Pk � 1 � k, Pk � k, Pk � 1 � k, and
Pk � k � 2, respectively, as illustrated in Fig. 3(c).

Owing to the fact that all nodes with messages are lo-
cated in the diagonal of tori (due to applying data ag-
gregation operation), so a diagonal-based recursive prefix-
sum procedure is needed. Nodes Pk � 2 � k � 2 � Pk � 1 � k � 1 � Pk � 1 � k � 1 �
and Pk � 2 � k � 2 are located in a diagonal, two communi-
cation steps are needed as illustrated in Fig. 3(h) and
4(i). First communication step is let diagonal nodes
Pk � 2 � k � 2 � Pk � 1 � k � 1 � Pk � 1 � k � 1 � and Pk � 2 � k � 2 send corresponding
messages to Pk � k � 2, Pk � 1 � k, Pk � 1 � k, and Pk � k � 2 as shown in
Fig. 3(a). This communication step is congestion-free and
takes one time step. Second communication step is to per-
form the basic forward stage. Similarly, the backward stage
on diagonal do a reverse work. Collectively, each of the
diagonal-based forward and backward stages takes 2 time



Figure 4: Example of data tuning procedure.

steps. Recursively perform the basic forward and backward
stages for

�
log5 n � times. This indicated that the recursive

forward and backward stages on diagonal need time cost of
2
�
log5 n � � Ts � Tc 
 . Each incoming data must be kept for

the backward stage, so there needs 5
�
log5n � extra memory.

Consequently, the total time cost of prefix-sum procedure is
4
�
log5 n � � Ts � Tc 
 � For example, a prefix-sum procedure is

operated in Fig. 4(a).

Data Tuning Procedure: The purpose of data tuning
procedure is to balance the work load among all DDNs. We
divide the task into two parts; (1) finding a destination list,
(2) performming data-movement operation.

1. Finding a destination list: Given that prefix-sum
value and number of messages are α and β. The original
destination list is � α 	 α � 1 	 � � � 	 α � β � � If number of DDNs
is h 	 let the destination list become � � � αmodh 	 � α �
1 
 modh 	 � � � 	 � α � β 
 modh � � For instance in Fig. 4(a), if
h � 5 	 one node whose prefix sum is 9 and number of col-
lected messages is 3, the original destination list is � 9, 10,
11 � then � is � 4, 0, 1 � . Since this node is located in DDN1 	
so the three messages should be moving from DDN1 to
DDN0 	 DDN1 	 and DDN4 � This task can be further accom-
plished as follows. Let Pk � k � located in diagonal of DDNi 	
change destination list � as �

� 	 where �
�

obtained as fol-
lows. For every t ��� 	 let j � t � i 	 if j � h

2 then let j � j � h �
For instance, a destination list � � � 4, 0, 1 � , so �

� � � -2,-
1,0 � , where i � 1 and h � 5 � Each element of �

�
represents

Figure 5: Data movement pattern.

the offset value from each DDN. Further, all of rest destina-
tion lists �

�
are displayed in Fig. 4(a).

2. Data-movement operation: Based on information
of destination list �

�
, a congestion-free data-movement op-

eration is performed to balancing the load among all the
DDNs. Suppose that Pk � k � located in diagonal in every DDN
and each node has messages to be exchanged with nodes
Pk � l � k � � l when l ��� 1 and � 2. Every node Pk � k � exchanges
one message with node Pk � l � k � � l , l ��� 1 and � 2, within two
time steps as shown in Fig. 5(a). Figs. 5(b) and 5(c) illus-
trates the first and second communication pattern. There is
no communication congestion. Each node Pk � k � exchanges
only one message with node Pk � l � k � � l 	 where l ���

� � A hi-
erarchial congestion-free communication pattern is worked
within 2

�
log5 h � time steps. For instance, according to des-

tination list �
�
, data-movement operations are performed as

shown in Figs. 4(b) and 4(c) when l ��� 1 and � 2. Each
communication stage only propagates message m at most,
this stage needs 2

�
log5 h � � Ts � mTc 
 time units.

The time complexity of data tuning procedure is
2
�
log5 h � � Ts � mTc 
 �

3.2. Distribution Phase

3.2.2. Step 1: Alignment Operation

The purpose of the alignment phase lies in a preparation
process for the distribution phase of multi-node broadcast-
ing. Two procedures are needed.

1. Alignment procedure to main diagonal: All pos-
sible message are collected into the main diagonal of cor-
responding DDN. This task can be easily achieved by re-
cursively performing the diagonal-based data redistribution
operation as introduced in section 3.1. Intuitively, it takes�
log5

� � n
h � 
 � � Ts � �mTc 
 time cost, where �m � s

h m.



Figure 6: The all-to-all-diagonal-broadcasting procedure.

2. All-to-all broadcasting procedure on diagonal:
This procedure is to collect messages of each node in the
main diagonal from other nodes in the same diagonal. For
instance, consider that a T5 � 5 	 each node in main diagonal of
a DDN will keeps different message as shown in Fig. 6(a).
After executing the all-to-all-diagonal-broadcasting opera-
tion, all nodes in main diagonal will keeps messages from
all other nodes as illustrated in Fig. 6(b). The all-to-all-
diagonal-broadcasting procedure is to recursively perform a
data-distribution and data-collection stages as follows. For
ease of presentation, we explain it by an example on a T5 � 5

as follows, (a) (Data-distribution) each node Pi � i in diago-
nal distributes its own message to two neighboring nodes
Pi � i � 2 and Pi � i � 2 according to a data-distribution pattern as
shown in Fig. 6(c). (b) (Data-collection) each node Pi � i in
diagonal then collect four messages from four neighboring
nodes Pi � 1 � i � 1 and Pi � 1 � i � 1 Pi � 2 � i and Pi � 2 � i according to a
data-collection pattern as illustrated in Fig. 6(d). There-
fore, five nodes can contain all other nodes’ messages in the
same diagonal as shown in Figs. 6(e) and 6(b). Repeat-
edly perform above data-redistribution and data-collection
operations, thus an all-to-all-diagonal-broadcasting can be
applied on the diagonal of DDN with any size. The time
complexity is 2

�
log5 � n

h � � � Ts � �mTc 
 , where �m � s
h m.

3.2.2. Step 2: Broadcast Operation

Now every node in diagonal of each DDN contains same
broadcast message. The next step is to perform the dilated-
diagonal broadcasting algorithm [9] on each DDN in par-
allel. The main diagonal D

�
P0 � 0 	 � n

h � 
 has own all source
packets data, and the broadcasting is based on a recursive
structure. The main diagonal will send messages to four di-

agonal and let them also have the same messages. That is,
each node of main diagonal sends messages to four neigh-
bor diagonal nodes. Therefore, The time complexity of
broadcast phase is � log5 � n

h � � �
Ts � �mTc 
 , where �m � s

h m.

3.2.2. Step 3: Data Collection Operation

Each data collecting network (which is an h � h mesh),
the diagonal nodes have received packets (M0 	 M1, ����� ,
Mh � 1). Every packet contains whole DCN messages. Each
packet (M0 	 M1,..., Mh � 1) have messages. These messages
should be propagated to every node of the DCN. This is im-
plemented in two stages: row broadcasting followed by
column broadcasting.

The row broadcasting stage can be done by applying a re-
cursive scheme. We evenly partition DCN into three parts.
The node who is located in diagonal send its own messages
to two nodes which located in trisection part of row of the
DCN and recursive propagate to sub-trisection until the dis-
tance is one. This take

�
log3 h � communication phases and

incurs cost

T1 � �
log3 h � � Ts � �mTc 
 �

Every node collects the partial messages from the row
broadcasting stage. The messages are belong its column
nodes, every node will concurrence send separate message
to other nodes with pipelined scheme. We first embed a
logical (directed) ring on each column of the DCN. This is
done by first visiting even nodes downward the column and
then odd nodes upward the column. This gives a dilation-2
embedding. With this embedding, every node then pipelines
propagate its own message following the ring of the h � h
DCN. The column broadcasting stage runs within

T2 � �
h � 1 
 � Ts � �mTc 
 �

Summing T1 and T2, time complexity of data collecting
operation is

T � T1 � T2 � � �
log3 h � � h � 1 
 � Ts � �mTc 
 	 where �m � s

h
m �

4. Performance Analysis

Now we discuss performance analysis and comparison
under two strategies. One is our proposed aggregation-
then-distribution strategy. Another one is the well
known result of edge-disjoint-spanning-trees-based ap-
proach [8][10][12].

Lemma 2 The aggregation phase can be executed in a Tn � n

torus within

O
� �

4
�
log5 n � � 3

�
log5 h � � 2

�
log5

n
h
� 
 Ts

�
� �

2
�
log5 h � � 5

�
log5 h � � 1

4 
 m � �
4
�
log5 n � � 2

�
log5

n
h
� 
��
Tc 




Table 1: The comparsion table.
Strategy Start-up comp. Trans. comp.

EDSTs [12] O � 2 � n
2 � Ts � O � 2 � n

2 ��� sm
4 Tc �

Ours O � max ��� log5 n 	�
 h � Ts � O � max ��� log5 
 n
h � 	�
 h � s

h mTc �
, where m is one unit message size.

Lemma 3 The distribution phase can be executed in a Tn � n

torus within

O
� �

4 � log5 � nh ��� � �
log3 h � � h � 1 
 Ts

� �
4 � log5 � nh ��� � �

log3 h � � h � 1 
 �mTc 

, where �m � s

h m.

Theorem 1 The multi-node broadcasting algorithm with
aggregation-then-distribution strategy can be executed in a
Tn � n torus within

O
���

log5 n � Ts � max
� � log5 � nh ��� 	 h 
 �mTc 


, where �m � s
h m and m is one unit message size.

Notably, four edge disjoint spanning trees can be con-
structed in a 2-D tori Tn � n [1], where height of spanning tree
is D+2 and D=2 � n

2 � is the diameter in Tn � n. The time com-
plexity of multi-node broadcasting in 2-D tori using edge-
disjoint spanning trees based approach is O

� � n
2 � Ts � �

2 � n
2 ���

sm
4 
 Tc 
 illustrated in Table 1. Table 1 illustrates that multi-

node broadcasting using aggregation-then-distributionstrat-
egy is more efficient than multi-node broadcasting using
edge-disjoint spanning trees-based approach. The over-
all communication latency is depended on the transmission
complexity. Observe that the transmission complexity of
our scheme is O

� �
log5 � n

h � � s
h mTc 
 � The transmission com-

plexity of our scheme is better than the edge-disjoint span-
ning trees-based approach owing to O

���
log5 � n

h � � s
h mTc 
��

O
�
2 � n

2 ��� sm
4 
 Tc 
 . As a result, the multi-node broadcast-

ing using the aggregation-then-distribution strategy is truly
efficient than multi-node broadcasting using edge-disjoint-
spanning-trees-based approach.

5. Conclusions

In this paper, we have shown how to solve the multi-node
broadcast problem in a 2-D torus using an aggregation-
then-distribution strategy. The underlying assumptions are
wormhole and dimension-ordered routing, which are cur-
rently used. The main technique is to partition the torus
into a certain number of independent subnetworks. Timing
analyses have shown that this scheme is promising. Work is
currently underway to develop multi-node broadcasting of
personalized messages and to extend to higher dimensional
tori and other networks.

References

[1] M. Cosnard and D. Trystram. Parallel algorithms and Ar-
chitectures. Thomaon Computer Press, Boston MA 02116,
1995.

[2] S. E. Hambrusch, A. A. Khokhar, and Y. Lin. Scalable s-to-p
broadcasting on message-passing mpps. IEEE Transactions
on Parallel and Distributed Systems, 9(8):758–768, August
1998.

[3] R. Kesavan and D. K. Panda. Multiple multicast with
minimized node contention on wormhole k-ary n-cube net-
works. IEEE Transactions on Parallel and Distributed Sys-
tems, 10(4):371–393, 1999.

[4] F. T. Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays-Trees-Hypercubes. Morgan Kaufmann
Publishers, San Mateo, California, 1992.

[5] D. F. Robinson, P. K. McKinley, and B. H. Cheng. Opti-
mal multicast communication in wormhole-routed torus net-
works. IEEE Transactions on Parallel and Distributed Sys-
tems, 6(10):1029–1042, October 1995.

[6] Y. Saad and M. Schultz. Data communication in hypercubes.
Journal of Parallel and Distributed Computing, 6(1):115–
135, February 1989.

[7] Y. Saad and M. Schultz. Data communication in parallel ar-
chitectures. Parallel Computing, 11:131–150, 1989.

[8] George D. Stamoulis and John N. Tsitsiklis. An efficient
algorithm for multiple simultaneous broadcasts in the hyper-
cube. Information Processing Letter, 46:219–224, July 1989.

[9] Y. C. Tseng. A dilated-diagonal-based scheme for broadcast
in a wormhole-routed 2d torus. IEEE Transactions on Com-
puters, 46(8):947–952, August 1997.

[10] Y. C. Tseng. Multi-node broadcasting in hypercubes and
star graph. Journal of Information Science and Engineering,
14(4):809–820, 1998.

[11] Y. C. Tseng, S. Y. Wang, and C. W. Ho. Efficient broad-
casting in wormhole-routed multicomputers: A network-
partitioning approach. IEEE Transactions on Parallel and
Distributed Systems, 10(1):44–61, January 1999.

[12] E. A. Varvarigos and D. P. Bertsekas. Pratial multinode
broadcast and partial exchange algorithms for d-dimension
meshes. Journal of Parallel and Distributed Computing,
23:177–189, 1994.


