Efficient Total-Exchange in Wormhole-Routed
Toroidal Cubes

Fabrizio Petrini*
Scientific Computing Group (CIC-19), MS B256
Los Alamos National Laboratory
Los Alamos, NM 87545 — USA

e-mail: fabrizio@lanl.gov

June 2, 1999

Abstract

The total-exchange is one of the most dense communication patterns
and is at the heart of numerous applications and programming models
in parallel computing. In this paper we present a simple randomized
algorithm to efficiently schedule the total-exchange on a toroidal mesh with
wormbhole switching. This algorithm is based on an important property of
the wormhole networks that reach high performance under uniform traffic

using adaptive routing.

*The work was supported by the U.S. Department of Energy through Los Alamos National
Laboratory contract W-7405-ENG-36

The experimental results, conducted on a 256 nodes bi-dimensional
torus, show that this algorithm reaches a very high level of performance,
around 90% of the optimal bound, and is more efficient than other algo-

rithms presented in the literature.

Keywords. Total-Exchange, Personalized Communication, Interconnection

Networks, Wormhole Routing, Collective Communication Patterns

1 Introduction

Communication between nodes in a parallel machine can generally be described
as z-to-y communication where x and y can be substituted by one, all and many.
Communication implies nodes sending and receiving messages: = being one, all
and many respectively, indicates that only one of the nodes, that all nodes, and
that only some nodes send data. Similarly, y being one, all and many indicates
that from each of the senders one, all and many nodes receive data respectively.
Communication can be further distinguished as a broadcast/accumulation or as
a personalized communication. For example, one-to-all communication could be
either a one-to-all broadcast (single-node broadcast) where a single node sends
out the same message to all nodes, or a one-to-all personalized communication
(single-node scatter) where a single node sends out different messages to each
node. Communication with multiple senders and multiple receivers is also re-
ferred as collective communication. The nature of the messages to be sent can
be also classified as personalized or non-personalized. The all-to-all personalized
communication, or simply total-exchange, is an important communication pat-
tern that is at the heart of many applications, such as matrix transposition and

the fast Fourier transform (FFT), and programming models as the BSP [23].

The total-exchange is a collective communication pattern where every node has
to send a distinct message to any other node. The efficient implementation of
the total-exchange has been extensively studied in a variety of networks [15] [2]
[14] [24] [25] [21]. These studies were motivated by several applications in the
field of scientific computing [18].

Wormbhole switching has been adopted by many new-generation parallel com-
puters, such as the Intel Touchstone Delta, Intel Paragon, MIT J-Machine, Stan-
ford Flash and the Cray T3D and T3E. In such networks, a packet is partitioned
in a sequence of elementary units called flits, which are sent in a worm-like or
pipelined manner. Network throughput of wormhole networks can be increased
by organizing the flit buffers associated with each physical channel into several
virtual channels [4]. These virtual channels are allocated independently to dif-
ferent packets and compete with each other for the physical bandwidth. This
decoupling allows active messages to pass blocked messages using network band-
width that would otherwise be wasted.

In this paper we present a simple and innovative random algorithm to sched-
ule the total-exchange on a wormhole-routed toroidal mesh. Most of the litera-
ture that deals with the total-exchange tends to strictly divide the transmission
in phases that proceed in lockstep. These algorithms often neglect important
aspects of the interconnection network, as the deadlock avoidance policy or the
nondeterminism of the routers when they have to route several packets. These
characteristics often break the symmetries and the regular structure of many
total-exchange algorithms, that are, therefore, not very robust in practice.

Our work is motivated by the fact that wormhole networks can reach a high
throughput under uniform random traffic if packets are routed adaptively and

if the packet size is properly chosen [11]. For this reason we adopt a random-

ized strategy that reproduces a uniform random traffic inside the network. The
experimental results, conducted on a bi-dimensional torus with 256 nodes us-
ing a detailed simulation model show that it is possible to achieve a network
throughput that is very close to optimality.

The rest of this paper is organized as follows. Section 2 provides some back-
ground information on how flow control is performed in high performance system
area networks. Section 3 describes the two routing algorithms for the class of k-
ary n-cubes, deterministic and minimal adaptive based on Duato’s methodology,
that we consider in our study. Section 4 reviews some total-exchange algorithms
presented in the literature and Section 5 motivates and describes our randomized
algorithm. The relevant details of the simulation models used in the experimen-
tal evaluation are shown in Section 6 and the performance results, conducted on
a bi-dimensional torus with 256 nodes, are shown in Section 7. Finally, some

concluding remarks are in given in Section 8.

2 Flow Control in High Performance Networks

When communication is performed without waiting for the path setup to be
complete, as in packet switching, a packet may block within the network as a
result of network congestion. Flow control has to regulate the movement of
packets from node to node so as to utilize the network resources, buffers and
communication channels, as efficiently as possible.

A simple approach to implement network flow control is store and forward.
In this method, the entire packet (message) is buffered at each intermediate
node and forwarded to the next node in its path as soon as the desired outgoing

link becomes available. This switching strategy was adopted in early prototypes

and commercial machines including the iPSC/1, nCUBE-1 and those based on
the Transputers T414 and T800. Store and forward flow control is simple but
has some drawbacks. First, each node must buffer every incoming packet, using
memory space. Second (and more important), the network latency is propor-
tional to the distance between the source and destination nodes. The network
latency is, in the absence of contention, (L/B)D, where L is the packet length,
B is the channel bandwidth, and D is the length of the path between the two
nodes.

An improvement over the store and forward approach, called wvirtual cut
through, avoids this problem by buffering a packet only when it encounters a
busy link [17]. Cut through routing was used in the torus routing chip imple-
mented at Caltech [6].

Buffering can be reduced to a minimum if the blocked packet can stay in
multiple nodes along the path, holding the links between them. The wormhole
approach is based on this idea [7]. A packet is divided in flits (flow control digits)
for transmission. The header flit forces the route. As the header advances, the
remaining flits follow in a pipeline fashion. If the header finds a link already
in use, it is blocked until the link becomes available. The network latency for
wormhole, again, in the absence of contention, is (Ly/B)D + L/B, where Ly is
the length of each flit, B is the channel bandwidth, and L is the length of the
message. If L > Ly, the path length will not significantly affect the network
latency unless D it is very large. For low to moderate traffic, wormhole flow
control outperforms store and forward. On the other hand, wormhole can easily
introduce deadlocks by causing cyclic dependencies in the resources allocation
if the path selection and the link allocation are not performed carefully. The

first prototype that adopted wormhole flow control was the Ametek 2010, which

used a two dimensional mesh topology. The Intel Touchstone Delta and Intel
Paragon, the MIT’s J-machine, the CMU iWarp, the Transputer T9000, the
Meiko CS-2 and both Cray T3D and T3E, the SGI 2000 use wormhole in their
communication building blocks too.

The mostly used approach to deadlock avoidance in wormhole routing con-
sists in splitting the physical channels into virtual channels. This is obtained
by multiplexing a number of virtual channels onto the same physical channel on
demand. Each virtual channel is provided with its own data structures. Dead-
lock is prevented by constraining the allocation of the virtual channels. Through
virtual channels, a physical network can be partitioned into disjoint logical net-
works, facilitating the implementation of adaptive routing algorithms. Also,
virtual channels are useful for many other reasons. By increasing the logical de-
gree of connectivity in the network they facilitate the mapping of applications in
which processes communicate according to another logical topology. They also
increase the network performance at high traffic loads.

Some intuition on how wormhole flow control is performed is given in Figure
1. Each packet is fragmented in elementary units, called flits, and these flits are
propagated in a pipeline fashion from the router P; to router Pj. If the header
flit is halted by local congestion on router P,, the communication bandwidth
along the path occupied by the packet can be utilized by another packet, that
can be transmitted along the routers P, P and P; when the previous packet is

blocked.

Wormhole
P, P, P, P,

Virtual Channels

-

Figure 1: Wormhole flow control and virtual channels.

"
"
"

us

1
L
1
L
1
L
1

L L L ql_]j
1
L
1
L
1
L
1

]
]
]
[
J T T

1 1

WEUEY

3
g,

Figure 2: A 5-ary 2-cube.

3 Routing on the k-ary n-cubes

The toroidal meshes belong to the general class of the k-ary n-cube networks
[3]. A k-ary n-cube is characterized by its dimension n and radix &, and has a
total of k™ nodes. The k™ nodes are organized in an n-dimensional mesh, with
k nodes in each dimension and wrap-around connections on the borders. The
binary hypercube is a special case of k-ary n-cube with £ = 2. Also, the two
dimensional mesh is another special case with n = 2. Figure 2 shows an example
of k-ary n-cube.

Routing algorithms on the toroidal k-ary m-cubes are deadlock-prone and
require sophisticated strategies for deadlock-avoidance. In this paper we utilize
two algorithms, each offering a different degree of adaptivity: a deterministic
algorithm and minimal adaptive algorithm based on Duato’s methodology [8]
[10].

The deterministic algorithm is a dimension order routing based on a static
channel dependency graph [7]. Packets are sent to their destination along a
unique minimal path, traversing the network dimensions in increasing order. The
potential deadlocks caused by the wrap-around connections are avoided doubling
the number of virtual channels and creating two distinct virtual networks. Pack-
ets enter the first virtual network and switch to the second one upon crossing a
wrap-around connection. Our version uses four virtual channels for each physical
link.

Rather than using a static channel dependency graph, Duato’s methodology
only requires the absence of cyclic dependencies on a connected channel subset.
The remaining channels can be used in almost any way. We associate four vir-

tual channels to each link: on two of these channels, called adaptive channels,

packets are routed along any minimal path between source and destination. The
remaining two channels are escape channels where packets are routed determin-
istically when the adaptive choice is limited by network contention [9]. A similar
algorithm has been recently adopted by the Cray T3E [22].

A central point of our adaptive algorithm is the interface between the proces-
sor and the router. We assume that packets can enter the network using only a
subset of the adaptive channels [19]. This limitation, known as source throttling,
makes the network throughput stable when the network operates above satura-

tion [5], which is the typical case when we execute a total-exchange algorithm.

4 Total-exchange algorithms

The algorithms that can be used to implement the total-exchange on a given

network can be roughly classified into two classes:

e direct algorithms, in which data are sent directly from source to destination

and

e indirect algorithms, in which data are sent from source to destination

through one or more intermediate nodes.

The best direct algorithm for a hypercube architecture is the pairwise ex-
change algorithm, described in [15], as it guarantees no link contention at every
step. This algorithm has also been shown to perform well on the fat tree ar-
chitecture of the CM-5 [13]. It requires N — 1 steps, where N is the number of
nodes, and the communication schedule is as follows. In step i, 1 <7 < N — 1,
each node exchanges data with the node determined by taking the exclusive-or

of its number with ¢. Therefore, this algorithm has the property that the entire

9

communication pattern is decomposed into a sequence of pairwise exchanges.
This algorithm generates conflicts on the two-dimensional meshes and tori and
the maximum number of packets contending for a link at any step is limited by
k/2 and k/4, respectively.

An algorithm that works for non power-of-two cubes is the shift exchange,
and requires only N — 1 steps for any value of N. In this algorithm node pairs
do not exchange messages with each other. Instead, at step ¢, a node j sends
data to node (7 + j) mod N and receives data from node (N + j — 7) mod N.

In [25] it is shown an algorithm for wormhole-routed k-ary n-cubes that di-
vides the transmission in a number of congestion-free phases. This algorithm
uses an optimal number of phases if the arity of the cube is a multiple of eight
or an asymptotically optimal number otherwise. It assumes that phases can be
strictly routed in lockstep, a condition that cannot be easily achieved in a dis-
tributed environment. Also, the messages must be long enough to hide the initial
delay of the potentially asymmetric message transmission in each phase.

In indirect algorithms a message is sent from the source node to the desti-
nation through one or more intermediate nodes. The indirect pairwise exchange
algorithm [24] aims at reducing the the link contention of the pairwise exchange
algorithm on the two-dimensional cubes. In this algorithm each node communi-
cates only with the nodes in its row and column. Each exchange along a row is
followed by a complete exchange along a column. Given L the message size in
bytes, during the row exchange each node sends Lk bytes of data to the destina-
tion node, out of which L(k — 1) bytes are intended for other nodes in the same
column as the destination node. This is followed by a complete exchange along
the columns (involving messages of L bytes), in which data received during the

row exchange is sent to the appropriate nodes in the same column. This opera-

10

tion requires k(k — 1) steps. Finally, an additional complete exchange is required
along the columns for nodes to exchange their own data directly with nodes in

the same columns.

5 A randomized total-exchange algorithm

The total-exchange in the k-ary n-cubes, as the uniform random traffic, is limited
by the network bisection. The network capacity can be determined by considering
that 50% of the traffic crosses the bisection of the network. Thus if a network
has bisection bandwidth B, each of the N nodes can inject 2B/N traffic at the
maximum load.

Our algorithm is based on an important property of the wormhole routed
networks. In Figure we can see the saturation points, under uniform traffic,
of a 256 nodes bi-dimensional torus, using the deterministic algorithm and the

Duato’s algorithm. The flit size is four bytes.

Throughput vs. packet size (Uniform traffic)
T T

" deterministic ——

Duato ——x-—

ool T

Fraction of capacity

4 8 16 32 64 128 256 512 1024
Packet size (bytes)

Figure 3: Network throughput varying the packet size.

We can see that the network throughput is very sensitive to the packet size.

11

Both algorithms prefer short packets. The adaptive algorithm reaches about 90%
of the optimal performance with packets between eight and 32 bytes. The same
happens for the deterministic algorithm. In this case we the have maximum
throughput, around 80%, with eight bytes. Short packets reduce the network
contention and increase the overall throughput. On the other hand, the injection
and reception overhead of the processing nodes often suggests the use of larger
packets.

While this property is well known in the wormhole routing community, it has
not still been exploited to schedule collective communication patterns. A viable
solution to implement the total-exchange is to synthetically reproduce inside the
network a uniform random traffic, by properly choosing the packet size.

Starting from this observation, we propose a simple randomized algorithm to
implement the total-exchange. In outline, given m the grain size of the total-
exchange (i.e. the amount of information exchanged between any pair of nodes)
and p the packet size, both expressed in bytes, we can logically schedule the

transmission in [7] steps. In each step 4, ¢ € {0,...,[}] — 1}:

1. each node j generates an independent permutation II; ; of the remaining

N — 1 nodes
2. and send the packets following the order suggested by the permutation.

Even if we have a sequence of steps, strict synchronization between processing
nodes is not required, i. e. the processing nodes can proceed autonomously after
the beginning of the communication pattern. This algorithm can be considered
as complementary to the other algorithms in the literature, because it replaces
a deterministic scheduling with a random scheduling. The nodes can proceed

autonomously until the completion of the communication pattern.

12

6 Relevant details of the network model

This section presents a router model and a simulation environment, that are used

in the following sections to analyze the performance of the exchange algorithms.

From processor To processor
=T =0
ack ack
ST LD =\,
O] — ... | ... — 211
_ready | N [Tt ready
ack CROSSBAR ack
ST LD =\,
1 —are = 1
ready | N\ [Tt ready
ack ack
D (=T — O R
0 = lll I 0
ready | NI [T ready

Figure 4: The internal structure of a routing switch.

Figure 4 outlines the internal structure of a routing switch. We can distin-
guish the external channels or links, the input and the output buffers or lanes
that implement the buffer space of the virtual channels and an internal crossbar.
The switch has bidirectional channels and each channel on the single direction
is logically composed of three interfaces: a data path that transmits messages
on a flit level, the ready lines that flag the presence of a flit on the data path
and specify the virtual channel where the flit is to be stored and the ack lines
in the reverse direction that send an acknowledgment every time buffer space is
released in the input lanes. The processing nodes have a compatible interface
with the same number of virtual channels.

A flit is moved from an output lane to the corresponding input lane in a

13

neighboring node in Tj;,; cycles, when there is at least a free buffer position.
Each output lane has associated a counter that is initialized with the total num-
ber of buffers in the input lane, it is decremented after sending a flit and it
is incremented upon receiving and acknowledgment. When multiple lanes are
enabled, an arbiter picks one of them according to a fair policy.

When a header flit reaches the top of an input lane, the routing algorithm
tries to establish a path in the crossbar with a suitable output lane, that is
neither full nor bound to another input lane. This path will remain in action till
the transmission of the tail flit of the packet. Our model allows the routing of a
single header at a time every T,uting Cycles.

Although a physical link services in each direction at most one virtual channel
every Tj,r cycles, multiple virtual channels can be active at the input and output
ports of the crossbar. The internal flit propagation takes Ti,osspar Cycles. Every
time a flit is moved from an input lane to the corresponding output lane, a
feedback is sent back to the neighboring switch or node to update the counter
of free positions. In our experiments the three delays are equalized to a single
clock cycle for both the deterministic and the minimal adaptive algorithm.

It is worth noting that the serial routing of the headers, the link arbitration
and the deadlock avoidance strategies, typical characteristics of state-of-the-art
routers, can break the symmetries present in a collective communication pattern.
These important characteristics are often neglected in the performance analysis
of the total-exchange algorithms. On the other hand, the network behavior under
uniform random traffic pattern, shown in section 5, is not sensitive to these low-
level aspects.

This model is evaluated in the SMART (Simulator of Massive ARchitec-
tures and Topologies) environment [20]. Implemented in C++, SMART is an

14

object-oriented discrete-event simulation tool for evaluating massively parallel
architectures. Configuring some shell scripts, it is possible to select the network
topology and the internal router policies. The simulator allows the definition
of the packet length, number of virtual channels and buffers for both input and
output lanes. Also, it is possible to monitor several metrics and time-dependent

events, that are gathered in trace files.

7 Experimental results

We have implemented four total-exchange algorithms in the SMART simulation
environment. They are the shift exchange, the pairwise exchange, the indirect
pairwise exchange and our randomized algorithm. Figure 5 shows the perfor-
mance of these algorithms on a 256 nodes bi-dimensional torus using the de-
terministic and the Duato’s algorithms. We use two graphs for each routing
algorithm. On the first one we show the execution time of the total-exchange
algorithms and on the second graph we relate the throughput achieved at the
end of the total-exchange with the bisection bandwidth. In all the graphs the
input size on the x-axis represents the grain size, in bytes, of the information
exchanged between any pairs of nodes. So, in order to obtain the global size
of information exchanged we have to multiply for the square of the number of
nodes. The graphs in Figure 5 a) and ¢) report a lower bound, that is computed
by considering the usual topological limitation of the bisection bandwidth. In
fact, half of the packets have to cross the network bisection.

For small message sizes, when we use the deterministic routing, the random
exchange provides the best performance. For messages larger than 16 bytes, the

random and the pairwise exchange have a similar performance. The shift and

15

the indirect pairwise are not efficient. The shift exchange generates a type of
non-uniform traffic that is not handled properly. For the indirect pairwise the
loss of performance is caused by the larger packet size in the row exchange. In
fact the saturation throughput decreases when we increase the packet size, as
can be seen in Figure 5 b).

Things change when we use the Duato’s algorithm. There is a gap between
the randomized algorithm, that is very close to optimality with 16 and 32 bytes
and the other algorithms. In Figure 5 d) we can see that the fraction of network
throughput achieved at completion of the total-exchange is around 90% with
medium sized packets. The performance of the other algorithms is between 30%
and 45%.

Figure 6 provides more insight on the characteristics of the routing algo-
rithms. It shows the network utilization, i. e. the fraction of active links, during
the execution of the four total-exchange algorithms. The toroidal cube has the
property that with the total-exchange (and uniform traffic in general) all the
links are active when the network operates at capacity. In fact, all the 2k™ !
links of the bisection are active on both directions. Assuming that messages are
long enough, each message occupies on the average a number of links equal to
the average distance d,,,. Thus the number of active links (in the single direction)

Links is

Links = 8d, k™ = 2nk™ (1)

that is exactly the number of links in the networks, because each node has 2n
outgoing unidirectional links. From this result follows that network utilization
and network throughput are strongly related.

The network utilization of the shift exchange algorithm, shown in Figure 6 a),

16

Execution time vs. input size (deterministic;

Network throu

ghput vs. input size (deterministic)

131072 T T T T 0.7 T T T
—+— Shift . Shift ——
65536 | 1 Ranise 0.65 |) Raise T
e~ Indirect Pairwise Indirect Pairwise @
& 32768 [~vo- Lower bound)
2 - =
2 16384 J El
Y g
Q o
g 8192 B 5
5 s
§ 4096 1 §
L [
u 2048 1
1024 4
512 e 0.25
a) 4 8 16 32 64 128 256 b) 4 8 16 32 64 128 256
Input size (bytes) Input size (bytes)
xecution time vs. input size (Duato; etwork throughput vs. input size (Duato,
E tion ti i t si Duat Network th hput i t si Duat
131072 — " . . 1 -
—+— Shift Shift ——
e pairwi Pairmise —v
65536 | . Random 09 ¢ e e, Random - |
= |ndirect Pairwise " Indirect Pairwise -2
& 32768 | ~v- Lower bound 08 b T 4
£ 2 .
S 16384 S o7l . |
[=3 .
@ o
£ s 5 0.6 1
5 s
3 4096 §
] [
w 2048
1024
512

c)

128 256

6 32 64
Input size (bytes)

d)

Figure 5: Execution time and fraction of the network capacity achieved at com-

pletion of the total-exchange.

17

Shift exchange

.
10000
Time (cycles)

15000

Random exchaﬁge E—

0.7
c
o
T
N
5
<
o
2
L5
4

0

a °

1
c
=3
T
N
5
<
o
2
[}
=z

0

c °

Figure

rithms

3000 4000

2000
Time (cycles)

1000

6: Network utilization during the execution of the four exchange algo-

Network utilization

b)

Network utilization

0.7

0.6

0.5

0.4

0.3

0.1

0.6

0.5

0.4

0.3

0.2

Time (cycles)

with the Duato’s routing. The packet size is 32 bytes.

18

' ' Pairwise exchangé
0 2000 4000 6000 8000
Time (cycles)
Indirect paim}ise exchanée ' '
0 2000 4000 6000 8000 10000

alternates spikes that reach 60% with periods that fall down to 20%. The same
problem exists in the initial part of the indirect pairwise algorithm. In the final
part, after 7000 cycles, the communication is concentrated along the columns,
using only half of the links and the network utilization converges to 45%. The
pairwise exchange reduces the execution time if compared to the previous two
algorithms, even if the network utilization still oscillates between 70% and 35%.

The near-optimal performance of the randomized algorithm can be explained
looking at Figure 6 ¢). This algorithm exploits some basic characteristics of the
uniformly distributed traffic with fixed packet size. When the grain size is 32
bytes,

1. the network reaches the steady state of 90% active links after very few

cycles (just 25 cycles in the example);

2. once in the steady state, the network utilization and throughput are stable
with small fluctuations (less than 2%): a high percentage of links are used

in a profitable way;

3. at the end of the steady state packets are consumed by the network in a

short period (400 cycles).

When the grain size is larger that 32 bytes, we can organize the exchange
algorithm in a sequence of sweeps, each using the smaller grain size and another
independent permutation. We pay the inefficiency of the initial and final pe-
riods just once, achieving 90% of the throughput. The execution time can be
easily estimated by dividing the total amount of information for the steady state
bandwidth. The optimal packet size is a peculiar characteristic of the routing
algorithm in use. For example the deterministic and the Duato’s algorithms pre-

fer short packets, while the Chaos routing, a non minimal cut-through variant of

19

the hot-potato routing not shown here for brevity, works well with larger packets
[1].

The other algorithms, that impose a deterministic scheduling, clashes against
the flow control characteristics and the router internal organization and are not
very robust in practice.

These results suggest a methodology to implement all the algorithms where
each node sends and receives the same amount of information on the cubes:
rather than scheduling in detail the communication pattern, we can look at the
problem from the flow control point of view. Each routing algorithm has a par-
ticular fingerprint in terms of network throughput with uniform traffic which
tells us the maximum throughput that can be achieved for any packet size. By
properly choosing a convenient size and by randomizing the message transmis-
sion we can exploit the network performance in a simple, efficient, robust and

predictable way.

8 Conclusion

Many studies in the literature use a deterministic approach to structure global
communication patterns [12] [16]. These studies often neglect low level aspects,
as deadlock avoidance and flow control, that are very important to achieve good
performance. They often are not very robust in practice, e. g. because the
processing nodes loose synchronization.

We have shown that a simple randomized algorithm that exploits the low
level communication characteristics of the interconnection network can be more
efficient and robust than the traditional approaches on the toroidal cube. This

algorithm utilizes an interesting, and not previously used, property of the inter-

20

connection network that, with the uniform traffic,
e reaches a steady state after few cycles (about 25),

e can get a stable and high throughput (90% of the capacity) in the steady
state, with oscillations in the network utilization/throughput that are less

than 2%,

e and is drained in few hundred cycles at the end of the communication

pattern.

This scheme has several interesting features. First, it is very simple and
requires no additional hardware to synchronize the processing nodes. It also ex-
ploits the characteristics of adaptive routing, which will eventually replace the
deterministic routers that are currently in use in many existing multicomput-
ers. Finally, it paves the way to a new strategy to efficiently implement dense
collective communication pattern other that the total-exchange, as broadcast or

personalized communication.

References

[1] Kevin Bolding. Chaotic Routing: Design and Implementation of an Adaptive Multicom-
puter Network Router. PhD thesis, University of Washington, Department of Computer
Science and Engineering, Seattle, WA, July 1993.

[2] J. Bruck, C. T. Ho, S. Kipnis, and D. Weathersby. Efficient Algorithms for All-to-All
Communications in Multi-Port Message-Passing Systems. In Proceedings of the 6th ACM
Symposium on Parallel Architectures and Algorithms, pages 298-309, 1994.

[3] William J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks. IEEE
Transactions on Computers, 39(6):775-785, June 1990.

21

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

William J. Dally. Virtual Channel Flow Control. IEEE Transactions on Parallel and
Distributed Systems, 3(2):194-205, March 1992.

William J. Dally and Hiromichi Aoki. Deadlock-Free Adaptive Routing in Multicom-
puter Networks Using Virtual Channels. IEEE Transactions on Parallel and Distributed
Systems, 4(4):466-475, April 1993.

William J. Dally and Charles L. Seitz. The Torus Routing Chip. Distributed Computing,
1:187-196, 1986.

William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Transactions on Computers, C-36(5):547-553, May 1987.

José Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks.
IEEF Transactions on Parallel and Distributed Systems, 4(12):1320-1331, December 1993.

José Duato. A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing
in Wormhole Networks. In International Conference on Parallel Processing, volume I -

Architecture, pages 1-142-1-149, 1994.

José Duato. A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing in
Wormhole Networks. IEEE Transactions on Parallel and Distributed Systems, 6(10):1055—
1067, October 1995.

José Duato and Pedro Lépez. Performance Evaluation of Adaptive Routing Algorithms
for k-ary n-cubes. In Kevin Bolding and Lawrence Snyder, editors, First International
Workshop, PCRCW’94, volume 853 of LNCS, pages 45-59, Seattle, Washington, USA,
May 1994.

Pierre Fraigniaud and Joseph G. Peters. Structured Communication in Torus Networks.

In Proceedings of the 28th Hawaii Conference on System Science, 1995.

Steve Heller. Congestion-Free Routing on the CM-5 Data Router. In Kevin Bolding
and Lawrence Snyder, editors, First International Workshop, PCRCW’94, volume 853 of
LNCS, pages 176-184, Seattle, Washington, USA, May 1994.

S. Hinrichs, C. Kosak, D O’Hallaron, T. M. Stricker, and R. Take. An Architecture for
All-to-All Personalized Communication. In Proceedings of the 6th ACM Symposium on
Parallel Architectures and Algorithms, pages 310-319, 1994.

22

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. L. Johnsson and C. T. Ho. Optimal Broadcsting and Personalized Communication in

Hypercubes. IEEE Transactions on Computers, 38:1249-1268, 1989.

Ben H. H. Juurlink, P. S. Rao, and Jop F. Sibeyn. Worm-Hole Gossiping on Meshes.
In Second International Furo-Par Conference, Volume I, number 1123 in LNCS, pages

361-369, Lyon, France, August 1996.

P. Kermani and L. Kleinrock. A Tradeoff Study of Switching Systems in Computer Com-
munication Networks. IEEE Transactions on Computers, C-29(12):1052-1060, December
1980.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, USA, 1992.

Fabrizio Petrini and Marco Vanneschi. Minimal Adaptive Routing with Limited Injection

on Toroidal k-ary n-cubes. In Supercomputing 96, Pittsburgh, PA, November 1996.

Fabrizio Petrini and Marco Vanneschi. SMART: a Simulator of Massive ARchitectures
and Topologies. In International Conference on Parallel and Distributed Systems Euro-

PDS’97, Barcelona, Spain, June 1997.

Satish Rao, Torsten Suel, Thanasis Tsantilas, and Mark Goudreau. Efficient Communi-
cation Using Total-Exchange. In Proceedings of the 9th International Parallel Processing

Symposium, IPPS’95, Santa Barbara, CA, April 1995.

Steven L. Scott and Gregory M. Thorson. The Cray T3E Network: Adaptive Routing
in a High Performance 3D Torus. In HOT Interconnects IV, Stanford University, August
1996.

D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Journal of Scientific Programming, 1998.

Rajeev Thakur and Alok Choudary. All-to-All Communication on Meshes with Wormhole
Routing. In Proceedings of the 8th International Parallel Processing Symposium, IPPS’9/,
pages 561-565, Cancun, Mexico, April 1994.

Yu-Chee Tseng and Sandeep K. S. Gupta. All-to-All Personalized Communication in
a Wormhole-Routed Torus. IEEFE Transactions on Parallel and Distributed Systems,
7(5):498-505, May 1996.

23

