
A Fast, Simple Router for the Data-Intensive Architecture (DIVA) System

Chang Woo Kang and Jeffrey Draper
USC-Information Sciences Institute

4676 Admiralty Way
Marina Del Rey, CA 95292 USA

Abstract—Thispaper presents a fast, simple router design for
implementing the Red Rover algorithm for a bidirectional ring.
This design is very suitable for the Data-Intensive Architecture
(DIVA) system, a system which demonstrates the benefits of em-
bedded DRAM technology, because of its high performance as
well as simple architecture and low cost. The key attributes of this
router are one clock node-to-node latency, high channel through-
put, and simple hardware implementation. The router architec-
ture employs short-cut FIFO data paths, which makes the router
speed independent of the channel buffer size (in terms of flits).
A prototype implementation of the router achieves a maximum
channel bandwidth of 5.12 Gb/s and runs at 80 MHz using 3.3V
CMOS signaling in 0:5�m technology. This high throughput and
low latency were achieved without resorting to the use of complex
high-speed signaling technologies.

I. I NTRODUCTION

Embedded DRAM technology is growing in popularity, as it
appears to be a promising solution to the increasing gap be-
tween processor and memory speeds [6]. Integrating proces-
sor logic and memory in processing-in-memory (PIM) chips
offers dramatically increased memory bandwidths (up to 2 or-
ders of magnitude) over conventional systems. Furthermore,
memory latency is also reduced because internal memory ac-
cesses avoid the delays associated with communicating off
chip. The Data-Intensive Architecture (DIVA) system aims to
exploit this technology by combining PIM devices with one
or more external host processors and a PIM-to-PIM intercon-
nect [9]. The DIVA system design imposes a unique set of
requirements on the PIM-to-PIM interconnect. PIM chips will
be physically grouped as conventional memory chips, mounted
on DIMM modules. The number of PIM chips in a hosted
cluster is therefore in the range of 32 to 64 chips, depending
on how many PIM chips can be packed onto a DIMM mod-
ule. The PIM-to-PIM interconnect must then be amenable to
the dense packing requirement of DIMM modules. Low la-
tency and high throughput are also desirable properties of this
interconnect. Furthermore, this network must be scalable to al-
low the addition or removal of modules. This combination of
requirements favors a one-dimensional network. Recently im-
plemented routers such as SGI SPIDER [5] and the Cray T3E
network router [8] are not suitable to be embedded in PIM de-
vices because of complexity and size. The resulting PIM Rout-

ing Component (PiRC) is a one-dimensional wormhole router
which implements the Red Rover routing algorithm to effect
deadlock-free routing in bidirectional rings [1], [3]. The Red
Rover algorithm provides a more even, symmetric distribution
of message traffic among virtual channels in a bidirectional
ring and therefore attains lower latencies and higher through-
put than Dally’s spiral algorithm [4]. Additionally, the PiRC
routes fixed-size packets and uses source routing to achieve
low latency. The PiRC architecture is presented in detail in
Section II.. Section III. describes implementation and perfor-
mance issues. Simulation scenarios for testing functionality
are presented in Section IV., and concluding remarks are given
in Section V..

II. ROUTER ARCHITECTURE

Because it employs theRed Roveralgorithm, thePIM Rout-
ing Component (PiRC)has a very simple architecture and may
be viewed as two identical routers which are time-multiplexed.
One router operates on the rising transition of the clock while
the other operates on the falling transition. In this manner,
two virtual channels (A and B) are time-multiplexed onto
each physical channel. Each virtual router contains controlling
logic, consisting of an input controller, switch, and output con-
troller, and short-cut FIFO data paths (see Figure 1). A channel
input controllerreceives control signals from a sender and gen-
erates control signals for storing data into a short-cut FIFO.
The switch and output controllerdetermines to which output
port input data should be forwarded and arbitrates fairly among
contending requests for a particular output port. The handshak-
ing protocol between sending and receiving PiRC channels, de-
scribed in Section A., is also very simple and efficient.

Other factors also contribute to the simplicity of the PiRC
architecture. A packet is constrained to a fixed length of ten
32-bit flits, and the phit size is the same as the flit size. All op-
eration including receiving, switching, arbitrating, and sending
is done in a half clock cycle. Thus, only one clock is needed for
a flit to traverse from one node to the next in the non-blocking
case. The PiRC implements wormhole routing [7] so that flits
of a blocked packet remain in place in the network channels.
However, each PiRC FIFO contains enough space to buffer a
complete 320-bit packet. This ability simplifies the handshak-
ing so that handshakes need only occur on packet boundaries
rather than on every flit.
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Fig. 1. PIM Routing Component (PiRC) Block Diagram

Figure 2 shows the internal interface for one virtual level of
the PiRC (the other level is identical). This figure shows how
the FIFOs, input controllers(INC), switches(SW), and output
controllers(OUTC) interact for the positive(+), negative(-), and
processing element(Pe) directions. Note especially the switch-
ing and merging combinations in the data paths. A packet en-
tering the (+) FIFO may continue in the (+) direction or exit
the network through the Pe port. Similarly, a packet entering
the (-) FIFO may continue in the (-) direction or exit the net-
work through the Pe port. Finally, a packet which is injected
via the Pe FIFO may enter the network via the (+) or (-) port.
These routing restrictions result in 2-way switchers and 2-way
mergers at every point of contention. This artifact simplifies
the router design, requiring the design of only one merge and
one switch element that are then replicated as needed. TheSI
andRI signals aresendandreadyhandshaking signals for the
input channels, while theSO andRO signals correspond to
output channels. More detail about their operation is given in
the following section.
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Fig. 2. PiRC Internal Interface

A. Handshaking Protocol

The handshaking protocol is really simple and efficient. First,
note that theSI andRI signals of a receiving PiRC channel are
connected to theSO andRO signals, respectively, of a neigh-
boring sending PiRC channel. The receiver keeps asserting the
RI signal as long as its corresponding FIFO is not full. The
sender keeps sampling the correspondingRO signal at every
edge of the clock and starts sending a pending message when-
ever the receiver is ready. By using this protocol, the sender
constantly monitors the state of the receiver and does not waste
time to explicitly request the status of the receiver FIFO. As de-
picted in Figure 3, this protocol makes it possible for the sender
to make a decision to send data as soon as an assertedRO is
sampled. To indicate it is sending data, the sender assertsSO,
and the receiver latchesDIN data into the FIFO upon sam-
pling the corresponding assertedSI signal. The receiver then
latches data on the next nine clock cycles to receive the entire
packet.

RECEIVER

CLK

RI

SI

SENDER                                               

CLK

RO

SO

DOUT DIN

Fig. 3. Handshaking between a sender and a receiver

B. Short-Cut FIFO

In order to achieve high-speed data transmission along the
physical channel, fast switching activity between channels is
essential. A previous implementation of a Red Rover router,
thePDSS router[2], specified a simple controller and complex
flit buffer design and is suitable for only a small number of flits
per packet. In the PDSS router, there are a large number of
flit buffers that can drive the final output stage bus, as shown
in Figure 4. This arrangement results in a large capacitive
load. The controller is, however, very simple such that finite
state machines without peripheral logic are sufficient for con-
trolling the register-tristate buffer pairs. In contrast, thePiRC
implements a complex controller and simple FIFOs in order
to accommodate a large number of flit buffers in the channel
buffer. In fact, the output stage load capacitance is indepen-
dent of the number of flit buffers in a short-cut FIFO because
only the top element of the FIFO is capable of driving the out-
put stage bus. This characteristic makes the design very flex-
ible with regard to channel size and is important as different
package types impose different pin-count, and therefore chan-
nel size, constraints. With this design, every flit in the FIFO
shifts toward the top of the FIFO as long as the path is not
blocked. Also, incoming flits are placed in the first empty flit
buffer (from the top of the FIFO). Figure 5 illustrates the cell
of the FIFO, block diagram, and an example of flit movement.
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Fig. 4. Channel Buffer Design:(a) Register-Tristate Buffer in PDSS Router
and (b) Short-cut FIFO in PiRC
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Fig. 5. Short-Cut FIFO: (a) FIFO Cell, (b) Block Diagram, and (c) Movements
of Flits

The cell in (a) has two data inputs, one from the neighboring
flit in the FIFO (NGH) and the other from the external input for
this router channel(EXT). The decoder in (b) generates proper
control signals for the FIFO based on current conditions and a
write pointer indicator. (c) is an example showing the move-
ment of flits. Until T3 there is no blocking; therefore, the flit
in flit buffer 0 goes out and the other flits shift toward the top
of the FIFO so that the FIFO depth is constant. New flits from
the external input are loaded into flit buffer 2 (this example as-
sumes some residual flits exist in the FIFO initially). Flits do
not shift if the output path is blocked, as shown during T4, T5,
and T6. However, the write pointer increments so that subse-
quent incoming flits begin to fill up the FIFO. When the path
becomes unblocked, flits drain out as shown from T7.

In order to keep track of the header flit of a packet, theSI

signal flows through a one-bit FIFO as the header flit moves.
The operation of this one-bit FIFO is identical to that of the
data FIFO described above. This signal becomes the output
signalSO in the final output stage, indicating that the router
channel is sending a header flit of a new packet.

C. Input Controller

The input controller, shown in Figure 6, is simple counter-
based logic that directs the loading of flits into the short-cut
FIFO. When the input controller samples an assertedSI sig-
nal, it begins latching the flits of an incoming packet. The
up/down counterdynamically changes the write pointer value,
which always points to the first empty space in the FIFO, as the
router reads and writes flits. Thewen (write enable) genera-
tor causes theup=down counter to increment the write pointer
value whenSI arrives from the sender. Theren (read en-
able) generator is activated when the output controller starts
forwarding flits from the FIFO to an output channel, and it
also prevents the reading of garbage in an empty FIFO. The
counter operates at both clock edges so that it can increase the
write pointer at the rising edge when a new flit is written and
decrease the pointer at the falling edge when a flit is read from
the FIFO (these clock edges apply for A virtual channels—
for B virtual channels, the opposite clock edges apply). The
full-empty detectorindicates the status of the FIFO. TheRI
handshaking signal is merely the inverse of thefull signal.
As mentioned earlier, the decoder translates the write pointer
value into proper control signals for the FIFO.

clk

Sel, En

RI
wenWG

UDC

RG

SI

read

blocked

ren

full

empty

DCD

FED

full

RG      read-enable generator
WG     write-enable generator

UDC   up/down counter
FED    full/empty detector
DCD   decoder for translating 
           counter output to FIFO
           control signals

Fig. 6. Input Controller

D. Switch and Output Controller

The output controller samplesRO at every clock edge so that
it can send a pending packet as soon as possible. OnceRO is
asserted and detected by the output controller, the header flit
of a pending packet andSO are sent immediately. While flits



are being transmitted to the receiver, the write pointer of the
sending FIFO decrements if there are no incoming flits from
the neighboring PiRC. On the other hand, the pointer keeps
pointing to the same flit buffer in the sending FIFO if the send-
ing FIFO is simultaneously receiving data from its neighbor.
The switch determines the direction in which a packet is to be
forwarded. The first flit of a packet, the header, contains rout-
ing information for the switch. The header is unary encoded
such that the number of hops a packet is to traverse is indicated
by the number of 1’s set in the header. The header is shifted
at each hop so that this value is decremented. Therefore, the
switch simply inspects the first bit of the routing header to de-
termine which output port to request for a given packet. Using
a first-come-first-served policy, the output controller arbitrates
fairly between requests from two FIFOs contending for usage
of the same output physical channel. If contending requests
arrive in the same clock cycle to an idle output controller, an
arbitrary selection is performed; however, the FIFO which is
not granted access during this arbitration is guaranteed access
when the current FIFO completes based on the first-come-first-
served policy.

III. I MPLEMENTATION AND PERFORMANCE

The PiRC design was begun by behavioral modeling in
VHDL and compiled with Synopsys. Cascade EPOCH was
used for routing and placement as well as layout generation for
a prototype implementation. Control blocks were synthesized,
while the short-cut FIFO was generated using custom layout
to achieve high density. We tested our design at the behavioral
level, pre-synthesis level, and post-synthesis level with Synop-
sys, and transistor level with Powermill.

The resulting PiRC prototype layout is for the HP14b process
available through MOSIS. This process uses0:5�m, 3-layer
metal CMOS technology. The PiRC has a die size of 2.76 mm
X 2.36 mm and contains 75,276 transistors. Simple hardware
based on an efficient routing algorithm allows us to achieve a
clock frequency of 80MHz. The router operates on both clock
edges, leading to a channel bandwidth of 5.12Gb/s. Only one
clock is required for a flit to move from one node to the next,
resulting in a node-to-node delay of 12.5ns. Figure 7 shows
the layout of the PiRC, placed and routed with the floor plan of
Figure 1. Although this prototype achieves respectable perfor-
mance, we expect performance to improve significantly when
we migrate to a currently available embedded DRAM process
using 0.25�m or even 0.18�m technology, such as the IBM
SA27-E or TSMC process.

IV. SIMULATION

Five critical scenarios were used to verify the PiRC design.
The external PiRC connections used for simulation are shown
in Figure 8. This configuration allows short-cut FIFOs to
be cascaded together so that one FIFO essentially feeds an-
other. The header flit of a packet is set in simulation to specify

Fig. 7. Layout

whether the corresponding packet travels from the (Pe) FIFO
to the (+) FIFO or the (-) FIFO. Test vectors are injected on the
Tester terminals indicated in Figure 8, which essentially serve
as processing element signals. The scenarios are as following:
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Fig. 8. Router Configuration for Testing

1. Two messages move back-to-back without blocking.

2. Two messages move back-to-back. The first message is
blocked until the (+,-) FIFO is full. Consequently, the
second message is blocked in the (Pe) FIFO and starts
filling it. Then, the first message becomes unblocked and
drains out. As soon as the first message starts moving out,
the second message follows it along the path.

3. Two messages move back-to-back. The first message is
blocked until the (+,-) FIFO gets half-way full, and then
the first message drains out.

4. The first message is blocked until the (+,-) FIFO fills half-
way, and when the first message starts draining out of
the (+,-) FIFO, the second message is injected to the (Pe)
FIFO from the tester. Due to the short-cut FIFO design,
the second message quickly traverses the (Pe) FIFO to
trail the first message.



5. Two packets in (+,-) FIFO and (Pe) FIFO request the same
channel concurrently. This scenario ensures that fair arbi-
tration is performed when resolving conflicts.

The PiRC performed successfully for all possible combina-
tions of the above scenarios for two sets of virtual channels.

V. CONCLUSION

A fast, simple router for the Data-Intensive Architecture
(DIVA) system has been presented. This device, thePIM Rout-
ing Component (PiRC), implements theRed Roverrouting al-
gorithm to achieve high performance with minimal complexity.
The PiRC has advantages of simple logic, one clock node-to-
node delay, high channel throughput, and robust speed con-
sistency, regardless of the number of flit buffers in a channel
buffer. This combination of attributes makes the PiRC ideal
for the DIVA system.
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