
Distributed Processor Allocation in Large PC Clusters

César A. F. De Rose
Catholic University of Rio Grande do Sul

Department of Computer Science
Porto Alegre, Brazil
derose@inf.pucrs.br

Hans-Ulrich Heiss
University of Paderborn

Department of Computer Science
Paderborn, Germany

heiss@uni-paderborn.de

Philippe A. O. Navaux
Federal University of Rio Grande do Sul

Department of Computer Science
Porto Alegre, Brazil
navaux@inf.ufrgs.br

Abstract

Current processor allocation techniques for highly par-
allel systems are based on centralized front-end based algo-
rithms. As a result, the applied strategies are restricted to
static allocation, low parallelism and weak fault tolerance.
To lift these restrictions we are investigating a distributed
approach to the processor allocation problem in large dis-
tributed memory machines. A contiguous and a noncontigu-
ous version of a distributed dynamic processor allocation
strategy are proposed and studied in this paper. Simulations
compare the performance of the proposed strategies with
that of well-known centralized algorithms. We also present
the results of experiments on a Simens hpcLine Primergy
Server with 96 nodes that show distributed allocation is fea-
sible with current technologies.

1. The processor allocation problem

Processor allocation involves the selection of a proces-
sorpartition for a given parallel job, with the goal of max-
imizing throughput over a stream of many jobs. Because
allocation operations have to be fast, allocation techniques
used by the majority of commercial parallel machines, as
well as the research community, restrict the feasible shapes
of partitions to achieve some regularity, which facilitates
their management. We call a partitioning schemestruc-
ture preserving if it generates partitions that are of the same
topological graph family as the entire processor graph (sub-
cube allocation in hypercubes and submesh allocation in
meshes). In addition, many systems also require that the

allocated processors are constrained to be physically adja-
cent (contiguous allocation).

2. Distributed processor allocation

Several approaches to deal with the processor allocation
problem can be found in the literature [3]. In spite of the
fact that they apply different policies in the resource man-
agement, all the schemes have one in common: the con-
trol of allocated resources is done with a global data struc-
ture localized mostly in a host machine.The main problems
of such centralized management are lack of scalability, the
incompatibility with adaptive processor allocation schemes
(dynamic allocation), and its weak fault tolerance.

Figure 1 shows a global view of the proposed distributed
allocation [1] and the distributedProcessor Managers in-
volved in the allocation operation. The main differences to
the centralized management are (i) the absence of a central
data structure with information about the state of all proces-
sors, and (ii) the execution of allocation operations directly
in the processor mesh in a distributed way, and not in a data
structure localized in the host. The host machine is now
only responsible for queuing the incoming requests and for-
warding them to the processor mesh. The communication
between host and mesh is done through a direct channel to
a boundary node. This node is called anentry point and due
to the distributed environment there is no restriction con-
cerning the number of entry points.

Each node in the mesh has a local Processor Manager
(PM) responsible for the processor allocation. The PM’s
cooperate to solve the allocation problem in a distributed
way.



Additional allocations
Releases

Allocation jobs

Initial allocations

Processor meshHost machine

PM

PM

PM

PM

PM PM

PM

PM

PM PM

PM

PM

PM PM

PM

PM

PM

Figure 1. Distributed allocation

2.1. Distributed allocation algorithm

The implemented PM uses an enhanced version of the
Leak algorithm. This algorithm is based on the principle
of leaking water. From an origin point, an amount of wa-
ter leaks and flows to the directions where no resistance is
encountered. An important factor is that the leaking water
exhibits cohesion, which keeps the diameter of the resulting
puddle as small as possible. In the case of a distributed pro-
cessor allocation, the number of processors to be allocated
corresponds to the amount of leaking water. The proces-
sors already allocated in the mesh are the resistance areas
and the final area formed by the allocated processors is the
resulting puddle.

The essential feature of the algorithm is its form-free al-
location strategy, i.e. partitions are no longer restricted to
rectangles, but may have an arbitrary shape. This gives the
processor management more flexibility to find a partition
of suitable size, and results in less fragmentation. Due to
the recursive nature of the algorithm and its distributed ex-
ecution in the machine, it is also important to notice that
different flowing directions allocate processors in parallel,
resulting in a reduced allocation time.

2.2. Noncontiguous allocation

Current communication technologies like wormhole
routing enable us to consider noncontiguous allocation
schemes, since the number of hops between nodes is not the
dominant factor determining message latency [2]. The use
of small partitions of free processors scattered in the ma-
chine to form larger non-contiguous partitions decreases the
external fragmentation significantly. However, noncontigu-
ous allocation introduces potential problems due to message
contention because the messages occupy more links, yield-
ing potential communication interference with other jobs.
The idea is to try to serve a request with contiguous allo-
cation, and to look for noncontiguous additions only on de-
mand. This way the noncontiguous scheme should be seen

as an addition, and not as an alternative to contiguous allo-
cation.

2.3. Rectangular vs. form-free allocation

Table 1 compares the obtained fragmentation for rectan-
gular and form-free allocation under three load classess in
a 32 � 32 mesh. The greater flexibility of the distributed
Leak algorithm in finding free processors areas in the mesh
(form- free search), reduces significantly the external frag-
mentation and eliminates the internal one. This means a
greater efficiency in serving requests, reduction in the de-
nied requests, and increase of machine utilization (around
75%). The noncontiguous version of the distributed Leak
algorithm achieved 97% machine utilization in this simula-
tion.

Algorithm Fi Fe Mutil

Frame Slide 60.37% 7% 32.63%
Contiguous Leak 0% 24.50% 75.50%
Noncontiguous Leak 0% 2.97% 97.03%

Table 1. Fragmentation comparison

3. Conclusions

Our study shows that the distributed approach is fea-
sible for large cluster machines with current communica-
tion technologies and permitted a greater parallelization of
the allocation operations, eliminated the bottlenecks of the
centralized model, and achieved a better scalability of the
allocation algorithms. This enables us to lift several re-
strictions of the centralized strategies and to experiment
with adaptive, form-free, noncontiguous processor alloca-
tion schemes. As a result, system utilization for the non-
contiguous version of our algorithm reaches as high as
97 percent. We concluded that distributed allocation pro-
vides a new approach that will help highly parallel systems
to achieve better price/performance ratios in high demand,
multiuser environments.

References

[1] C. A. F. De Rose.Distributed Processor Management in Mul-
ticomputers. University of Karlsruhe, Germany, Phd. Thesis,
1998.

[2] V. Loet al. Noncontiguous processor allocation algorithms
for mesh-connected multicomputers.IEEE Transactions on
Parallel and Distributed Systems, 8(7), July 1997.

[3] Y. Zhu. Fast processor allocation and dynamic scheduling
for mesh multicomputers.International Journal of Computer
Systems Science and Engineering, 2(11):99–107, 1996.


