

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

Fault-tolerant Wormhole Routing using a Variation of Distributed

Recovery Block Approach

Gul N. Khan Gu Wei
Department of Electrical Engineering Biztone.Com Pte Ltd.

University of Saskatchewan, 57 Campus Drive 65 Club St,
Saskatoon SK S7N 5A9 Canada Singapore 069439

Abstract: This paper describes a fault-tolerant wormhole routing technique that incorporates a
variation of distributed recovery block (DRB) approach. The section of a parallel system that spans
between the source and destination nodes is dynamically partitioned into overlapping DRB groups.
A DRB group consists of a current node, a primary and an alternate successor node. The message
packets travel towards the destination from one DRB group to the next group. A prototype of the
routing system is implemented for mesh and hypercube topologies; however, the method can be
used for topologies with a minimum node connectivity of three. The simulation results indicate
that the DRB approach based wormhole routing tolerates both node and link failures.

1 Introduction

Inter-processor communication is an important and essential activity for parallel and distributed
processing. In distributed memory parallel systems, each node is directly connected to a small
fraction of other nodes. A message passing system provides a virtual connectivity by representing
a fully connected view of the system. Message propagation, path establishment and deadlock
avoidance are the main strategies incorporated in message passing systems. There are three types
of message propagation techniques namely store-and-forward, wormhole and virtual cut through.
Wormhole routing is commonly used in the recent generation multi-computers due to lower
latency and small buffer requirement.

In wormhole routing, a packet is transmitted as a contiguous stream of flits that occupy a sequence
of nodes and communication channels along the path. After receiving a header flit, an intermediate
node determines the next node to forward the message. The header flit determines the path and the
tail flit releases it as the packet travel towards its destination. If the header is blocked due to the
non-availability of a communication channel or a network component failure, the remaining flits of
the message get stranded in the network. Adaptive wormhole routing techniques have been
introduced to handle the problem of message blocking. Gaughan and Yalamanchili have used a
pipelined circuit-switching mechanism with backtracking for fault-tolerant routing systems [5].
Virtual channels have been employed for adaptive routing [4]. A number of adaptive and fault-
tolerant wormhole routing techniques have been developed for mesh topologies [2, 3, 6, 11 and
12], that have been reviewed recently [13]. We present a new fault-tolerant wormhole routing
technique that is based on distributed recovery block approach [9]. The method can route messages
for various network topologies with a node connectivity of three or more.

1.1 Preliminaries and Assumptions

A Qn hypercube contains 2n nodes and a relatively small diameter with n2n-1 links. The degree of

each node is n and every node has a distinct n-bit binary address. The addresses of two
neighboring nodes differ by exactly one bit. The number of bits by which any two nodes x and y
differ is defined as:

D(x, y) = Σd(xi, yi)
where d(xi, yi) = 1, if xi ≠ yi

 d(xi, yi) = 0, if xi = yi (1 ≤ i ≤ n)

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

If a message, msg is to be routed from a source x to a destination node y, the message format can
be defined as: (D(x, y), [c1, c2, …, ck], msg)

where k = D(x, y) is the Hamming distance between the nodes x and y.
[c1, c2, …, ck] is the coordinate sequence of different bits of node addresses.

For notational purposes, each link is presented by a binary string with a "-" symbol at the
corresponding index. For instance a link between 0000 and 0100 nodes is represented by link 0-00.
Following assumptions are made to present the fault-tolerant wormhole routing technique.

• Source and destination nodes are healthy and fault-free.
• A node with no healthy links incident on it is considered faulty.
• Faults are non-malicious and a failed component simply ceases to work.
• The deadlock avoidance is not explicitly considered in our implementation.

2 DRB Approach and Fault-tolerant Message Routing

Recovery block (RB) is a basic software fault tolerant technique that can tolerate both hardware
and software faults. The completion time of a recovery block improves by its distributed
implementation [9]. In the distributed recovery block (DRB) approach, the primary and alternate
versions of a software module are executed concurrently on different nodes of a parallel system.
We have adapted the DRB scheme to route messages in networks with a node connectivity of three
or more [8]. The section of the parallel system that spans between the source and destination nodes
is partitioned into overlapping DRB groups. The formation of DRB groups in a mesh is explained
in Fig. 1 for message routing from node 11 to 44.

Fig. 1 Formation of DRB Groups

A DRB group consists of a current node, primary and alternate successor nodes. The current node
(S) delivers the message to both successors. The primary successor node (P) and alternate
successor (A) each has a set of try and acceptance test as shown in Fig. 2. After receiving the
message, both successor nodes apply the acceptance test (AT). The time acceptance test is used to
ensure a timely message delivery. In a fault-free situation, primary and alternate successors pass
the AT. The primary node notifies its success to alternate successor and forwards the message to
next DRB group. If the primary successor node or its communicating link fails while alternate
passes the AT, their role exchange. Different failure scenarios are explained in Fig 3. When both
successors fail and can not recover, other successor nodes are selected. In a 2D mesh, there is only
one more successor. For hypercube, f2(current, destination) and t2(current, destination) is chosen

Source node

Destination node

Final route

A DRB Group
Alternate successor, A

Current node, S

Primary successor, P

DRB
Group-1

DRB
Group-3

00 01 02 03 04

10

20

30

40

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

as primary and alternate successors respectively. The fi(x, y) is the position of the ith bit from the

left, i.e. the dimension i, in which x and y nodes differ [10]. We introduce a similar function ti(x, y)

that determines the position of an ith difference bit between x and y from the right. For example:
f1(001101, 001010) = 4 f2(001101, 001010) = 5

t1(001101, 001010) = 6 t2(001101, 001010) = 5

Fig. 2 A DRB Group for Fault-tolerant Message Routing

Fig. 3 Fault-Free Operation and Fault Recovery from Primary Failure

Alternate
Successor: A

Primary
Successor: P

F = Failure of a Try

S = Success of a Try

AT = Acceptance Test

Previous
DRB Group

Current
Node: S

Successor
DRB Groups

F

S

Get another copy

F

S

Get another copy

AT

Try
Block AT

Try
Block

 Pb Primary Ab Alternate

Successor DRB Group of the
Primary

Get Pioneer Get Pioneer

 Pc Primary Ac Alternate

Successor DRB Group of the
Alternate

Get Pioneer Get Pioneer

A (Alternate Successor)

Active DRB Group

P (Primary Successor)

S (Source or
Current Node)

Pass Pass

<Next cycle> <Next cycle> <Next cycle>

Get Pioneer

AT
Fail

Notify Delivery

AT

Output
Pioneer

Get Pioneer

Output
Pioneer

Notify Delivery

Send Pioneer

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

3 Fault-tolerant Wormhole Routing

In a distributed system, there are different ways of organising the fault information needed by
routing algorithms. It can be either made available globally or at the local level. The global fault
model based routing algorithms must have alternate means of transmitting fault information during
the transition stage of fault detection. In our fault-tolerant routing technique, nodes use local fault
information. The message routing process has two phases: path establishment and message
transfer. Fault-free path establishment is a critical process and we employ DRB approach to find a
fault-free path.

3.1 Fault-free Path Establishment

A pioneer flit is routed by using the DRB approach to establish a fault-free and economical path.
In contrast to the backtracking protocol [5], packet data flits can follow the pioneer flit
immediately to overlap message transfer and path establishment processes. The source node sends
the pioneer flit to its two successors as explained in Fig. 3. The successors acknowledge and if the
acknowledgement is received from both successors, the primary successor has the priority to act as
current node in the next DRB group. Otherwise, the successor that acknowledges will become the
next current node. The next current node sends the pioneer flit to its successors and the process is
repeated until the destination is reached.

Consider a Q4 hypercube shown in Fig. 4a, whose links 11-0 and 01-0 are faulty and a message is
to be routed from node, 1111 to a destination node 0000. To find a minimal fault-free path, the
source node 1111 sends the pioneer flit to its primary and alternate successor nodes, 1110 and
0111. When there is no fault, the node 1110 acts as a current node and forwards the pioneer to its
primary and alternate successors (1100 and 0110). The primary successor does not receive the
pioneer flit due to a faulty link, 11-0 and the alternate successor takes over. It sends the pioneer to
its successor nodes, 0100 and 0010 as illustrated in Fig. 4b. The primary successor, 0100 fails due
to another faulty link 01-0 and alternate node forwards the pioneer flit to the destination. A fault-
free path is established in the form of 1111Æ1110Æ0110Æ0010Æ0000. Pseudo code for the
distributed implementation of path establishing algorithm is provided in Fig. 5.

Fig. 4 (a) An Injured Q4 Hypercube (b) Establishing a Fault-free Path

1111
1110

0111

1100

0110
0100

0010
0000

0011

Primary hop Backup hop

Final Path:
1111Æ1110Æ0110Æ0010Æ0000

0000 0100

0110 0010

0001

0011 0111

0101

1011 1111

1110
1010

1000

1001

1101

1100

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

Current node: curr
Begin for every pioneer
 if curr == dest then the pioneer has arrived the destination;
 else begin
 pri_pass = alt_pass = FALSE;
 while [not (pri_pass) & not (alt_pass)] or [all tries exhausted]
 begin
 find pri and alt among the neighbor nodes;
 /* For hypercube use fi(x,y) and ti(x,y) functions */
 send (pioneer) to pri and alt;
 if curr ≠ src
 then send (conf) to partner; /* via pre_curr */
 receive (pri_pass) from pri with time out-1;
 /* in the case of time out-1, pri_pass = FALSE */
 receive (alt_pass) from alt with time out-2;
 /* time out-2 < time out-1 */
 /* for time out-2:alt_pass = FALSE */
 send (pri_pass) to alt;
 send (alt_pass) to pri;
 end; /* while */
 if not (pri_pass) then send (pioneer) to pri;
 if not (alt_pass) then send (pioneer) to alt;
 pre_curr = curr;
 end; /* else begin */
end. /* main curr */

(a) Current Node

Primary Successor node: pri
begin
 pri_pass = alt_pass = FALSE;
 while [not (pri_pass) & not (alt_pass)] or [all tries exhausted]
 begin
 receive (pioneer) from curr;
 execute AT;
 pri_pass = AT result;
 send (pri_pass) to curr;
 receive (alt _pass) from curr with time-out;
 /* in the case of time-out, alt_pass = FALSE */
 end; /* while */
 if pri_pass then curr = pri;
 else begin
 receive (pioneer) from curr; execute AT; partner = pri;
 if (curr ≠ src) begin
 while not (time-out)
 receive (conf) from pre_curr;
 if not (conf) then curr = partner;
 end; /* if begin */
 end; /* else begin */
 end. /* main pri */

(b) Primary Successor Node

Notations: src = source node; dest = destination node; curr = current node; node.
alt = alternate successor node; pri = primary successor; pioneer = pioneer or header flit
conf = confirmation of a successful delivery of the pioneer flit.
pri_pass = AT result from primary successor; alt_pass = AT result from alternate successor.
pre_curr = current node of the previous DRB group.
partner = partner node of curr in the previous DRB group.

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

Alternate Successor node: alt
begin
 pri_pass = alt_pass = FALSE;
 while [not (pri_pass) & not (alt_pass)] or [all tries exhausted]
 begin
 receive (pioneer) from curr; execute AT;
 alt_pass = AT result; send (alt_pass) to curr;
 receive (pri_pass) from curr with time-out;
 /* in the case of time-out, pri_pass = FALSE */
 end; /* while */
 if (alt_pass) & not (pri_pass) then curr = back;
 else begin
 if not (alt_pass) begin
 receive (pioneer) from curr; execute AT;
 end; /* if */
 partner = alt;
 if (curr ≠ src) begin
 while not (time-out)
 receive (conf) from pre_curr;
 if not (conf) then curr = partner;
 end; /* if begin */
 end; /* else begin */
 end. /* main alt */

(c) Alternate Successor Node

Notations: src = source node; dest = destination node; curr = current node; node.
alt = alternate successor node; pri = primary successor; pioneer = pioneer or header flit
conf = confirmation of a successful delivery of the pioneer flit.
pri_pass = AT result from primary successor; alt_pass = AT result from alternate successor.
pre_curr = current node of the previous DRB group.
partner = partner node of curr in the previous DRB group.

Fig. 5 Fault-free Path Establishment Algorithm Pseudo Code
(a) Current Node (b) Primary Successor Node (c) Alternate Successor Node

3.2 Message Transfer

Two possibilities that can happen during a message transfer are:

• No faults occur in the established fault-free path.
• Communication links and/or nodes on the fault-free path fail.

The first is an ideal situation and the message reaches the destination without any hurdle. The
possibility of a relevant network-component failure during a message transfer is realistic. If it
happens, the nearest healthy node from the destination where the packet flit is blocked can act as a
temporary source node. It establishes another path to the destination by using the same DRB
approach. The pioneer flit information is kept at each intermediate node on the routing path until
the message tail is passed. After establishing a new path, the blocked portion of the message is
forwarded. If the message is blocked again due to another fault, the same procedure is repeated. A
message may be split into two or more sub-messages that are routed on different paths and all the
sub-message are assembled at the destination.

Consider once again the injured hypercube Q4 of Fig. 4a where a message is routed from node
1111 to 0000. Assume that when some portion of the message has passed the node 0110, another
communication link 0-10 fails. The intermediate node, 0110 serves as a source node and finds
another available path to the destination. It sends the pioneer to its successor nodes, 0100 and 0111

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

excluding the faulty link 0-10. The primary successor fails due to a faulty link 01-0 and the
alternate successor, 0111 takes over and sends the pioneer to its successors. If there is no further
failure, message is forwarded via 0110Æ0111Æ0101Æ0100Æ0000. The first part of the message
has been routed via 1111Æ1110Æ0110Æ0010Æ0000.

There are two options to deal with the failures during message transfer.
• Buffer the Blocked Message at the Intermediate Node
 When a communication link or node on the fault-free path fails during a message transfer, the

blocked part of the message can be buffered at the healthy intermediate node like a virtual cut
through [7]. Buffering the blocked message spares the network resources, however,
intermediate nodes require additional buffering space and latency of the blocked message will
increase.

• Blocked Message is Kept Stranded in the Network
 The blocked message is not buffered at the intermediate node. The node, where the message is

blocked, establishes a fault-free path and routes the message to the destination. This option
requires very little storage; however, other network traffic suffers.

4 Prototype Implementation and Experimental Results

A prototype of the fault-tolerant routing technique is implemented on a nine-node IBM SP parallel
system. The system is configured to realize mesh and hypercube topologies. The system nodes are
fully connected by a high performance switch, however, their interconnection is restricted to
configure mesh, hypercube, and other topologies. Any direct communication between the non-
neighbouring nodes of a topology is barred. MPI is the basic communicaiton software used in the
simulations. The flit size used for wormhole routing is four bytes as it is the minimum data unit
supported by the MPI implementation.

The routing system is implemented for a 3x3 2D-mesh shown in Fig. 6. Message latency is
obtained by routing different size messages for various fault scenarios. Results from some of these
faults are presented for routing messages from node 22 to 00.

• Link Failure-a: Communication links fail before the routing start (Fig. 6a).
• Link Failure-b: In addition to Link Failure-a, another link fails during message transfer (Fig.

6b).
• Node Failure: Node failure before the routing starts (Fig. 6c).

 (a) (b) (c)

Fig. 6 Failure Scenarios for 2D Mesh
(a) Link Failure-a (b) Link Failure-b (c) Node Failure

In the first case, links between 01Æ11 and 02Æ12 are faulty before the start of routing. The initial
fault-free path established by the pioneer flit is 22Æ12Æ11Æ10Æ00. For Link Failure-b, an
additional link, 10Æ11 fails during message transfer and a portion of the message gets blocked at
node 11. The intermediate node (11) serves as a source node. It buffers the blocked message
portion and finds a new fault-free path: 11Æ21Æ20Æ10Æ00. The message latency for these

00 01 02

12

22

10 11

21 20

00 01 02

12

22

10 11

21 20

00 01 02

12

22

10 11

21 20

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

cases is plotted in Fig. 7, which indicates a higher latency for Link Failure-b. It happens due to
buffering the blocked message, establishing a new and longer routing path.

A similar simulation is conducted for an injured Q3 hypercube of Fig. 8 having different faulty
components. The messages are routed from node 111 to 000 and some failure cases are presented
here.

Fig. 7 Fault-tolerant Wormhole Routing for a 2D Mesh

(a) (b) (c)

Fig. 8 Failure Scenarios for Q3 Hypercube:
(a) Link Failure-a (b) Link Failure-b (c) Node Failure

The Link Failure-a (Fig 8a) represents communication link (-01 and –11) failure before message
routing. A fault-free path (000Æ001Æ011Æ010Æ110Æ111) is found around these faulty links.
In the case of Link Failure-b (Fig 8b), a communication link, -01 is faulty at the beginning and a
fault-free path (000Æ001Æ011Æ111) is determined. Afterward, another communication link, -11
fails during the message transfer. The part of the message gets blocked at node 011. This node
acts as a temporary source node and determines another available path (011Æ010Æ110Æ110).
The blocked message flits are not buffered and they are routed to the destination via the new path.
The path is identical to Link Failure-a path but latency is little bit larger as shown in Fig. 9.
Investigation is also conducted for node failures shown in Fig 8c. Latency is plotted in Fig. 9 for
all the failures and the results indicate that DRB approach based method can route messages for
node and link failures.

Additional experiments are conducted to evaluate dynamic failures happening during message
transfer. Consider the injured Q3 hypercube of Fig. 8b again. A message is to be routed from node
000 to 111 and link -11 fails during the message transfer. A portion of the message gets blocked at

6.5

6.9

7.3

7.7

8.1

8.5

128 256 384 512 640 768

Message size (byte)

M
es

sa
ge

 la
te

nc
y

(m
s)

Fault-free case

Link failure-a

Node failure

Link failure-b

110

000 001

101 100

011 010

111 110

000 001

101 100

011 010

111

000

100

001

110

101

011 010

111

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

node 011 that can be either buffered or kept stranded in the network. In the first simulation, it is
assumed that there is no traffic in the network. The message latencies for both the options are
plotted in Fig. 10. It is evident from the results that the latency improves when the message is kept
in the network.

Fig. 9 Fault-tolerant Wormhole Routing for a Q3 Hypercube

However, when the message is not buffered, it occupies network resources. Additional simulations
are conducted to analyze its effect. The network is flooded with messages by generating messages
continuously from each node to random destinations. Average network latency is determined from
the total network traffic latency. We contrast the network latencies for both options and the results
are presented in Fig. 11. It is observed that for message buffering, the network latency is not
affected considerably. On the contrary, for a purely wormhole routing, there is a sizable increase
in latency of the network traffic.

Fig. 10 Message Latency when the Message is either Blocked or Buffered

5 Deadlock Avoidance and Recovery

In wormhole routing, once a communication link or channel accepts the header flit of a packet, rest
of the packet must be accepted before accepting any other packets. A cyclic wait condition causes
deadlock when a packet holds channels while waiting and excludes other packets from acquiring
the held channels. One can virtualized the network by introducing virtual channels and defines
routing functions for the virtual networks with no cycles. A number of deadlock avoidance
schemes for adaptive routing in k-ary n-cubes have been proposed and implemented by using

5

5.4

5.8

6.2

6.6

7

128 256 384 512 640 768

Message size (byte)

M
es

sa
ge

 la
te

nc
y

(m
s)

Fault free case

Link failure-a

Node failure

Link failure-b

5.6

5.8

6

6.2

6.4

6.6

6.8

7

128 256 384 512 640 768

Message size (byte)

M
es

sa
ge

 la
te

nc
y

(m
s)

Blocked message is
buffered
Pure wormhole
routing

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

virtual channels [3, 4, 11 and 12]. A similar technique can be adapted for the DRB based fault-
tolerant routing. Virtual channels need to be introduced at the DRB group level and within a group
for deadlock free adaptive routing. The virtual channel management can be simplified by
partitioning them hierarchically in terms of inter-node and inter-group channels.

Fig. 11 Impact of Message Blocking on Network Traffic Latency

DRB based routing technique presented in this paper is fault-tolerant and it recovers from
deadlocks if one considers the deadlock as a failure. When a message is blocked due to a deadlock
and can not move towards its destination, the successor doesn't acknowledge the header delivery.
The current node that holds the header-flit treats the deadlock as a failure and tries the alternate
successor. It can even select additional successors as described by the algorithm stated in Fig. 5.
Similar failures during the message transfer are simulated for the prototype implementation. The
network is flooded with a continuous stream of messages from each node. No deadlocks are
observed for these simulations being executed for more than an hour. Deadlock recovery is an
excellent alternative to deadlock avoidance, specifically for fault-tolerant routing algorithms. We
have employed two types of time-out intervals to detect network component failure. These time-
out intervals can be tuned to detect deadlocks effectively. In this way, the DRB based routing
algorithm can recover from deadlocks easily. A similar approach has been used in disha [1]. In the
rare case when a deadlock message can not be routed at all, the current node absorbs the blocked
message and later re-injects it for routing it to the destination. The method presented in this paper
is so flexible that it can even absorbs the part of a packet and then routes it to the destination.

6 Conclusions

A new fault-tolerant wormhole routing technique is presented, which is based on the DRB
approach. The routing process consists of fault-free path establishment and message transfer. Some
of the existing techniques including the backtracking determine the fault-free path only and
assume that no more faults will occur during the message transfer [5]. Some previous fault-tolerant
wormhole routing techniques only consider a limited number of node or link failures for evaluation
[13] while other deals with only mesh topologies [2, 6, 11 and 12]. The DRB based routing suits to
all regular and irregular topologies with a minimum node connectivity of three. It also caters for
nodes or links failures and the failures can be static or dynamic. The prototype wormhole routing
system routes messages successfully from one node to another, if a single healthy path exists
between them. The results from the investigation show that the DRB approach based wormhole
routing is an effective way of assuring the message delivery in faulty networks. It is not necessary
for the nodes to know the status of its neighboring nodes. The DRB based routing has also been

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

4 5 6 7 8 9 10

 Messages in the network

A
ve

ra
ge

 m
es

sa
ge

 la
te

nc
y

(m
s)

Buffering the blocked
message
Pure wormhole routing

IEE Proc. Computers and Digital TechniquesVol. 147, No.6, November 2000, pp. 397-402

compared with backtracking based fault-tolerant message routing. The results indicate that DRB
approach based wormhole routing has lower latency and higher throughput [14].

7 References

1 ANJAN, K. V., and PINKSTON, T. M.” ‘An efficient, fully adaptive deadlock recovery

scheme, DISHA’, Proceedings International Symp. on Computer Architecture, June 1995, pp.
201-210

2 BOPPANA, R. V., and CHALASANI, S.: ‘Fault-tolerant wormhole routing algorithms for
mesh networks’, IEEE Trans. Computers, 1995, 44 (7), pp. 848-864

3 CHIEN, A. A., and KIM, J. H.: ‘Planar-adaptive routing: low-cost adaptive networks for
multiprocessors’, Journal of ACM, 1995, 42 (1), pp. 91-123

4 DALLY, W. J., and AOKI, H.: ‘Deadlock-free adaptive routing in multicomputer networks
using virtual channel’, IEEE Trans. Parallel and Distributed Systems, 1993, 4 (4), pp. 466-475

5 GAUGHAN, P. T., and YALAMANCHILI, S.: ‘Adaptive routing protocols for hypercube
interconnection networks’, IEEE Computer, 1993, 26 (5), pp. 12-23

6 GLASS, C. J., and NI, L. M.: ‘Fault-tolerant wormhole routing in meshes without virtual
channels’, IEEE Trans. Parallel and Distributed Systems, 1996, 7 (6), pp. 620-636

7 KERMANI, P., and KLEINROCK, L.: ‘Virtual cut-through: a new communication switching
technique’, Journal of Computer Networks, 1979, 3 (11), pp. 267-286

8 KHAN, G. N., and WEI, G.: ‘Adaptive and fault-tolerant message routing using distributed
recovery block approach’, Proceedings Parallel and Distributed Computing and Systems
(PDCS ’99), Cambridge, Massachusetts, USA, 3-6 November 1999, pp. 732-737

9 KIM, K. H., and WELCH, H. O.: ‘Distributed execution of recovery blocks: an approach for
uniform treatment of hardware and software faults in real-time applications’, IEEE Trans.
Computers, 1989, 38 (5), pp. 626-636

10 LEE, T. C., and HAYES, J. P.: ‘A fault-tolerant communication scheme for hypercube
computers’, IEEE Trans. Computers, 1992, 41 (10) pp. 1242-1256

11 LIBESKIND-HADAS, R., and BRANDT, E.: ‘Origin-based fault-tolerant routing in the
mesh’, Future Generation Computer Systems, 1995, 11 (6) pp. 603-615

12 LINDER, D. H. and Harden, J. C.: ‘An adaptive and fault-tolerant wormhole routing strategy for k-ary
n-cubes’, IEEE Trans. Computers, 1991, 40 (1) pp. 2-12

13 MOHAPATRA, P.: ‘Wormhole routing techniques for directly connected multicomputer
systems’, ACM Computing Surveys, 1998, 30 (3), pp. 374-410

14 WEI, G.: ‘Fault-tolerant message passing system’. M.Sc. Thesis, 2000, Nanyang
Technological University, Singapore

