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Abstract: This paper describes a fault-tolerant wormhole routing technique that incorporates a 
variation of distributed recovery block (DRB) approach. The section of a parallel system that spans 
between the source and destination nodes is dynamically partitioned into overlapping DRB groups. 
A DRB group consists of a current node, a primary and an alternate successor node. The message 
packets travel towards the destination from one DRB group to the next group. A prototype of the 
routing system is implemented for mesh and hypercube topologies; however, the method can be 
used for topologies with a minimum node connectivity of three. The simulation results indicate 
that the DRB approach based wormhole routing tolerates both node and link failures. 
 
1 Introduction 
 
Inter-processor communication is an important and essential activity for parallel and distributed 
processing. In distributed memory parallel systems, each node is directly connected to a small 
fraction of other nodes. A message passing system provides a virtual connectivity by representing 
a fully connected view of the system. Message propagation, path establishment and deadlock 
avoidance are the main strategies incorporated in message passing systems. There are three types 
of message propagation techniques namely store-and-forward, wormhole and virtual cut through. 
Wormhole routing is commonly used in the recent generation multi-computers due to lower 
latency and small buffer requirement. 
 
In wormhole routing, a packet is transmitted as a contiguous stream of flits that occupy a sequence 
of nodes and communication channels along the path. After receiving a header flit, an intermediate 
node determines the next node to forward the message. The header flit determines the path and the 
tail flit releases it as the packet travel towards its destination. If the header is blocked due to the 
non-availability of a communication channel or a network component failure, the remaining flits of 
the message get stranded in the network. Adaptive wormhole routing techniques have been 
introduced to handle the problem of message blocking. Gaughan and Yalamanchili have used a 
pipelined circuit-switching mechanism with backtracking for fault-tolerant routing systems [5]. 
Virtual channels have been employed for adaptive routing [4]. A number of adaptive and fault-
tolerant wormhole routing techniques have been developed for mesh topologies [2, 3, 6, 11 and 
12], that have been reviewed recently [13]. We present a new fault-tolerant wormhole routing 
technique that is based on distributed recovery block approach [9]. The method can route messages 
for various network topologies with a node connectivity of three or more. 
 
1.1 Preliminaries and Assumptions 
 

A Qn hypercube contains 2n nodes and a relatively small diameter with n2n-1 links. The degree of 

each node is n and every node has a distinct n-bit binary address. The addresses of two 
neighboring nodes differ by exactly one bit.  The number of bits by which any two nodes x and y 
differ is defined as: 

D(x, y) = Σd(xi, yi) 
where d(xi, yi) = 1, if xi ≠ yi 

    d(xi, yi) = 0, if xi = yi (1 ≤ i ≤ n) 
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If a message, msg is to be routed from a source x to a destination node y, the message format can 
be defined as:  (D(x, y), [c1, c2, …, ck], msg) 

where  k = D(x, y) is the Hamming distance between the nodes x and y. 
[c1, c2, …, ck] is the coordinate sequence of different bits of node addresses. 

 
For notational purposes, each link is presented by a binary string with a "-" symbol at the 
corresponding index. For instance a link between 0000 and 0100 nodes is represented by link 0-00. 
Following assumptions are made to present the fault-tolerant wormhole routing technique. 

• Source and destination nodes are healthy and fault-free. 
• A node with no healthy links incident on it is considered faulty. 
• Faults are non-malicious and a failed component simply ceases to work.  
• The deadlock avoidance is not explicitly considered in our implementation. 

 
2  DRB Approach and Fault-tolerant Message Routing 
 
Recovery block (RB) is a basic software fault tolerant technique that can tolerate both hardware 
and software faults. The completion time of a recovery block improves by its distributed 
implementation [9]. In the distributed recovery block (DRB) approach, the primary and alternate 
versions of a software module are executed concurrently on different nodes of a parallel system. 
We have adapted the DRB scheme to route messages in networks with a node connectivity of three 
or more [8]. The section of the parallel system that spans between the source and destination nodes 
is partitioned into overlapping DRB groups. The formation of DRB groups in a mesh is explained 
in Fig. 1 for  message routing from node 11 to 44.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 1 Formation of DRB Groups 
 
A DRB group consists of a current node, primary and alternate successor nodes. The current node 
(S) delivers the message to both successors. The primary successor node (P) and alternate 
successor (A) each has a set of try and acceptance test as shown in Fig. 2.  After receiving the 
message, both successor nodes apply the acceptance test (AT). The time acceptance test is used to 
ensure a timely message delivery. In a fault-free situation, primary and alternate successors pass 
the AT. The primary node notifies its success to alternate successor and forwards the message to 
next DRB group. If the primary successor node or its communicating link fails while alternate 
passes the AT, their role exchange. Different failure scenarios are explained in Fig 3. When both 
successors fail and can not recover, other successor nodes are selected. In a 2D mesh, there is only 
one more successor. For hypercube, f2(current, destination) and t2(current, destination) is chosen 
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as primary and alternate successors respectively. The fi(x, y) is the position of the ith bit from the 

left, i.e. the dimension i, in which x and y nodes differ [10]. We introduce a similar function ti(x, y) 

that determines the position of an ith difference bit between x and y from the right. For example: 
f1(001101, 001010) = 4  f2(001101, 001010) = 5  

t1(001101, 001010) = 6  t2(001101, 001010) = 5 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 2  A DRB Group for Fault-tolerant Message Routing 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Fault-Free Operation and Fault Recovery from Primary Failure 
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3  Fault-tolerant Wormhole Routing 
 
In a distributed system, there are different ways of organising the fault information needed by 
routing algorithms. It can be either made available globally or at the local level. The global fault 
model based routing algorithms must have alternate means of transmitting fault information during 
the transition stage of fault detection. In our fault-tolerant routing technique, nodes use local fault 
information. The message routing process has two phases: path establishment and message 
transfer. Fault-free path establishment is a critical process and we employ DRB approach to find a 
fault-free path. 
 
3.1  Fault-free Path Establishment 
 
A pioneer flit is routed by using the DRB approach to establish a fault-free and economical path. 
In contrast to the backtracking protocol [5], packet data flits can follow the pioneer flit 
immediately to overlap message transfer and path establishment processes. The source node sends 
the pioneer flit to its two successors as explained in Fig. 3. The successors acknowledge and if the 
acknowledgement is received from both successors, the primary successor has the priority to act as 
current node in the next DRB group.  Otherwise, the successor that acknowledges will become the 
next current node. The next current node sends the pioneer flit to its successors and the process is 
repeated until the destination is reached. 
 
 
Consider a Q4 hypercube shown in Fig. 4a, whose links 11-0 and 01-0 are faulty and a message is 
to be routed from node, 1111 to a destination node 0000. To find a minimal fault-free path, the 
source node 1111 sends the pioneer flit to its primary and alternate successor nodes, 1110 and 
0111.  When there is no fault, the node 1110 acts as a current node and forwards the pioneer to its 
primary and alternate successors (1100 and 0110).  The primary successor does not receive the 
pioneer flit due to a faulty link, 11-0 and the alternate successor takes over.  It sends the pioneer to 
its successor nodes, 0100 and 0010 as illustrated in Fig. 4b.  The primary successor, 0100 fails due 
to another faulty link 01-0 and alternate node forwards the pioneer flit to the destination. A fault-
free path is established in the form of 1111Æ1110Æ0110Æ0010Æ0000. Pseudo code for the 
distributed implementation of  path establishing algorithm is provided in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 4 (a) An Injured Q4 Hypercube (b) Establishing a Fault-free Path 
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Current node: curr 
Begin  for every pioneer 
  if curr == dest then the pioneer has arrived the destination; 
   else begin 
  pri_pass = alt_pass = FALSE; 
  while [not (pri_pass) & not (alt_pass)] or [all tries exhausted] 
  begin  
   find pri and alt among the neighbor nodes; 
    /* For hypercube use fi(x,y) and ti(x,y) functions */  
   send (pioneer) to pri and alt; 
   if curr ≠ src 
      then send (conf) to partner; /* via pre_curr */ 
   receive (pri_pass) from pri with time out-1;  
    /* in the case of time out-1, pri_pass = FALSE */ 
   receive (alt_pass) from alt with time out-2;  
    /* time out-2 < time out-1 */  
    /* for time out-2:alt_pass = FALSE */ 
   send (pri_pass) to alt; 
   send (alt_pass) to pri; 
  end;   /* while */ 
  if not (pri_pass) then send (pioneer) to pri; 
  if not (alt_pass) then send (pioneer) to alt; 
  pre_curr = curr; 
 end;   /* else begin */ 
end.   /* main curr */ 
 

(a)  Current Node  
 
 
 
Primary Successor node: pri 
begin 
 pri_pass = alt_pass = FALSE; 
 while [not (pri_pass) & not (alt_pass)] or [all tries exhausted] 
 begin  
  receive (pioneer) from curr; 
  execute AT; 
  pri_pass = AT result; 
  send (pri_pass) to curr; 
  receive (alt _pass) from curr with time-out;  
   /* in the case of time-out, alt_pass = FALSE */ 
 end;   /* while */ 
 if pri_pass  then curr = pri; 
 else begin 
  receive (pioneer) from curr; execute AT; partner = pri; 
  if (curr ≠ src) begin 
   while not (time-out) 
    receive (conf) from pre_curr; 
    if not (conf) then curr = partner; 
  end;   /* if begin */ 
 end;   /* else begin */ 
   end.   /* main pri */ 
 
 

(b) Primary Successor Node  
 

Notations: src = source node; dest = destination node; curr = current node; node. 
alt = alternate successor node; pri = primary successor; pioneer = pioneer or header flit  
conf = confirmation of a successful delivery of the pioneer flit.  
pri_pass = AT result from primary successor; alt_pass = AT result from alternate successor. 
pre_curr = current node of the previous DRB group. 
partner = partner node of curr in the previous DRB group. 
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Alternate Successor node: alt 
begin 
 pri_pass = alt_pass = FALSE; 
 while [not (pri_pass) & not (alt_pass)] or [all tries exhausted] 
 begin  
  receive (pioneer) from curr; execute AT; 
  alt_pass = AT result; send (alt_pass) to curr; 
  receive (pri_pass) from curr with time-out;  
    /* in the case of time-out, pri_pass = FALSE */ 
 end;   /* while */ 
 if (alt_pass) & not (pri_pass) then curr = back; 
 else begin 
  if not (alt_pass) begin 
   receive (pioneer) from curr; execute AT; 
  end;   /* if */ 
  partner = alt; 
  if (curr ≠ src) begin 
   while not (time-out) 
    receive (conf) from pre_curr; 
   if not (conf)  then curr = partner; 
  end;   /* if begin */ 
 end;   /* else begin */ 
   end.   /* main alt */ 
 

(c)  Alternate Successor Node 
 
Notations: src = source node; dest = destination node; curr = current node; node. 
alt = alternate successor node; pri = primary successor; pioneer = pioneer or header flit  
conf = confirmation of a successful delivery of the pioneer flit.  
pri_pass = AT result from primary successor; alt_pass = AT result from alternate successor. 
pre_curr = current node of the previous DRB group. 
partner = partner node of curr in the previous DRB group. 
 

Fig. 5 Fault-free Path Establishment Algorithm Pseudo Code 
(a) Current Node (b)  Primary Successor Node (c)  Alternate Successor Node 

 
 
3.2  Message Transfer 
 
Two possibilities that can happen during a message transfer are: 

• No faults occur in the established fault-free path. 
• Communication links and/or nodes on the fault-free path fail. 

 
The first is an ideal situation and the message reaches the destination without any hurdle. The 
possibility of a relevant network-component failure during a message transfer is realistic. If it 
happens, the nearest healthy node from the destination where the packet flit is blocked can act as a 
temporary source node.  It establishes another path to the destination by using the same DRB 
approach. The pioneer flit information is kept at each intermediate node on the routing path until 
the message tail is passed. After establishing a new path, the blocked portion of the message is 
forwarded. If the message is blocked again due to another fault, the same procedure is repeated. A 
message may be split into two or more sub-messages that are routed on different paths and all the 
sub-message are assembled at the destination. 
 
Consider once again the injured hypercube Q4 of Fig. 4a where a message is routed from node 
1111 to 0000. Assume that when some portion of the message has passed the node 0110, another 
communication link 0-10 fails. The intermediate node, 0110 serves as a source node and finds 
another available path to the destination. It sends the pioneer to its successor nodes, 0100 and 0111 
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excluding the faulty link 0-10.  The primary successor fails due to a faulty link 01-0 and the 
alternate successor, 0111 takes over and sends the pioneer to its successors. If there is no further 
failure, message is forwarded via 0110Æ0111Æ0101Æ0100Æ0000. The first part of the message 
has been routed via 1111Æ1110Æ0110Æ0010Æ0000.  
 
There are two options to deal with the failures during message transfer. 
• Buffer the Blocked Message at the Intermediate Node 
 When a communication link or node on the fault-free path fails during a message transfer, the 

blocked part of the message can be buffered at the healthy intermediate node like a virtual cut 
through [7]. Buffering the blocked message spares the network resources, however, 
intermediate nodes require additional buffering space and latency of the blocked message will 
increase.  

• Blocked Message is Kept Stranded in the Network 
 The blocked message is not buffered at the intermediate node. The node, where the message is 

blocked, establishes a fault-free path and routes the message to the destination. This option 
requires very little storage; however, other network traffic suffers. 

 
4  Prototype Implementation and Experimental Results 
 
A prototype of the fault-tolerant routing technique is implemented on a nine-node IBM SP parallel 
system. The system is configured to realize mesh and hypercube topologies. The system nodes are 
fully connected by a high performance switch, however, their interconnection is  restricted to 
configure mesh, hypercube, and other topologies. Any direct communication between the non-
neighbouring nodes of a topology is barred. MPI is the basic communicaiton software used in the 
simulations. The flit size used for wormhole routing is four bytes as it is the minimum data unit 
supported by the MPI implementation. 
 
The routing system is implemented for a 3x3 2D-mesh shown in Fig. 6. Message latency is 
obtained by routing different size messages for various fault scenarios. Results from some of these 
faults are presented for routing messages from node 22 to 00. 

• Link Failure-a: Communication links fail before the routing start (Fig. 6a). 
• Link Failure-b: In addition to Link Failure-a, another link fails during message transfer (Fig. 

6b). 
• Node Failure: Node failure before the routing starts (Fig. 6c). 

 
 
 
 
 
 

     (a)            (b)          (c) 
 
 
 
 
 

Fig. 6 Failure Scenarios for 2D Mesh 
(a) Link Failure-a (b) Link Failure-b (c) Node Failure 

 
In the first case, links between 01Æ11 and 02Æ12 are faulty before the start of routing. The initial 
fault-free path established by the pioneer flit is 22Æ12Æ11Æ10Æ00.  For Link Failure-b, an 
additional link, 10Æ11 fails during message transfer and a portion of the message gets blocked at 
node 11.  The intermediate node (11) serves as a source node. It buffers the blocked message 
portion and finds a new fault-free path: 11Æ21Æ20Æ10Æ00. The message latency for these 
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cases is plotted in Fig. 7, which indicates a higher latency for Link Failure-b.  It happens due to 
buffering the blocked message, establishing a new and longer routing path.  
 
A similar simulation is conducted for an injured Q3 hypercube of Fig. 8 having different faulty 
components. The messages are routed from node 111 to 000 and some failure cases are presented 
here. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 7 Fault-tolerant Wormhole Routing for a 2D Mesh 

 
 
 
 
 
 
 
 
 
 
 

(a)            (b)          (c) 
 

Fig. 8 Failure Scenarios for Q3 Hypercube: 
(a) Link Failure-a (b) Link Failure-b (c) Node Failure 

 
The Link Failure-a (Fig 8a) represents communication link (-01 and –11) failure before message 
routing. A fault-free path (000Æ001Æ011Æ010Æ110Æ111) is found around these faulty links.  
In the case of Link Failure-b (Fig 8b), a communication link, -01 is faulty at the beginning and a 
fault-free path (000Æ001Æ011Æ111) is determined. Afterward, another communication link, -11 
fails during the message transfer. The part of the message gets blocked at node 011.  This node 
acts as a temporary source node and determines another available path (011Æ010Æ110Æ110). 
The blocked message flits are not buffered and they are routed to the destination via the new path. 
The path is identical to Link Failure-a path but latency is little bit larger as shown in Fig. 9. 
Investigation is also conducted for node failures shown in Fig 8c.  Latency is plotted in Fig. 9 for 
all the failures and the results indicate that DRB approach based method can route messages for 
node and link failures. 
 
Additional experiments are conducted to evaluate dynamic failures happening during message 
transfer. Consider the injured Q3 hypercube of Fig. 8b again. A message is to be routed from node 
000 to 111 and link -11 fails during the message transfer. A portion of the message gets blocked at 
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node 011 that can be either buffered or kept stranded in the network. In the first simulation, it is 
assumed that there is no traffic in the network. The message latencies for both the options are 
plotted in Fig. 10. It is evident from the results that the latency improves when the message is kept 
in the network. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 9 Fault-tolerant Wormhole Routing for a Q3 Hypercube 
 
 
However, when the message is not buffered, it occupies network resources. Additional simulations 
are conducted to analyze its effect.  The network is flooded with messages by generating messages 
continuously from each node to random destinations. Average network latency is determined from 
the total network traffic latency. We contrast the network latencies for both options and the results 
are presented in Fig. 11.  It is observed that for message buffering, the network latency is not 
affected considerably.  On the contrary, for a purely wormhole routing, there is a sizable increase 
in latency of the network traffic. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 10 Message Latency when the Message is either Blocked or Buffered 
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deadlock when a packet holds channels while waiting and excludes other packets from acquiring 
the held channels. One can virtualized the network by introducing virtual channels and defines 
routing functions for the virtual networks with no cycles. A number of deadlock avoidance 
schemes for adaptive routing in k-ary n-cubes have been proposed and implemented by using 
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virtual channels [3, 4, 11 and 12]. A similar technique can be adapted for the DRB based fault-
tolerant routing. Virtual channels need to be introduced at the DRB group level and within a group 
for deadlock free adaptive routing. The virtual channel management can be simplified by 
partitioning them hierarchically in terms of inter-node and inter-group channels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11 Impact of Message Blocking on Network Traffic Latency 

 
 
DRB based routing technique presented in this paper is fault-tolerant and it recovers from 
deadlocks if one considers the deadlock as a failure. When a message is blocked due to a deadlock 
and can not move towards its destination, the successor doesn't acknowledge the header delivery. 
The current node that holds the header-flit treats the deadlock as a failure and tries the alternate 
successor. It can even select additional successors as described by the algorithm stated in Fig. 5. 
Similar failures during the message transfer are simulated for the prototype implementation. The 
network is flooded with a continuous stream of messages from each node. No deadlocks are 
observed for these simulations being executed for more than an hour. Deadlock recovery is an 
excellent alternative to deadlock avoidance, specifically for fault-tolerant routing algorithms. We 
have employed two types of time-out intervals to detect network component failure. These time-
out intervals can be tuned to detect deadlocks effectively. In this way, the DRB based routing 
algorithm can recover from deadlocks easily. A similar approach has been used in disha [1]. In the 
rare case when a deadlock message can not be routed at all, the current node absorbs the blocked 
message and later re-injects it for routing it to the destination. The method presented in this paper 
is so flexible that it can even absorbs the part of a packet and then routes it to the destination. 
 
6 Conclusions  
 
A new fault-tolerant wormhole routing technique is presented, which is based on the DRB 
approach. The routing process consists of fault-free path establishment and message transfer. Some 
of the existing techniques including the backtracking determine the fault-free path only and 
assume that no more faults will occur during the message transfer [5]. Some previous fault-tolerant 
wormhole routing techniques only consider a limited number of node or link failures for evaluation 
[13] while other deals with only mesh topologies [2, 6, 11 and 12]. The DRB based routing suits to 
all regular and irregular topologies with a minimum node connectivity of three. It also caters for 
nodes or links failures and the failures can be static or dynamic. The prototype wormhole routing 
system routes messages successfully from one node to another, if a single healthy path exists 
between them. The results from the investigation show that the DRB approach based wormhole 
routing is an effective way of assuring the message delivery in faulty networks. It is not necessary 
for the nodes to know the status of its neighboring nodes. The DRB based routing has also been 
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compared with backtracking based fault-tolerant message routing. The results indicate that DRB 
approach based wormhole routing has lower latency and higher throughput [14]. 
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