
1

Fault-Tolerant Wormhole Routing Algorithms in Meshes
in the Presence of Concave Faults

 Seungjin Park Jong-Hoon Youn Bella Bose
 Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
 Michigan Tech. University Oregon State University Oregon State University
 Houghton, MI 49931, U.S.A. Corvallis, OR 97330, U.S.A. Corvallis, OR 97330, U.S.A.

 spark@mtu.edu jhyun@cs.orst.edu bose@cs.orst.edu

Abstract
A fault ring is a connection of only nonfaulty adjacent
nodes and links such that the interior of the ring contains
only faulty components. This paper proposes two
wormhole routing algorithms that deal with more relaxed
shapes of fault rings than previously known algorithms
[1, 2, 3] in the mesh networks. As a result, the number of
components to be made disabled would be reduced
considerably in some cases. First algorithm, called F4,
uses four virtual channels and allows all four sides of
fault rings to contain concave shapes. Second algorithm,
F3, permits up to three sides to contain concave shapes
using only three virtual channels. Both F3 and F4 are
free of deadlock and livelock and guarantee the delivery
of messages between any pair of nonfaulty and connected
nodes in the network.

1. Introduction
 Since processors in a multicomputer network need to
communicate with other, efficient communication is
essential to enhance the performance of the system. The
wormhole-routing switching has been dominant for its
low-latency communication, and it has been adopted by
numerous parallel machines.
 Two important issues in designing routing algorithms
are deadlock and livelock freedom. These properties are
necessary for the guaranteed delivery of a message to its
destination. Another issue in designing routing algorithm
is the extent of the fault information available at each
node. In routing strategy used in the paper, each node
needs to know only the local fault information [1, 2, 3, 4].
With this limited information the routing algorithms
becomes simple, and thus the routing decision at each
node becomes fast. However, the resulting path by the
algorithms may not be the optimal.
 A set of adjacent faults forms two types of fault shapes
in mesh networks: fault-ring and fault-chain. If a
connection of only nonfaulty adjacent nodes and links
forms a ring such that the interior of the ring contains only
faulty components, then the shape is called fault-ring (f-
ring in short). When an f-ring touches one or more

boundaries of the network, it becomes a fault-chain (f-
chain in short).
 An extensive amount of work has been done on fault-
tolerant routing in mesh networks [1, 2, 3, 4]. Among
them, we briefly explain the most relevant works to our
algorithms. Boppana and Chalasani [1] have proposed
fault-tolerant routing algorithms in mesh networks using
wormhole technique. Their algorithms, based on the e-
cube routing, are deadlock- and livelock-free using only
local knowledge of faults. Both f-rings and f-chains are
allowed in their fault model, however, the shape of f-rings
is restricted to rectangle. Four virtual channels are used
to implement the algorithm. Later Sui and Wang [3] have
improved the algorithm using only three virtual channels.
In [2] Boppana and Chalasani proposed an algorithm
tolerating more general forms of f-rings, called non-
convex. Let a, l1, and l2 be any nonfaulty node and two
faulty links of an f-ring. In nonconvex fault model, no
nonfaulty node, a, exists between two faulty links, l1 and
l2, in the same row (respectively, column) of the mesh.
 While permitting arbitrary fault patterns may still be an
elusive goal, it would be desirable to relax the restriction
on the shape of the f-rings. To achieve this goal, we
present a routing algorithm which tolerates more relaxed
fault models than those in [1, 2, 3] using four virtual
channels. Further, we also show another algorithm using
only three virtual channels for more restricted f-rings.
Our algorithms are better than those in [1, 2, 3] in terms of
the number of processors that should be made faulty.
Each nonfaulty node in the proposed algorithms may need
to know the status of nodes beyond its neighbor nodes. In
order to do this, it may need additional time. Even though
we consider only nonoverlapped f-rings in this paper, the
proposed algorithms can easily be extended to deal with f-
chains and overlaps by creating more virtual channels.
 The rest of the paper is organized as follows. Section 2
describes the necessary information to understand the
paper. Section 3 explains the new fault-tolerant
algorithms. Conclusion is presented in Section 4.

2

2. Background
 In this section we depict the fault models that have been
adopted in the design of the proposed algorithms. In our
fault model, both node and link failures are considered,
i.e., either the entire processor element (node) and its
associated router or any communication line (link) could
fail. It is also assumed that the faults do not disconnect
the network.
 A node in column a and row b is represented by (a, b) in
a 2D mesh. A link that connects node (a, b) and node (c,
d) is represented by (a, b)↔(c, d).
 Based on the number of faulty links incident to a node,
each node on an f-ring falls into one of the following three
categories:
1) Convex node – no faulty link incident to it.
2) Concave node – exactly two faulty links incident to it.
3) Plain node – only one faulty link incident to it.
 A portion of an f-ring that consists of two convex nodes
with only plain nodes, if any, between them is called
convex section. Likewise, if a portion consists of two
concave nodes and possibly with some plain nodes in
between them is called concave section. If a convex
section of an f-ring is projecting towards the West
(respectively, East, South, North) side of the f-ring, it is
called West (respectively, East, South, North) convex
section. To distinguish the two convex nodes in a convex
section, we call them the upper, the lower, the left and the
right convex nodes, respectively, according to their
relative positions in the section.
 In our fault models, there might be several f-rings. We
divide each f-ring into four portions: the North, South,
West and East sides. All nodes and links between the
upper convex node of the upper-most West (respectively,
East) convex section and the lower convex node of the
lower-most West (respectively, East) convex section form
the West (respectively, East) side. Note that there exists
at least one East and one West convex sections. If there is
only one West (respectively, East) convex section, the
West (respectively, East) side is between upper and lower
convex node of the section. The North (respectively,
South) side is the northern (respectively, southern) portion
between the East and West sides.

EXAMPLE 1: In Fig. 1, some of the convex nodes are (0,
2), (0, 3), (1, 4), some of the concave nodes are (1, 2), (1,
3), (2, 4), (2, 5), and some of the plain nodes are (3, 7), (4,
3), (6, 2). {(1, 5), (1, 6), (1, 5)↔(1, 6)} and {(2, 7), (3, 7)
(4, 7), (2, 7) ↔(3, 7), (3, 7) ↔(4, 7)} are some examples
of convex section, and {(4, 6), (5, 6), (6, 6), (4, 6)↔(5,
6), (5, 6)↔(6, 6)} and {(2, 4), (2, 5), (2, 4) ↔(2, 5)} are
some examples of concave section. {(8, 3), (8, 4), (8, 5),
(8, 3)↔(8, 4), (8, 4)↔(8, 5)} is an example of East
convex section, and {(2, 4), (2, 5), (2, 4) ↔(2, 5)} is a
West concave section. (1, 6) is the upper convex node of

the upper-most convex section, and (0, 2) is the lower
convex node of the lower-most convex section.
Therefore, the portion from node (0, 2) to (1, 6) is the
West side, from (8, 3) to (8, 5) is the East side, from (1, 6)
to (8, 5) is the North side, and from (0, 2) to (8, 3) is the
South side.

Figure 1. An example of an f-ring.

2.1 Fault model
Let us take a portion of a side of an f-ring and align it
along the x-axis with the faults below it. Let l1 = (xa, yb)
↔(xa, yb+1), l2 = (xc, yd) ↔(xc, yd+1) be any two faulty links
from the inside of the same f-ring. In our fault model, if
xa = xc, every nodes between l1 and l2 are faulty.
For all nodes in the portion, if their y values do not
decrease (resp., increase) as x values increase, the portion
is called monotonically increasing (resp., monotonically
decreasing). In Fig. 1, for example the portions from
node (1, 6) to node (4, 7) and from node (1,1) to node (0,
2) are monotonically increasing, and the portions from
node (7, 2) to (3, 3) and from (6, 7) to (8, 5) are
monotonically decreasing.
 If a side is monotonically increasing first and then
monotonically decreasing, then it is called convex side.
Likewise, if a side is monotonically decreasing first and
then monotonically increasing, then it is called concave
side. If it consists of a combination of any number of
monotonically increasing portion and monotonically
decreasing portion, then it is called zigzag side. Note that
a convex (or a concave) side is a zigzag side.

3

 As mentioned in Section 1, Chalasani and Boppana [1,
2] have proposed routing algorithms to handle the case in
which each side of f-rings is only convex (it is called
nonconvex in [2]). Examples of f-rings allowed in their
algorithms are (a) and (b) in Fig. 2. However their
algorithm may not work properly, if an f-ring contains
some concave sides as shown in (c) and (d) of Fig 2.
Therefore, if one wants to use the algorithms, concave
sides should be made convex by converting some
nonfaulty nodes to faulty. This results in the waste of
costly resources. In this paper we propose a fault-tolerant
routing algorithm which can tolerate f-rings with zigzag
sides. Thus our algorithm works correctly for f-rings in
Fig. 2 (a), (b), (c), and (d). However, Fig 2. (e) is not
allowed in our algorithm because the North side of the f-
ring is not a combination of only monotonically increasing
and decreasing portions.

Figure 2. Several examples of f-rings.

2.2 Formation of fault rings
Messages are routed around the f-rings in two directions:
clockwise and counter-clockwise. As shown in [1, 2, 3],
only the fault status of the neighbor nodes is enough for
any node to determine its two neighbor nodes on the f-ring
in each direction. For example, in Fig. 1, since south
link of node (2, 4) and east link of (1, 3) are faulty, it can
be easily determined that the neighbor nodes of (1, 4) in
counter-clockwise and clockwise directions are (1, 3) and
(2, 4), respectively. These are also called left and right
nodes, respectively. Refer to [2] for full description of
the f-ring formation algorithm.
 Each node in f-rings can easily be determined whether it
is convex, concave or plain by the number of faulty links
incident to it.

2.3 Node position on an f-ring
In addition to the knowledge about the neighbor nodes on
f-rings, each node in our f-ring models has to know its
position on the f-ring, i.e., which side it resides: North,
South, East or West. Since an f-ring is a ring, every node
on an f-ring has exactly two incident links on the f-ring.
Let Xab indicate a convex node with links in a and b
directions, where a, b ∈ {W(est), E(ast), S(outh),
N(orth)}. Likewise, Vab indicates a concave node. In the
rest of the section, a node indicates a convex or concave
node only, unless otherwise specified. Below we briefly

describe the distributed algorithm for each node to attain
its position information on the f-ring.

Step 1: Every node in the f-ring sends its incident f-ring
link information to its neighbor nodes in both directions.
Step 2: Each node receives information from both
neighbor nodes and determines, if possible, its position on
the f-ring using the rules given in Table 1. For example,
suppose the type of current node is XES and its left node is
XEN, then the two nodes and all plain nodes, if any,
between them form a West convex section. Thus, in our
fault model all convex, concave and plain nodes in this
section are in the West side. Note that only the nodes
between the same type, i.e., between convex and convex
or between concave and concave, know their positions
after Step 2.
Step 3. Nodes between different types, namely convex
and concave, determine their positions. Suppose a node,
v of type say convex, knows its position, p ∈ {W, E, N,
S}, this may be due to its left neighbor node, u, is of the
same type-in this case convex. Furthermore suppose w is
the nearest node on the right side of v, but not necessarily
a neighbor, that knows its position q ∈ {W, E, N, S}. Let
V be all nodes between v and w, including the plain nodes.
Now node v and w set the position of nodes in V as
follows:
1) If p=q, then all nodes in V are assigned the same

position p.
2) If p≠ q, then one of p or q must be N or S. Let us

assume p ∈ {N, S}. Then, all nodes in V are assigned
p. It can be easily verified that if p≠q, then p and q
cannot have the values only from {N, S} or only from
{E, W}.

Node type Neighbor node type Position
XES Left node is XEN West
XES Right node is XWS North

XWS Left node is XES North

XWS Right node is XWN East

XWN Left node is XWS East

XWN Right node is XEN South
XEN Left node is XWN South
XEN Right node is XES West
VES Left node is VEN East
VES Right node is VWS South
VWS Left node is VES South
VWS Right node is VWN West

VWN Left node is VWS West

VWN Right node is VEN North

VEN Left node is VWN North
VEN Right node is VES East

Table 1. Position of each node on an f-ring.

4

3. Routing algorithms
 In this paper we follow the convention and notation
used in [1, 2]. Let M denote a message to be routed from
the current node, (ac, bc), to the destination node (ad, bd).
Our algorithms are based on the e-cube routing, in which
all messages are routed in two phases: in the first phase
the message is routed along d0 dimension (row dimension)
until (ac = ad), and in the second phase it is routed along d1

dimension (column dimension) to the destination. M is
said to be row message if it is in its first phase and column
message, otherwise. Further, row messages traveling
from West to East (respectively, East to West) are WE
(respectively, EW) messages. Likewise, column
messages traveling from North to South (respectively,
South to North) are NS (respectively, SN) messages. A
row message can be changed to column message, but not
vice versa in the e-cube routing.
 Our first fault-tolerant routing algorithm, F4, requires
four virtual channels and handles the fault rings with
zigzag sides. We also propose another algorithm, F3,
which, using only three virtual channels, routes a message
in a mesh with f-rings containing at most three zigzag
sides. There is no limit on the number of faults in both
algorithms. Note that neither overlapped f-rings nor f-
chains are allowed in our algorithms.

3.1. F4: A routing algorithm for fault rings with
four zigzag sides
Let (ac,bc) be the current host node of the given message
M. If (ac,bc) = (ad, bd), then M has reached its destination
and so it is consumed. Otherwise, M starts as either WE
or EW message depending on its value of d0 dimension in
source and destination addresses. Once (ac = ad), M
changes to column message and continues to travel
towards its destination. M travels in the network based
on the e-cube algorithm until it reaches an f-ring. Once it
reaches the f-ring, two things can happen:
1. If its e-cube hop is on the f-ring, then it continues to

travel in the f-ring, or
2. If its e-cube hop is blocked, then it is misrouted.
In both cases, the message traveling on an f-rings can use
only the following virtual channels depending on the
message type: WE message uses c0, EW message uses c1,
NS message uses c2, and SN message uses c3 channel.
The next hop for M is determined by the set of rules given
in Table 2. The Procedure Set-Status sets the message
status to normal or misrouted depending on the
availability of the next e-cube hop. That is, if the next e-
cube hop for M is not blocked by a fault, then its status is
set to normal, and M is routed using the e-cube algorithm.
Otherwise it is misrouted.
 If a message takes an e-cube hop on a link that is not on
an f-ring, it can use any virtual channel without causing

deadlock. This is because the e-cube routing needs only
one virtual channel per physical channel [2].
 Whenever M’s status becomes misrouted, its direction
on the f-ring is determined by the Procedure Set-
Direction using Table 3. Once its direction on the current
f-ring is set, it will never be changed until M leaves the f-
ring. Table 3 is established by the following rules in order
to avoid deadlock.

1. When a WE message reaches the West side of an f-
ring, route the message in counter clockwise direction
if the destination is to the South of current node;
otherwise route in clockwise direction. Note that the
WE message never reaches the East side of the f-ring.

2. When a WE message reaches the North (resp., South)
side of an f-ring, route the message clockwise (resp.,
counter clockwise) along the f-ring.

3. When a NS message reaches the North side of an f-
ring, route the message in either direction.

4. When a NS message reaches the West side (resp.,
East) of an f-ring, route the message in counter
clockwise (resp., clockwise) direction on the f-ring.

 Similar rules are applied for EW and SN messages and
are summarized in Table 3.

Procedure Set-Direction (M)

IF direction of M is not null, return.
Otherwise, set direction according to Table 3.

Procedure Set-Status (M)

IF (M is row message, and the next available e-cue hop is
not on the f-ring), THEN set the status of M to normal and
the direction of M to null.
IF (M is NS message, ac = ad, bc > bd, and the next e-cube
hop is available), THEN set the status of M to normal and
the direction of M to null.
 IF (M is SN message, ac = ad, bc < bd, and the next e-
cube hop is available), THEN set the status of M to normal
and the direction of M to null.
Otherwise, set the status of M to misrouted and set-
Direction (M).

Procedure Route-Message (M)

1 IF (ac = ad) and (bc = bd), THEN M reaches its
destination. Consume M and return.
2 IF M is a row message and (ac = ad), THEN change its
type to SN if (bd > bc) or NS if (bc > bd).
3 SET-STATUS (M).
4 IF M is normal, use the e-cube hop.
 Otherwise, route M on the fault ring in the specified
direction.
Table 2. Fault-tolerant algorithm, F4.

5

Node
position

Message
Type

Misrouted
Direction

WE Clockwise (CW)
EW Counter Clockwise (CCW)
NS Either CW or CCW

North

SN CW if ac < ad, CCW if ac > ad

WE CCW
EW CW
NS CW if ac > ad, CCW if ac < ad

South

SN Either CW or CCW
WE CCW if bc > bd , CW if bc < bd ,

otherwise either CW or CCW
EW N/A
NS CCW

West

SN CW
WE N/A
EW CW if bc > bd, CCW if bc < bd ,

otherwise either CW or CCW
NS CW

East

SN CCW
 Table 3. Direction to be set for the misrouted messages
on f-rings.

EXAMPLE 2: Consider the F4 routing of a message M
from (1, 7) to (5, 0) in Fig. 3. M uses c0 channel from (2,
7) to (4, 5), and uses c2 from (5, 3) to (5, 1). At first, M
is a normal WE message and is routed to (3, 7). Since its
e-cube hop is blocked by the faulty link (3, 7)↔(4, 7), its
status is set to misrouted at (3, 7). Because M’s
destination is south of (3, 7), its direction is set to the
counter clockwise orientation and is routed along (3,
6)→(2, 6)→(2, 5). At (2, 5) M becomes normal message
again and travels up to (5, 5). M becomes a column (NS)
message at (5, 5), and travels to the south along (5,
5)→(5, 4)→(5, 3) as a normal message. At (5, 3) M’s e-
cube hop is blocked by the faulty link (5, 3) ↔ (5, 2).
Thus, its status is set to misrouted at (5, 3) and misrouted
in the counter clockwise orientation (the orientation is
chosen randomly) along the f-ring to (5, 1). At (5, 1) M is
set to a normal NS message, since the destination and
current node are located on the same column and its e-
cube hop is not blocked. M is routed to (5, 1)→(5, 0) as
a normal NS message. Note that the hops from (5, 1) to (5,
0), (4, 5) to (5, 5), (5, 5) to (5, 4), and (5, 4) to (5, 3) are
not on the f-ring. Therefore, as mentioned above, any of
the four classes of virtual channels may be used for the
hop.

We now prove the deadlock freedom in F4.
Lemma 1: Let m1, m2 and m3 be the messages using the
same virtual channels. Also let n1, n2 and n3 be the nodes
in f-rings f1, f2 and f3, respectively. If m1 travels from n1 to
n2, and m2 travels from n2 to n3, then there is a message m3

that travels from n1 to n3.

 Lemma 1 implies that any deadlock involving multiple
f-rings can be checked by just considering between two f-
rings.

Figure 3. An example of F4 using four virtual channels.
Solid arrows indicate the virtual channel c0, and the dotted
arrows indicate the virtual channel c2. The other type of
arrow is used for the e-cube hops that are not on the f-
ring, and it can be any virtual channel.

Theorem 1: F4 algorithm causes no deadlock in 2D
meshes that contain any number of f-rings with zigzag
sides.
Proof: In F4 each message type uses an exclusive set of
virtual channels for its travel to the destination. Row
messages may change their types into column messages,
but not vice versa. Further, WE messages cannot be
changed into EW messages, and vice versa. Likewise, NS
messages cannot be changed into SN messages, and vice
versa. Thus, deadlock involving more than one type of
messages cannot occur. Hence, to prove the deadlock
freedom, it is sufficient to show that there is no deadlock
among messages of a specific type.
In the following we provide the proof of deadlock
freedom for WE messages (c0 channels) only. Deadlock
freedom for other message types can be proved in a
similar manner. Our proof consists of two parts: no cyclic
dependency among WE messages 1) in an f-ring, and 2)
involving multiple f-rings.

6

1) Deadlock freedom with WE messages in an f-ring:
According to F4, WE messages can travel either
clockwise or counterclockwise on f-rings, and it can be
easily shown that these two types of messages do not
share the same link. Thus, no deadlock can occur in an f-
ring.
2) Deadlock freedom with WE messages involving
multiple f-rings: Suppose a WE message travels along the
part, say p1, of f1 and reaches at the node b on f2. In order
to form a cycle, there must be a WE message that travels
through b and reaches p1. We prove the theorem by
showing the non-existence of such a message. In the
following we consider all possible cases that can occur
with WE messages.
Case 1) Node b is at the North or South side of f2.
According to F4, the message will never take EW
channels. Therefore, it never reaches p1. (It may reach
other parts of f1 again if any part of f2 locates in the south
concave section or the north concave section of f1, but not
p1).
Case 2) Node b is at the West side of f2. If the West side
contains no concave section, a similar argument as in Case
1 above can be applied. If f2 does contain concave
sections, the WE message may travel clockwise (resp.,
counter clockwise) taking some EW channels along f2

until it reaches west-most node, say d, of North side
(resp., South side). Note that since overlapping of fault
rings are not allowed, the path from b to d cannot reach
p1. After reaching node d, Case 1 can be applied.
Also, F4 does not allow WE messages to reverse its
direction on a column.
Similar argument can be applied to EW, NS and SN
messages. Thus, there is no deadlock in F4.

3.2. F3: A routing algorithm for f-rings with up
to three zigzag sides using three virtual channels

To implement the virtual channels, extra hardware such
as flit buffers and proper logic is needed. Besides, these
virtual channels are usually implemented on physical
channel by using time sharing strategy. Therefore, a less
number of virtual channels may lead to a better
performance of the system.
 In this section we propose another fault tolerant routing
algorithm for f-rings with at most three zigzag sides. To
satisfy this property, we make either all West sides or all
East sides of f-rings be of convex fault model. In the
previous routing algorithm, F4, it can be observed that
only half of the c0 (respectively, c1) virtual channel links
in f-rings is used by WE (respectively, EW) messages.
For full utilization of the channel capacity, the WE and
the EW messages share the same virtual channel, c0, in
our modified algorithm, F3. Consequently, the channel
usage by F3 is: 1) the WE and EW messages use c0

channel, 2) the NS messages use c1, and 3) the SN

messages use c2 channel. Except these channel
assignment to message types, F3 is same as F4.
Theorem 2: F3 causes no deadlock in 2D meshes.
Proof: The same argument can be applied as shown in
Theorem 1 for deadlock in an f-ring. Suppose two f-rings,
f1 and f2 are involved in deadlock. Without loss of
generality, assume that the location of f1 is left of f2. It can
be seen that the only possible palces for deadlock between
the two f-rings are East side of f2 and West side of f2. Let
us assume that East sides of f-rings are convex. To satisfy
the deadlock situation, the messages involved in the
deadlock should have four or six “turns” in their paths [5].
However, since East side is concave, it is not possible to
have “up-right” and “down-right” turns. Therefore, no
deadlock occurs in F3.

 In both F3 and F4, messages are misrouted only when
they are blocked by f-rings. Otherwise, they proceed
towards their desinations using the e-cube algorithm.
Since there is a limited number of f-rings in the network,
the amount of misrouted steps are also limited. Therefore,
every message will eventually reach its destination
without any livelock.

4. Conclusion
 In this paper we have proposed two fault-tolerant
wormhole routing algorithms in mesh networks. Both
algorithms relax the restrictions in [1, 2, 3] to some
extend. As a result, the number of components to be made
disabled would be reduced considerably in some cases.
First algorithm, F4, using four virtual channels, can
tolerate any number of convex and concave portions in
each side. Second algorithm, F3, uses only three virtual
channels to tolerate fault rings with up to three zigzag
sides. Both F3 and F4 are free of deadlock and livelock
and guarantee the delivery of messages between any pair
of nonfaulty and connected nodes in the network.

5. References
[1] R.V. Boppana and S. Chalasani, “Fault-Tolerant Wormhole

Routing Algorithms for Mesh Networks,” IEEE Trans.
Computers, vol. 44, no. 7, pp. 848-864, July 1995.

[2] S. Chalasani and R.V. Boppana, “Communication in
Multicomputers with Nonconvex Faults,” IEEE Trans.
Computers, vol. 46, no. 5, pp. 616-622, May 1997.

[3] P. Sui and S. Wang, “An Improved Algorithm for Fault-
Tolerant Wormhole Routing in Meshes,” IEEE Trans.
Computers, vol. 46, no. 9, pp. 1040-1042, Sept. 1997.

[4] A. Chien and J. Kim, “Planar-Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors,” Proc., 19th Ann.,
Int’lSymp. Computer Architecture, pp. 268-277, 1992.

[5] C. J. Glass and L. M. Ni, “The turn model for adaptive
routing”, Proceedings of the 19th International Symposium
on Computer Architecture, pp. 278-287, May 1992.

