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ABSTRACT
Recent work has shown that there exists burstiness characteristic
(i.e. time-varying arrival rates) in multimedia traffic. It is
important to understand the performance of interconnection
networks in the presence of this kind of traffic. However,
simulation-based approaches may be costly and time-consuming.
This paper proposes a new analytical model for adaptive
wormhole-routed torus network with interrupted Poisson process
(IPP) input traffic. The validity of the model is demonstrated by
comparing analytical results to those obtained through simulation
experiments.

Keywords
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1. INTRODUCTION
Parallel and distributed systems (or multicomputers) are
commonly accepted as good candidates for large-scale multimedia
servers as they meet the high computation and communication
requirements of multimedia applications. The efficiency of
multicomputers is critically dependent on the performance of its
interconnection network, which is determined by the topology,
switching method, routing algorithm and traffic model [5].

Torus networks have been employed extensively in the latest
generation of multicomputers [5]. Recently, Duato [4] proposed
an adaptive routing algorithm to improve the performance of
interconnection networks with wormhole switching. The
algorithm divides the virtual channels into two classes: a and b. At
each routing step a message can adaptively visit any available
virtual channel from class a. If all the virtual channels belonging
to class a are busy it crosses a virtual channel from class b using
dimension-ordered routing.
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Recent studies have revealed that traffic generated by multimedia
application exhibits a high degree of burstiness, which can
significantly affect queueing performance [6], [7]. However, all
existing performance analyses of interconnection networks have
assumed the traffic follows the Poisson arrival process [2], [3],
[10], [11]. Using realistic traffic models is a critical step towards
understanding the important factors that affect the quality-of-
service of multimedia applications in multicomputers. The
interrupted Poisson process (IPP), which is a special case of the
Markov-modulated Poisson process (MMPP) [6], has been
extensively used to model multimedia traffic in a single ATM
mutiplexer [7], [8], [12].

This paper proposes a new analytical model for adaptive
wormhole-routed torus networks with IPP input traffic by
extending the application of MMPP to the whole network. We
first approximate the arrival process at network channels to a two-
state MMPP and treat network channel as an MMPP/G/1
queueing system. Then we derive the mean message latency in the
network. The validity of the model is demonstrated by comparing
analytical results to those obtained through simulation
experiments. The rest of the paper is organised as follows. Section
2 describes the analytical model. Section 3 validates it through
simulation. Finally, Section 4 concludes this study.

2. THE ANALYTICAL MODEL

The 2-dimensional torus network contains 2kN =  nodes,
arranged in two dimensions, with k nodes per dimension. Each
node is connected to its neighboring nodes through 4 inputs and 4
output channels [5]. The model is based on the following
assumptions [1], [2], [3], [10], [11].

a) Traffic generated by the source nodes is independent of
each other, and follows an IPP.

b) Message destination nodes are uniformly distributed
across the network nodes.

c) Message length is m flits, where m is a random variable.
The Laplace-Stieltjes transform of m is given by

)(* sM . Each flit requires one cycle to cross from one
router to the next.

d) The local queue in the source node has infinite capacity.
Moreover, messages at the destination node are
transferred to the local processing element as soon as
they arrive at their destinations.

e) Each physical channel is divided into V (V>2) virtual
channels. In Duato’s routing algorithm [4], class a
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contains )2( −V  virtual channels and class b contains
two virtual channels.

The mean message latency is composed of the mean network
latency, t , that is the time to cross the network, and the mean
waiting time seen by message in the source node, sw . However,

to model the effect of virtual channels multiplexing, the mean
message latency has to be scaled by a factor, v , representing the
average degree of virtual channels multiplexing, that takes place
at a given physical channel. Therefore, we can write [2], [10], [11]

vwtLatency s )( += (1)

Under the uniform traffic pattern, the average numbers of hops
that a message makes along a given dimension and across the

network, k  and d , are given by [1]





−
=

odd is    if         4/)/1(

even is    if                     4/

nkk

nk
k (2)

kd 2= (3)

The network latency consists of two parts: one is the delay due to
the actual message transmission time, and another is due to the
blocking time in the network. Let t  be a random variable that
denotes the network latency. t  can be written as

bdmt ++= (4)

where m  is the message length, d  is the mean message distance,
b  is the blocking time experienced by a message to cross the
network. Adaptive routing allows a message to cross in any order
those channels that bring it closer to its destination resulting in an
equal and balanced traffic load on all channels. Therefore, a
message sees the same waiting time across all channels. However,
it sees a different probability of blocking at each hop as the
number of alternative paths changes from one hop to another [11].
The blocking time, b, is given by

∑ == d
i bb wPb

i0 (5)

where bw  and 
ibP  denote the waiting time and probability that a

message is blocked after making i hops.

Since the Laplace-Stieltjes transform of the sum of two
independent random variables is equal to the product of their
transforms [9], the Laplace-Stieltjes transform of the network
latency is given by

∫
∞ −− ==
0

*** )()()()( sBesMxdTesT sdsx (6)

where )(* sM and )(* sB denote the Laplace-Stieltjes transforms
of the message length and blocking time. In what follows, we will

describe the calculation of the following quantities: )(* sB , t ,

sw  and v .

2.1. Determination of Traffic Characteristic at
Network Channels

The traffic generated by a source node is represented by an
independent IPP, which is a special case of the two-state
MMPP(2) [6]. The MMPP(2) is a doubly stochastic process with
an arrival rate governed by a two-state continuous time Markov
chain. In state i  (i=1, 2), the arrival process follows a Poisson

process with rate iµ . The transition rate out of state 1 to 2 is 1σ ,

while the rate out of 2 to 1 is 2σ . In particular, the MMPP(2)

with one of the arrival rates 1σ  or 2σ  equal to 0 is called an IPP.

The MMPP(2) can be parameterised by the infinitesimal generator

sQ  of the underlying Markov chain and the rate matrix sΛ  [6]
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The mean arrival rate, sλ , and the counting function )(tNs , the

number of arrivals in ],0( t , of the MMPP(2) play a major role in
the subsequently described method to obtain the arrival process at
network channels. We recollect from [7] the formulae for the
mean, variance-to-mean ration, the third moment of )(tNs  and

the mean arrival rate as
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Expressions for ijA  are given in [7] in terms of the four

parameters 1µ , 2µ , 1σ  and 2σ .

Under the uniform traffic pattern, adaptive routing results in an
equal and balanced traffic load on all network channels. The
arrival process at network channels exhibit similar statistical
behaviour. Each message travels, on average, d channels to reach
its destination and each node has 4 output channels. As a result,
the amount of traffic that arrives at each network channel, on
average, is equal to the amount of traffic generated by sn  source

nodes. sn  can be given by

24

k

N

Nd
ns ==  (13)

Exact analysis of the arrival process at network channels is
intractable because the superposition and splitting of the traffic
prevalently occurs when traffic stream enters and leaves a
channel. The arrival process at network channels is approximated
by an MMPP(2), which is chosen such that several of its statistical
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characteristics identically match those of traffic generated by sn

sources. This approximation method has been commonly accepted
for analysing the traffic characteristic resulting from superposition
of more than one bursty sources [7], [8], [12].

To derive the characteristics of the MMPP(2) representing the
traffic at network channels, we follow the method suggested by
Heffes and Lucantoni [7]. In this method, the four parameters of
the MMPP are chosen so that the following characteristics of the
arrival traffic at a channel are matched: i) the mean arrival rate; ii)
the variance-to-mean ratio of the number of arrivals in some time
interval; iii) the long term variance-to-mean ratio of the number of
arrivals; iv) the third moment of the number of arrivals in some
time interval.

Let the subscript c relate a given quantity of the arrival traffic to a
network channel. The above four characteristics of the superposed
traffic generated by sn  sources can be written as [7], [9]

ssc n λλ = (14)
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With the above parameters expressed by equations 14~17 as input
parameters, the algorithm proposed in [7] derives the infinitesimal
generator cQ  and the rate matrix cΛ  of the MMPP(2) that

closely matches the characteristics of the traffic arriving at a given
network channel. cQ and cΛ  are given by
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2.2. Calculation of the Laplace-Stieltjes
Transforms of the Blocking Time ( )(* sB )

To determine the waiting time, bw , to acquire a virtual channel a

physical channel is treated as an MMPP/G/1 queue. Since
message destinations are uniformly distributed across the network
nodes, with adaptive routing the service time seen by message at
network channels is the same and is equal to t [11], (whose
Laplace-Stieltjes transform is given by equation 6). The mean of
the waiting time at customer arrival instants, bw , is given as [6]
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In the above equations, t , )2(t  and )3(t  denote the mean, second
and third moment of service time at a network channel,

respectively. These quantities are given by differentiating )(* sT

and setting 0=s  [9]. The traffic intensity, ρ , is given by

ctλρ = . π  is the steady-state vector and is written as
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The algorithm to calculate matrix g  is described in [6]. From the
algorithm, we can find also that the Laplace-Stieltjes transform,

)(* sT , is required to computer g .

In order to derive )(* sT  described by equation 6, we need

calculate the Laplace-Stieltjes transform, )(* sB , of the
distribution of the blocking time. However, finding the exact
expression of the distribution function of the blocking time is very
difficult and complex undertaking. Given that any distribution
function can be approximated as closely as desired by a series-
parallel stage-type of exponential distributions [9], the distribution
of the blocking time can be reasonably approximated by an
exponential distribution. Therefore, we can approximately express
the probability density function of the blocking time, )(xB , and
its Laplace-Stieltjes transform as

xexB ββ −=)(       ( 0>α ) (20)

β
β
+

=
s

sB )(* (21)

where β  are selected to match the mean, b , of the blocking

time. β  is found to be

b/1=β (22)

From the definition of mean along with equation 5, b  can be
easily expressed using bw  obtained from equation 19.

2.3. Calculation of the Probability of Blocking
( ibP )

The probability that a message is blocked at a given node depends
on its current network position. This is because the number of
alternative paths that a message can take to advance towards its
destination is determined by the number of the remaining hops
and the ways to distribute these hops in each dimension. For a
message having made i hops, we denote x, y as the numbers of
hops achieved in the first and second dimensions respectively,

where ( ) ( )kyxiyx ≤≤=+ ,0 , . To determine the probability that
a message has crossed all the channels in one dimension, two
cases need to be considered.

i) When ki <≤0 , the message has not crossed any dimension

since it has to make k  hops along each dimension. As a result,
it still can choose among virtual channels of both dimensions.

ii) When dik <≤ , the number of ways to distribute the hops
along the two dimensions is )1( +− id . In only two cases,

( )kiykx −== ,  and ( )kykix =−= , , has a message crossed
all channels of one dimension, and thus all the remaining hops
have to be made in another dimension.

So, the probability that a message can choose virtual channels in
only one dimension after making i hops can be written as
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A message is blocked when all the virtual channels belonging to
class a in the remaining dimensions to be visited and also the
virtual channels belonging to class b in the lowest dimension to be
visited are busy [2], [4], [11]. The probability, 

ibP , that a

message is blocked after making i hops can be written as

baabab PPPPPP
iii && )1( θθ −+= (24)

with aP  being the probability that all virtual channels belonging

to class a in a physical channel are busy and baP &  being the

probability that all virtual channels belonging to class a and class
b in a physical channel are busy. Let VP  be the probability that

V  virtual channels at a given physical channel are busy ( VP  is

determined below in Section 2.5). aP  and baP &  are given in

terms of VP  as (see [11] for more details on the calculation of

these probability)
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2.4. Calculation of the Mean Waiting Time at
the Source ( sw )

To determine the mean waiting time, sw , that a message

encounters in the source node before entering the network, the
injection channel is modelled as an MMPP/G/1 queueing system.
The derivation of sw  is similar to that used for the mean waiting

time, bw , at a network channel. The traffic generated at the local

queue is characterised by the infinitesimal generator sQ  and the

rate matrix sΛ  (given by equation 7). Equation 19 is used to

compute the mean waiting time at the source.

2.5. Calculation of the Average Degree of
Virtual Channels Multiplexing (V )

The probability, ϕP  )0( V≤≤ ϕ , that ϕ  virtual channels at a

given physical channel are busy, can be determined using a
Markovian model [3]. State ϕV  corresponds to ϕ  virtual

channels being busy. The transition rate out of state ϕV  to 1+ϕV

is cλ , where cλ  is the average traffic rate on a given channel

(and is calculated by equation 14), while the rate out of ϕV  to

1−ϕV  is t/1 . The transition rate out of the last state, VV , is

reduced by cλ  to account for the arrival of messages while a

channel is in this state. In the steady state, the model yields the
following probabilities.
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In virtual channel flow control, multiple virtual channels share the
bandwidth of a physical channel in a time-multiplexed manner.
The average degree of multiplexing of virtual channels, that takes
place at a given physical channel, is given by [3]
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3. VALIDATION OF THE MODEL
The above model has been validated by means of a discrete-event
simulator. Figures 1~2 depict mean message latency results
predicted by the above model plotted against those provided by
the simulator versus offered traffic in the torus networks under the

following cases: network size 216=N  and 224 nodes; number of
virtual channels 3=V  and 5; message length 32=M  and 48
flits. The infinitesimal generator sQ  denotes the different degree

of burstiness in traffic generated by source nodes. In all the
figures presented below, the x-axis represents the traffic rate, 1µ ,

at which a node injects messages into the network when the IPP
input traffic is at state 1. The y-axis gives the mean message
latency. The figures reveal that the simulation results match those
predicted by the analytical model in the steady state region. Its
simplicity makes it a practical and cost-effective evaluation tool.

4. CONCLUSION
Before the domain of multicomputers can be fully expanded to
encompass multimedia applications, it is necessary to re-examine
the performance properties of their interconnection network in the
context of these emerging applications in order to meet their
communication requirements. This paper proposes a new
analytical model for adaptive wormhole-routed torus networks
with IPP input traffic. Results from simulation experiments have
revealed that the model predicts message latency with a good
degree of accuracy. The next step in our work is to develop a
model for other well-known switching method including circuit
switching and packet switching.
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Figure 1: Latency predicted by the model and simulation in the torus network, 216=N , 3=V , 48=M  flits,
a) 8.0 ,2.0 21 == σσ  and  b) 6.0 ,6.0 21 == σσ .

Figure 2: Latency predicted by the model and simulation in the torus network, 224=N , 5=V , 32=M  flits,
a) 09.0 ,09.0 21 == σσ  and  b) 8.0 ,05.0 21 == σσ .
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