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Abstract

In recent years we have seen a growing interest in ir-
regular network topologies for cluster interconnects. One
problem related to such topologies is that the combination
of shortest path and deadlock free routing is difficult. As
a result of this the existing solutions for routing in irreg-
ular networks either guarantee shortest paths relative to
some constraint (like up*/down*), or have to resort to dead-
lock recovery through non-minimal escape channels. In this
paper we propose a method that guarantees shortest path
routing and in-order delivery, and that uses virtual chan-
nels for deadlock avoidance. We present a theoretical up-
per bound on the number of virtual channels needed, and
through extensive empirical testing we demonstrate that the
actual number of virtual channels is very low even for large
networks.

1 Introduction

Since the seminal work of Kermani and Kleinrock on
virtual cut through [11] and later Dally and Seitz onworm-
hole routing [4, 5] we have seen an ever increasing body of
research on these routing techniques. They are now the pre-
dominant paradigms in multicomputer interconnection. For
a survey of interconnection networks we refer to [6].

In recent years we have also seen that powerful work-
stations or PCs interconnected by off-the-shelf network
switches based on these routing techniques have been in-
troduced to the multiprocessor market. Such networks of
workstations (NOWs) have the advantage that they offer
greater flexibility than custom built multiprocessors, and
frequently to a lower cost since they are built from off-
the-shelf components. Examples of commercially available
switches for use in NOWs are [2, 3, 7, 9, 10].

One property of NOWs is that their routing functionality
must be able to handle irregular topologies as well as reg-
ular ones. A well-known method for generation of routing
algorithms in irregular networks is the up*/down* routing,

described in connection with [7]. It relies on a technique
for generating a breadth-first spanning tree of the network,
where the key issue is to determine directions of the links
in order for the network to be deadlock free. Sancho and
Robles propose an improvement of the up*/down* routing
scheme in [15], where they apply a depth-first search that al-
low for greater flexibility when forming the underlying rout-
ing graph. In [13] Lysne and Skeie also discuss an improve-
ment of the up*/down* algorithm by having multiple roots
and in this way be able to spread the traffic, gaining sig-
nificant increase in throughput (i.e. avoiding the hot spots
around the single root of up*/down* routing). Quao and Ni
takes a different approach to routing of irregular networks.
Their algorithm is based on Eulerian trails [14]. Their
method assumes an underlying Eulerian graph and can route
adaptively between two acyclic unidirectional trails (paths)
that contain all the channels (edges) of the network. In order
to have more optimized paths, different types of short-cut
channels are added following heuristic criteria.

Another body of work has focused on improving the
performance of irregular networks through various meth-
ods like virtual channel multiplexing, adaptivity, and short-
est path routing combined with escape paths. [17, 16, 18].
Potentially deadlocked packets (possibly determined by
timers) are re-directed to the escape virtual layer, and must
stay in this layer towards their destination in order to guar-
antee freedom from deadlocks.

One weakness of all the approaches is that they require
extra functionality in the switches that not all technologies
provide. In particular, methods based on adaptivity in the
switches lead to out-of-order delivery of packets. The ex-
tra protocol overhead involved in sorting the packets at the
destination is in some cases unacceptable. This is the rea-
son why some technologies, like those based on the recent
InfiniBandTM specification [1], only use deterministic rout-
ing. Another weakness of the above approaches is that
they do not guarantee shortest path routing of all packets.
A source routed shortest path algorithm is studied in [8],
where the temporary removal of packets at critical interme-
diate hosts avoids deadlock.



In this paper we present LASH routing, a method for
deterministic shortest path routing of irregular networks
in which all packets are routed minimally for any irreg-
ular topology, and in which all packets are delivered in-
order. The concept assumes the presence of virtual chan-
nels divided into virtual networks (layers) to avoid dead-
lock. Other than that, LASH routing requires no special
functionality within the switches, making it implementable
within the InfiniBandTM architecture. Achieving deadlock
free, minimal, and adaptive routing using virtual channels
was done for regular networks in [12], in particular for k-ary
n-cubes. This method was impractical, because the required
number of virtual channels per link grew exponentially with
n. We show that in practice, the number of virtual channels
in LASH routing is scalable with respect to network size.

The paper is organized as follows: Section 2 gives some
basic definitions and notation, section 3 presents the algo-
rithm for generating deadlock free minimal and determin-
istic routing functions using virtual layers. Section 4 is de-
voted to the development of a theoretical upper bound for
the number of virtual channels needed. Simulation experi-
ments to test the practical number of virtual layers the var-
ious topologies needed are described in section 5. Sec-
tion 6 gives some hints on how to implement LASH in
InfiniBandTM . Finally, we conclude in section 7.

2 Preliminaries

The definitions in this section adhere to the standard no-
tation and definitions of cut-through switching and graph
theory.

Definition 1 An interconnection network I is represented
by a strongly connected directed graph, I = G(N;C). The
vertices of I are the set of nodes (switches) N , whereas
the edges are the set of communication channels (possibly
virtual), C. Each channel is unidirectional and transmits
data from a source node to a destination node. A network
channel ci interconnects two nodes src(ci) and dst(ci)
2 N , the source and destination of the channel respec-
tively. Two disjoint sets of channels Ck (ck1 ; ck2 ; :::; ckn)
and Cl (cl1 ; cl2 ; :::; cln) that interconnect two nodes, so that
src(ck1 ; ck2 ; :::) = dst(cl1 ; cl2 ; :::) and src(cl1 ; cl2 ; :::) =
dst(ck1 ; ck2 ; :::), is called a bi-directional link. A network
is bi-directional if all its interconnections consist of such
links.

Definition 2 A (deterministic) routing function R : N �
C �N �! C takes a node ni, an input channel cij and a
destination address nd as parameters, and returns the out-
put channel to be taken from node n i for packets entering
its channel cij and whose destination is nd.

Notice that this definition of a routing function allows a
node to select different output channels depending on what
input channel a packet arrives on. This is not possible in
technologies such as InfiniBandTM , but also is not neces-
sary in the method we present in this paper. Our require-
ments are only that the routing tables are able to implement
shortest path routing, and that the virtual layer on which
each packet is to be routed can somehow be coded into the
packet.

Definition 3 For a network I and routing function R
there exists a dependency from channel ci to cj iff cj =
R(dst(ci); ci; n) for some node n. That is, packets destined
for n may use cj immediately after ci.

The following theorem is due to Dally and Seitz [5]. We
will use this theorem in order to prove that the routing func-
tions we define in this paper are deadlock free.

Theorem 1 A wormhole network is free from deadlocks if
its channel dependency graph is acyclic.

3 LASH Routing

In this section we present the ideas and principles of our
approach to LAyered SHortest path (LASH) routing. Free-
dom from deadlocks is attained by dividing the traffic into
different virtual layers using virtual channels. The rout-
ing functionR is defined by two sub-functions -Rphys and
Rvirt, respectively. The former defines one minimal physi-
cal path for each<source,destination> pair. The latter de-
termines on which virtual layer (set of channels) packets
from each<source,destination> pair should be forwarded
along the minimal paths specified byRphys.

The idea is that each virtual layeri in the network has a
set of<source,destination> pairsRvirti assigned to it, in
such a way that all<source,destination> pairs are assigned
to exactly one virtual layer. In addition we make sure that
each virtual layer is deadlock free by ensuring that the chan-
nel dependencies stemming from the<source,destination>
pairs of one layer do not generate cycles.

The number of<source,destination> pairs in a net-
work grows with the square of the number of nodes.
We use the termgranular unit (gu) to designate a
set of <source,destination> pairs. Instead of adding
<source,destination> pairs to virtual layers one by one, a
gu is assigned en bloc.

Below we give an algorithm that assigns each
<source,destination> pair to virtual layers.

Step 1: ObtainRphys by finding the shortest path between
any<source,destination> pairs within the network.



Step 2: Divide the set of all<source,destination> pairs
into a set ofgus in such a way that allgus by them-
selves are deadlock free.

Step 3: Take onegu of (source, destination> pairs that has
not yet been assigned to a virtual layer. Find an exist-
ing virtual layeri such thatgu can be added toRvirti ,
without closing a cycle of dependencies in virtual layer
i. Add gu to Rvirti (Basically, this step verifies that
virtual layeri remains free from deadlocks).

Step 4: If step 3 is unsuccessful, create a new virtual layer
j and letRvirti equalgu.

Step 5: If there are moregus that have not been assigned
to a virtual layer, goto step 3.

Step 6: ObtainRvirt from the setsRvirti for all i, by let-
ting all packets from each<source,destination> pair
in Rvirti be routed on virtual layeri.

Lemma 1 The resulting routing function R is minimal and
deadlock free.

Proof: SinceRphys defines the physical paths of the packet
forwarding, it follows thatR is minimal. From steps 2 and
3 it follows that the channel dependency graph associated
with each virtual layeri is acyclic. Since no packets are al-
lowed to switch between virtual layers, the resulting chan-
nel graph is also acyclic. It follows from theorem 1 thatR
is deadlock free. 2

From a computational point of view the main process-
ing part of the algorithm is step 3. For each granular unit
we examine if one or more channel dependency graphs are
acyclic. The cost of searching for cycles in such a directed
graph is bounded upwards linearly with the number of links
in the network. For networks of reasonable size, the exe-
cution time is insignificant for the types of granular units
we have used in our experiments (see section 5.1). Bigger
topologies can be handled by increasing the size of thegus.

4 An Upper Bound on Virtual Layers

The most critical question related to the method is how
many virtual layers are actually needed. This has implica-
tions to how the method scales relative to the size of the
networks (number of nodes) and with respect to connectiv-
ity (number of links).

We start by discussing connectivity. Whenn switches
are interconnected byn � 1 or n(n � 1)=2 bidirectional
links one virtual layer will always suffice, if we assume that
no link connects to the same pair of switches. The former

characterizes a network with minimal connectivity, which
means that it is structured as a tree. Since there are no loops
in the network, there can be no cycles in the dependency
graph with minimal routing. The latter case characterizes a
network with maximal connectivity. Since all packets travel
only one hop, this network will not have any channel depen-
dencies at all. Between these two extremities the required
number of virtual layers follows a curve that is first rising,
and then falling. As we shall see in a later section, the peak
appears to be around2n for most network sizes.

Let us now turn our attention to the needed number of
virtual layers as a function of the number of switches.

Lemma 2 Assume a network of n switches interconnected
by an arbitrary number of links, with a routing function
Rphys that for each <source,destination> pair defines a
minimal path through the network.

Then there exists an Rvirt dividing
<source,destination> pairs of the network into vir-
tual layers using at most dn=2e layers, such that the routing
function defined by Rphys and Rvirt is free from deadlocks.

Proof: Let us divide the<source,destination> pairs in
the network intogus such that eachgu consists of all the
shortest paths from one given node to all other nodes in the
network. Obviously the number ofgus will be n.

Consider an arbitrarygu consisting of all the shortest
paths from a nodeN to any other node in the network. As-
sume that to each nodeN 0 in the network, we assign an
integerpathlength(N 0) corresponding to the length of the
minimal path fromN to that node. Now, for any two adja-
cent nodes, their pathlength-integers will either be identical,
or one will be exactlyone higher than the other (otherwise
the integers could not correspond to shortest paths, as the
one link between the two nodes could add at most one to
the length of the minimal path).

Now consider any loop in the network, and any di-
rection around that loop. For thegu to induce a de-
pendency between two links going fromN1 to N2
and fromN2 to N3, the integers assigned to the three
nodes must givepathlength(N1) < pathlength(N2) <
pathlength(N3). Since the loop ends up inN1 again, no
more than half of the path around the loop can give us rising
pathlength-integers, thus if there areI nodes in the loop, the
number of dependencies in one direction around the loop
provided by onegu will be less thanI=2.

Since a cycle of dependencies around that loop will re-
quire I dependencies, and any onegu can contribute with
less thanI=2 dependencies, there will be room for at least
two gus in each virtual layer. The fact that in our case
there aren gus, gives that at mostdn=2e virtual layers are
needed. 2
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(b) Dependencies in a clockwise direction caused by
threegu with sourcess1, s2, ands3 respectively. As
we can see, these dependencies form a cycle.

Figure 1. A ring consisting of 6 switches and the channel dependencies created by the shortest paths from the switches
s1, s2, and s3 to other switches in the clockwise direction.

However, under normal circumstances the needed num-
ber of virtual layers is very often far below our theoretical
upper bound. For large networks the maximum number of
virtual layers we have found necessary for any of the topolo-
gies we have generated is not even close to this bound.

The reason for this might be that we have not found the
best possible (least) upper bound. Our bound is based on
some of the properties of one algorithm for dividing traf-
fic to layers. A search for the least upper bound, and for
algorithms that generate routing tables that stay below this
upper bound in terms of virtual layers, is a topic for further
study.

One promising approach is to carefully choose the se-
quence in which the granular units are considered. In fig-
ure 1 we see an example network in which a cycle of depen-
dencies may be closed already at three granular units. By
choosing othergus than those represented by the sources
s1, s2, ands3 the cycle would not have been closed. In
particular, if we consideredgus with adjacent sources, the
network in figure 1 would give room for fourgus in one
layer without closing a cycle of channel dependencies. It is
easily shown that by consideringgus with adjacent sources,
a topology consisting of a single ring will in LASH routing
only need two virtual layers.

5 Simulation experiments

To verify the practicality of the shortest path routing con-
cept we have carried out an extensive set of experiments.
The method has been tested for network sizes of8, 16, 32,
64, and128 switches. For each of these network sizes the

link connectivity has been varied fromn�1 (recall that this
connectivity specifies a tree) and upwards, and for each of
these network cases and connectivities,100 random topolo-
gies have been generated.

In our simulation experiments two classes of granular
units in the allocation process of virtual channels were con-
sidered:i) Directed Acyclic Graph (DAG) granularity and
ii) Single Source-Destination (SSD) granularity. The de-
fined granular units gave different results with regard to the
required number of virtual layers as network size increased.
On the other hand, they also had different needs for execu-
tion time.

5.1 DAG granularity

By DAG granularity we mean that onegu consists of all
the shortest path from one given node to all other nodes in
the network (this relates to the assumption in the proof of
lemma 2). These paths define a DAG where the node under
inspection is the root vertex of the graph (figure 2).

The results are displayed in figure 3. For all the tested
network sizes the required number of virtual layers start off
from 1 and increases sharply towards a peak, before they
drop slowly towards1 as the networks get increased con-
nectivity. It appears that the maximum number of virtual
layers are needed when the networks have twice as many
links as switches.

From the results we can also see that the method scales
very well - in fact the ratio between network size (number of
switches) and required number of virtual layers increases as
the network size grows. For networks with16, 32, 64, and
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(a) Networks with 8 switches.

DAG granularity applied on networks of 16 switches
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(b) Networks with 16 switches.

DAG granularity applied on networks of 32 switches
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(c) Networks with 32 switches.

DAG granularity applied on networks of  64 switches
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(d) Networks with 64 switches.

DAG granularity applied on networks of 128 switches
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(e) Networks with 128 switches.

Figure 3. These plots show the number of virtual layers needed for networks of various sizes when using DAG granu-
larity of the gus. For each network size and link connectivity 100 random topologies were generated.
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Figure 2. An example of a DAG formed by the short-
est paths (solid arrows) between a given switch and
all other nodes. The associated dependencies of the
DAG granular unit are shown as dotted curved ar-
rows.

128 switches the ratio figures are8:4, 11:4, 13:3, and13:6,
respectively. Even for large networks with128 switches the
needed number of virtual layers, having an average peak
of about9, is acceptable - especially if we relate this num-
ber to the15 virtual channels (for data traffic) offered by
the InfiniBandTM standard. Notice also that we never expe-
rienced any randomly generated topology that needed more
than 12 virtual layers. The upper bound given by our lemma
is 64 layers for networks with 128 nodes, so this is a strong
indication that our upper bound can be improved.

5.2 SSD granularity

In the SSD experiments, we let the granular units con-
sist of only one single<source,destination> pair. This is in
contrast to the DAG granularity where thegus hold multi-
ple paths. The hypothesis of this experiment was that with
a finer granularity our method should require fewer virtual
layers, because generally there is a higher probability for
creating cycles after adding the channel dependencies asso-
ciated with an entire DAG than adding those provided by
one single path. The results from the experiments, where
we have considered networks consisting of8, 16, 32, 64,
and128 switches, are shown in figure 4. Comparing these
results with the ones from the DAG granularity (figure 3),
we find that for small network sizes (consisting of8 and16
nodes) the methods perform equally well with respect to the
needed number of virtual layers. However, as the network
size grows, the difference becomes more noticeable. For
networks of32 and64 switches the difference in average
(maximum) need of virtual channels are about1 (2) and2
(4) at the most. But still, the figures are not very different.
Note that for 64 nodes, connectivities above 250 were not

tested for SSD.
An explanation for this similarity is that a DAG de-

fines a tree structure. Subparts of the individual paths
represented by the DAG typically represent a trunk of
<source,destination> pairs that generate the same chan-
nel dependencies. Therefore, splitting the DAG into single
<source,destination> pairs does not necessarily give sub-
stantial gain in the number of virtual layers needed. In terms
of computing time of the routing algorithm, however, the
difference is more significant for the following reasons:

� For SSD granularityn � (n � 1) granular units must
be processed by step 3 in the algorithm, in contrast to
n units for the DAG option.

� The SSD approach builds up channel dependency
graphs of higher connectivity than the DAG method.
Since searching for cycles depends on the number of
edges in the graph, this has impact on execution time.

6 LASH in InfiniBandTM

Above, we indicated that InfiniBandTM is a possible
target technology for LASH routing. In InfiniBandTM ,
switches only makes routing decisions based on the cur-
rent switch and the destination. The partial minimal routing
functionRphys can be implemented by choosing a singular
outlink per destination on each switch. All packets going
sharing destination, that also visits the same intermediate
switch, will from this switch follow the same route. This is
straightforward, but doesn’t exploit multiple paths between
two switches. Alternatively, using multiple ID’s for each
destination, the ability of a switch to choose output port
based on inlink and/or source can be emulated.Rvirt can
be implemented by using the service level mechanism. The
specification suggest using this mechanism for QoS levels,
improved fabric utilization and deadlock avoidance [1]. Our
method addresses the two latter of these, intending to leave
as many service levels as possible for QoS.

Up to 15 virtual lanes are available for the service levels,
so our theoretical upper bound implicates that minimal de-
terministic routing with in-order delivery in any subnet with
30 or less switches can be achieved. In our experiments we
never encountered cases that needed more than 12 virtual
layers, which is very acceptable for InfiniBandTM .

7 Conclusion

We have described a concept for shortest path routing of
irregular networks that we call LASH routing. The concept
relies on virtual channels, but otherwise requires no special
functionality within the switches. In particular it is applica-
ble to technologies like InfiniBandTM that cannot use adap-
tive routing together with escape paths.
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(a) Networks with 8 switches.

Source-destination granularity applied on networks of 16 switches
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(b) Networks with 16 switches.

Source-destination granularity applied on networks of 32 switches
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(c) Networks with 32 switches.

Source-destination granularity applied on networks of 64 switches
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(d) Networks with 64 switches.

Figure 4. The number of virtual layers needed for networks of various sizes under Single source-destination granu-
larity. 100 random topologies were generated for each network size and link connectivity .



Freedom from deadlock is achieved by dividing the
physical network into a set of virtual layers. The minimal
paths are spread onto these layers, such that each layer be-
comes deadlock free. A theoretical upper bound of needed
number of virtual layers is given. Through extensive ex-
periments generating random networks of different size and
connectivity we see that the concept scales very well and
that the required number of virtual layers is limited. For net-
works connected by32, 64, and128 switches applying the
DAG granularity the average peak of needed virtual chan-
nels are2:8, 4:8, and9:1. The spread is small, and we have
never needed more than12 layers.

There are several directions for future research. First, we
would like to find out how our method compares to state-
of-art methods with respect to network performance. An-
other line of work is trying to optimize the process of deter-
mining the virtual routing function. We have seen that the
method yields better results with granular units consisting
of single<source,destination> pairs than with DAGs, but
on the other hand, SSD has a higher computational com-
plexity. One possible solution could be to make a hybrid
of these two methods that produces nearly as good results
as the SSD technique, but to the computation cost of the
DAG. A somewhat different approach would be to do a net-
work topology analysis, considering the physical loops in
the network and study if the potential cycles here could be
removed in a systematic way.
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