& Log|5|m\0y L;\\
5) 4V P
og _ Lw\) 1“L ¥
\C” A&

' C

W oV d\\" \

CS 5 grader

What is Logic in Computer Science?

In CS, we have Boolean
values and functions.

Values: True (1) or False
(0),

represented by the binary
digits.

Functions: AND, OR,
NOT,...

[t must mean something that there
are three of these functions. .. Gl

A

X Yy AND (x,y)
0O O 0
0o 1 0
1 O 0
1 1 1

AND outputs 1 only if
ALL inputs are 1

AND

AND

Logic gates: definitions

X Y OR(x,y)
0 0 0
0 1 1
1 0 1
1 1 1

OR outputs 1 if ANY
input is 1

OR

X NOT (x)
0 1
1 0

NOT reverses its
input

NOT

NOT

What is Logisinr

Logisim is a program that lets us build virtual

logic circuits using gates, clocks, and other
things!

You can download it here:
http://sourceforge.net/projects/circuit/

http://sourceforge.net/projects/circuit/
http://sourceforge.net/projects/circuit/

AND Gates!

,_ CTIVITy

R SR |

Moar AND Gates!

What values of x, y, and z would output a 1?

And moar! Vi

Ty
ACTI\/

" = — ITy
Wirings ~77f

Here x=1, y=0, and z=1. What wirings
(connections) should be made such that the
circuit outputs a 17

Moar wirings! Try it yourself [1 I"I:,

5

Here x=0, y=0, and z=0. What wirings
(connections) should be made such that the
circuit outputs a 17

B & Em

|
4

C
Altogether now! asid

Let x=1, y=1, and z=0. What's the output?

Now let's move on to making
our own circuits!

Minterm Expansion

Truth Table Process

input output

First, look at the rows that output a 1.

x Yy XOR(x,y) Now look at the input values that output each

0 0 1. If there's a 0 input, then we NOT that
variable and if there's a 1 input, we leave the

o 1 1 variable as is, AND those two together.

1 0 1 Do this for each row that outputs a 1 and OR

1 1 0 all the rows together.

So let's look at the truth table above. There are two rows that output a 1. Adjacency implies AND, +
implies OR, and ! implies NOT.

1st row: Ixy

2nd row: xly

So we OR these two together: !xy + x!y and this is the formula we want to use for our overall circuit.

Now build your own circuit using the set of

inputs and outputs below! B
,_ AC TIVITy
inputs output s ~

X Yy Z fn(x,y, z)

Can you guess O O 0 O

fur\ll\cl;?ii;tihse?) 0 O 1 O
O 1 O 0
O 1 1 1
1 0 O 0
1 0 1 1
1 1 O 1
1 1 1 1

. Truth table

Now build your own circuit using the set of

inputs and outputs below! .
,_ AC TIVIT:.
inputs output s S m;,gﬂ
X Yy z fn(x,v,z)
Can %o?t%uess O O 0 O
fur\ll\cl;tiin ise?) 0 O 1 1
O 1 0 1
O 1 1 0
1 O 0 1
1 O 1 0
1 1 0 0
1 1 1 1
e fn' Truth table

Claim!

We need only three building What
are
blocks to compute anything at all these? &
—— AND AND outputs 1 iff ALL its
—_— inputs are 1

OR outputs 1 iff ANY input
is 1
NOT reverses its input

Computing

So one of the most basic computations that a
computer can do is !

They add two sequences of bits using what's
called an adder circuit!

X

c@o

Adders!

TAET -HP 10010 ADBCHILRBA
32/64 BIT FLOATING ADOD/

AT Py L Ty PR

e e
e oot i i i e e s A S

chugging right along...

|n a Computer eaCh blt iS Computation is simply the deliberate
’

combination of those voltages!
represented as a voltage
(1is +5v and 0is Ov)

Feynman: Computation is just a physics
experiment that always works!

000000

plll

ADDER
circuit

il

000000

il

|n a Computer eaCh blt iS Computation is simply the deliberate
’

combination of those voltages!
represented as a voltage
(1is +5v and 0is Ov)

Feynman: Computation is just a physics
experiment that always works!

101010

42 I I I (1) set input voltages

ADDER
circuit

;|

001001

000000

|n 3 Computer eaCh blt iS Computation is simply the deliberate
/ combination of those voltages!

represented as a voltage

(1is +5v and 0is Ov)

Feynman: Computation is just a physics
experiment that always works!

101010

4 2 (1) set input voltages

37 (2) perform computation
Hey - what's in ADDER |——

.'.ahe green box? >

=>51
— circuit

ﬁl | (3) read output voltages

001001

110011

Adding in Binary!

To make an adder circuit, let's first try adding
In binary by hand!

i
L

How do we do this?

Adding in binary is almost exactly like adding In
decimal!

We start from right to left. 1+0=1, 0+0=1.

However, what does 1+1="

Hint: Just add normally and represent the sum in binary!

Rules for Adding in Binary

1. Start from right to left.

2. 1+0=1, 0+0=1, 1+1=10.

3. For 1+1, we bring down a O and carry a 1 to
the next column.

4. Like for regular addition in decimal,
remember to add in any carry numbers!

Example

Try out the one below! What are some smaller
operations that were needed to do this?

il

Logisim: Adder Circuit

From our example, there were times where we
had to add three bits together, instead of just
two! Numbers can "carry” from one column to
the next.

To build an adder circuit that adds numbers
together, we need to create 3-bit full adders!

More output bits”?

3 bits of input 2 bits of output
the output is the sum of the

three input bits, IN BINARY !

<

x Cin C, Sum

000 0O O

001 0 1

010 0 1 A full adder sums three input bits

011 1 0 to two output bits, a binary
number

100 0 1

101 1 O

110 1 0 (A 2-bit adder is a half adder)

111 1 1

Circuit-design solution: share the inputs, but
design separate circuits for each output bit...

Building a Full Adder

Create a separate circuit for each output bit !

"

P, P PP O O O O
P, B O O B B O O

<
Q

)P O B O B O B O

in

out

kP PO B O O O

:

)P O OB O R » O

3 input bits

X VYV Cin
X Y Camin
R I |
0 0 pav

Full Adder

4 :N"‘l

Ry, !

sum

2 output bits

"Rails" of each bit
and its inverse

Boop!

"Carry-out" Circuit

out

A 3-bit full adder!

. e
AC TIy; Ty

Putting it all together! o T

S
Can you see how we would use the full-adders
to add n-bit numbers together?

These types of adders are called ripple-carry
adders. It's this method that simulates us
adding binary numbers by hand!

If you still have extra time left, try to see if you
can build a 3-bit ripple-carry adder in Logisim.

A 3-bit Rlpple-Carry Adder'

A 4-bit Ripple-Carry Adder!

As you can see,
it's not difficult to
make an n-bit
ripple-carry
adder!

