Biology-inspired algorithms

What looks complicated in biology can often be explained by simple rules

Biology-inspired algorithms

What looks complicated in biology can often be explained by simple rules

Biology creates self-similar forms
Fractals

Biology Rules...

What looks complicated in biology can often be explained by simple rules

Tree Rules

height $=4 \mathrm{~cm}$
(1) At each new dot:
(2) Draw a \mathbf{T} with dots on its ends (3) Divide height by 2

Go back to step (1) and continue

Tree Rules

height $=4 \mathrm{~cm}$
(1) At each new dot:
(2) Draw a \mathbf{T} with dots on its ends
(3) Divide height by 2

Go back to step (1) and continue

height $=\underline{4 \mathrm{~cm}}$
(1) At each new dot:
(2) Draw a \underline{I} with dots on its ends
(3) Divide height by 2

Go back to step (1) and continue

Change the underlined parts...

...to create this "tree"

Are these rules for real? Yes... and no.

The rules can create many different fractal forms

Are these rules for real? Yes... and no.

An elegant recursive drawing site...

Are these rules for real? Yes... and no.

biology does create many different fractal forms

Are these rules for real? Yes... and no.

self-similarity?

Are these rules for real?

Yes... and no.

What if our hand were more like the Dragon's-blood tree?

All this self-similarity must stop somewhere...

Are these rules for real? Yes... and no.

All this self-similarity must stop somewhere...

... or who knows what could happen!?

Are these rules for real? Yes... and no.

Where does fractal growth happen in animals?

Are these rules for real? Yes... and no.

What are these?

Are these rules for real? Yes... and no.

green: cell's skeleton (microtubules) blue?
Comparing skeletons

Cells: they live their own lives!

But what controls each cell?

What controls each cell?

each cell has its own program (life)!

Simple cell rules

$$
\begin{aligned}
& \square=\text { Living cell } \\
& \square=\text { Empty space }
\end{aligned}
$$

A grid of cells depending on
(1) their rules (DNA)
(2) environment (neighbors)

How many live cells are in this grid?

Simple cells

Neighbor cells

Neighbor cells

$$
\begin{aligned}
& \square=\text { Living cell } \\
& \square=\text { Empty space }
\end{aligned}
$$

\# of Living neighbors

Each cell's future depends on its living neighbors

The rules...

all depend on how many living
neighbors each cell has

	1	2	3	4	5	6
A	0	1	1	1	0	0
B						
C	2	4	4	3	0	0
D	2	3	4	4	2	1
	1	2	3	2	1	1
	F	0	0	1	2	2

The rules...

A living cell with 2 or 3 living neighbors survives. Others die.

	1	2	3	4	5	6
A	0	1	1	1	0	0
B	1	3	2	2	1	1
C	2	14	4	3	0	0
D	2	3	k	4	2	1
E	1	2	3	2	1	1
F	0	0	1	2	2	1

BEFORE

An empty cell with exactly 3 living neighbors comes to life.

Which ones will be living AFTER these rules run?

Rules of Life

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3 living neighbors comes to life.

	1	2	3	4	5	6
A	0	1	1	1	0	0
B	1	3	2	2	1	1
C	2	4	4	3	0	0
D	2	3	4	4	2	1
	1	2	3	2	1	1
	F	0	0	1	2	2

Rules of Life

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3 living neighbors comes to life.

Fill in the number of living neighbors on top of this grid.

then, fill in the next generation here.

Rules of Life

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3 living neighbors comes to life.

Fill in the next generation here.

Rules of Life

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3
living neighbors comes to life.

empty space

Simple cells

$+$

Simple rules

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3 living neighbors comes to life.

Complex behavior

Let's see it in action...

Lives of a cell, Harvard University

Tree Rules

height $=4 \mathrm{~cm}$
(1) At each new dot:
(2) Draw a \mathbf{T} with dots on its ends
(3) Divide height by 2

Go back to step (1) and continue

height $=\underline{4 \mathrm{~cm}}$
(1) At each new dot:
(2) Draw a I with dots on its ends
(3) Divide height by $?$

Go back to step (1) and continue

...to create this "tree"

Rules of Life

A living cell with 2 or 3 living neighbors survives. Others die.

An empty cell with exactly 3 living neighbors comes to life.

Fill in the next generation here.

