Biology-inspired algorithms

What looks complicated in biology can often be explained by simple rules

Biology-inspired algorithms

What looks complicated in biology can often be explained by simple rules

Biology creates *self-similar* forms

Fractals

Biology Rules...

What looks complicated in biology can often be explained by simple rules

Tree Rules

height = 4 cm

(1) At each new dot:

- (2) Draw a **T** with dots on its ends
- (3) Divide *height* by 2

Go back to step (1) and continue

Tree Rules

height = 4 cm

(1) At each new dot:

- (2) Draw a T with dots on its ends
- (3) Divide *height* by 2

Go back to step (1) and continue

height = 4 cm

(1) At each new dot:
(2) Draw a <u>T</u> with dots on its ends
(3) Divide *height* by <u>2</u> *Go back to step (1) and continue*

Change the underlined parts...

The rules *can* create many different fractal forms

An elegant recursive drawing site...

self-similarity?

All this self-similarity must stop somewhere...

What if our hand were more like the Dragon's-blood tree?

All this self-similarity must stop somewhere... ... or who knows what could happen!?

Where **does** fractal growth happen in animals?

What are these?

green: cell's skeleton (microtubules) blue?

Comparing *skeletons*

Cells: they *live their own lives*!

But what *controls* each cell?

What *controls* each cell?

Simple cell rules

A grid of cells depending on (1) their rules (DNA)

(2) environment (neighbors)

How many live cells are in this grid?

Simple cells

Name Live or empty?

Neighbor cells

Neighbor cells

Each cell's future depends on its living neighbors

of Living neighbors

The rules...

all depend on how many *living* neighbors each cell has

	1	2	3	4	5	6
Α	0	1	1	1	0	0
В						
С	2	4	4	3	0	0
D	2	3	4	4	2	1
E	1	2	3	2	1	1
F	0	0	1	2	2	1

BEFORE

The rules...

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

BEFORE

Which ones will be living AFTER these rules run?

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

	1	2	3	4	5	6		1	2	3	4	5	6
А	0	1	1	1	0	0	А						
В	1	3	2	2	1	1	В						
С	2	4	4	3	0	0	С						
D	2	3	4	4	2	1	D						
Е	1	2	3	2	1	1	E						
F	0	0	1	2	2	1	F						

BEFORE

AFTER

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

on top of this grid.

then, fill in the next generation here.

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

AFTER

empty space

Simple cells

living cells

+

Simple rules

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

Complex behavior

"Game of Life"

Let's see it in action...

Lives of a cell, Harvard University

Tree Rules

height = 4 cm

(1) At each new dot:

(2) Draw a ${\boldsymbol{\mathsf{T}}}$ with dots on its ends

(3) Divide *height* by 2

Go back to step (1) and continue

height = 4 cm

(1) At each new dot:
(2) Draw a <u>T</u> with dots on its ends
(3) Divide *height* by <u>2</u>
Go back to step (1) and continue

Change the underlined parts...

A living cell with **2** or **3** living neighbors *survives*. Others die.

An empty cell with exactly 3 living neighbors *comes to life*.

BEFORE

Fill in the next generation here.