
This week's classes

Alien

playground

Connect 4

Player

Homework #11,

due 11/25

Notice that the value of

(dimension + eyes) is

conserved!

Twitter's power?

a public API

Object-oriented

philosophy…

Python objects used in VPython…

Tuples are similar to lists, but they're parenthesized:

T = (4,2)

example of a two-element tuple named T and a three-element tuple named V

V = (1,0,0)

Tuples! Lists that use

parentheses are

called tuples:

+ Tuples are more memory + time efficient

+ Tuples can be dictionary keys; lists can't

- But you can't change tuples' elements...

>>> T = (4, 2)

>>> T

(4, 2)

>>> T[0]

4

>>> T[0] = 42

Error!

>>> T = ('a',2,'z')

>>>

Tuples are immutable

lists: you can't change

their elements...

...but you can always

redefine the whole

variable, if you want!

Tuple problems…

A bug from yesterday's Board class:

W = 4

s = " ",

for col in range(W):

s += str(col), " "

yields a surprising result for s:

Creating 1-tuples would

seem like a problem!

Tuple problems…

A bug from yesterday's Board class:

W = 4

s = " ",

for col in range(W):

s += str(col), " "

(' ', '0', ' ', '1', ' ', '2', ' ', '3', ' ')

yields a surprising result for s:

Creating 1-tuples would

seem like a problem!

Python details used in VPython…

Functions can have default input values and can take named inputs

def f(x=9, y=33):

return x + y

example of default input

values for x and y

Python details used in VPython…

Functions can have default input values and can take named inputs

def f(x=9, y=33):

return x + y

f(y=1)example of a

named input

f()

f(1)

example of default input

values for x and y

Named inputsdef f(x=2, y=0):

return x*(1+4*y)

What will these function calls to f return?

f(3,2) f()f(3) f(y=3,x=1)

Input your name(s) = ___________________________

What is a call to f that returns 42? What is the shortest call to f returning 42?
fewest # of characters

feedback feedback

feedback feedback

feedback feedback

feedback feedback

feedback feedback

feedback ?

feedback ?

feedback feedback

4.51hrs.

1.9 st dev.

2.90

0.90 st dev.

3.03

0.40 st dev.

feedback feedback

4.51hrs.

1.9 st dev.

2.90

0.90 st dev.

3.03

0.40 st dev.

feedback feedback

4.51hrs.

1.9 st dev.

2.90

0.90 st dev.

3.03

0.40 st dev.

feedback feedback

end with libraries

VPython

built by and for

physicists to simplify

3d simulations

lots of available

classes, objects and

methods in its API

Easily installable for windows… and mostly easy on Macs.

stonehenge.py

bounce.py

Installing VPython

www.vpython.org/contents/download_windows.htmlWindows:

http://www.vpython.org/contents/download_mac.htmlMac:

I've tried both of these and they worked so far…

Tutorials and documentation…

VPython example API calls: must be from a file

A demo of VPython's API:

from visual import *

c = cylinder()

What's cylinder?

What's visual?

What's c?

at least it's not

Visual C…

API
... stands for Application Programming Interface

a description of how to use a software library

more example API calls

from visual import *

c = cylinder()

print "c.pos is", c.pos

print "c.color is", c.color

set the color to color.blue or a tuple

set the pos… hard to tell what's happening…

scene.autoscale = False

b = box(pos=(4,0,0))

a = sphere(pos=(0,0,4))

VPython

while True:

rate(100) # limits the loop rate in hz

dt = 0.01 # the loop time

a.pos += dt*vector(-5,0,0)

Set up the world

with 3d objects

Then, run a

simulation using

those objects…

VPython!

from visual import *

floor = box(length=4,width=4,height=0.5,color=color.blue)

ball = sphere(pos=(0,8,0),radius=1,color=color.red)

vel = vector(0,-1,0)

dt = 0.01

while True:

rate(100)

ball.pos += vel*dt

if ball.pos.y < ball.radius:

vel.y *= -1.0

else:

vel.y += -9.8*dt

What physics is this

if/else doing?

Look over this VPython

program to determine

(0) How many tuples appear in this code? ________

(1) How many classes are used here? ________

(2) How many objects are used here? ________

(3) How do collisions work?

(4) How does physics/gravity work? with the Higgs boson!

vectors act like vectors!

vel = vector(0,-1,0)

vel += 0.01*vector(0,-9.8,0)

pos = pos + 0.01*vel

multiplication by a scalar – finally!

component-by-component addition

vel.x
vel.y

vel.z named

components

Orbiting

with vectors!

from visual import *

e = sphere(pos=(0,0,10),color=color.blue) #earth

s = sphere(color=color.yellow,radius=2) #sun

e.vel = vector(5,0,0) # initial velocity

RATE = 50

dt = 1.0/RATE

k = 70.0 # G!

while True:

rate(RATE)

diff = s.pos - e.pos # vector difference

force = k*diff/(mag(diff)**2) # mag

e.vel += dt*force # acceleration d.e.

e.pos += dt*e.vel # velocity d.e.

"force arrow" in

example code…

from visual import *

class Alien:

""" This class represents a three-eyed alien object...

"""

The constructor, named __init__ (as always in Python)

def __init__(self, init_framepos):

""" The constructor creates a frame (container)

at initial location init_framepos

"""

a frame is VPython's collection of shapes

within a single coordinate system

self.f = frame(pos=init_framepos)

all of these parts are within the frame self.f

self.body = sphere(pos=vector(0,0,0),

radius=1,

color=color.green,

frame=self.f)

self.left_eye = sphere(pos=self.body.pos + vector(.35,.5,.6),

radius=0.20,

color=color.white,

frame=self.f)

self.right_eye = sphere(pos=self.body.pos + vector(-.35,.5,.6),

radius=0.20,

color=color.white,

frame=self.f)

frames

Keyboard events…

if scene.kb.keys: # is there a keyevent?

s = scene.kb.getkey() # get keypress

if s == "p":

print alien

things the alien(s) can do!

if s == 'J': # JUMP!

alien.f.pos = vector(0,HEIGHT,0)

alien.vel = vector(0,0,0) # stop the alien!

run_gravity = not run_gravity # fun!

print "run_gravity is", run_gravity

move the alien around

if s == "i":

alien.f.pos += vector(0,0,1)

if s == "k":

alien.f.pos += vector(0,0,-1)

if s == "j":

alien.f.pos += vector(-1,0,0)

if s == "l":

alien.f.pos += vector(1,0,0)

Note that the frame is

being moved here ~ this

moves all of the parts!

while True:

rate(RATE)

Here begins PHYSICS!

if run_gravity == True:

alien.update(dt)

alien.check_beach(beach)

Here ends physics...

def check_beach(self, beach):

""" checks for a bounce!

"""

bottom_of_self = self.f.pos.y - self.body.radius

if bottom_of_self < beach.pos.y:

self.f.pos.y = beach.pos.y + self.body.radius

self.vel.y *= -1.0

def update(self, dt):

""" this defines the physics...

"""

gravity = -9.8*10

self.vel += dt*vector(0,gravity,0)

self.f.pos += dt*self.vel

Phunky

Physics!in main()

in the Alien class

Looking back (before looking forward…)

(0) Try out VPython!

(1) Implement air resistance…

(2) Add at least 1 more dimension

(3) Add a target and initial velocity

(4) Improve your character!

(5) Add scoring or enemies or a moving target,

hoops, traps, holes, etc. ~ your own game…

Lab goals

Next time…

An AI for Connect Four

Phunky Physics!

-- falls through

-- loses energy

-- perfect collisions – still imperfect – why?

-- air resistance

