
Turtles?

Recursion?

Functions!

Data!
List

Compreh
ensions!

Bourton-on-the-water

Bourton-on-the-water

Bourton-on-the-water

town of ~2000 people

Bourton-on-the-water's	1/9	model

has	a	level-2	model…

has	a	level-2	model…

and	a	level-3	model…

and	a	level-3	model…

and	even	a				(very	small!)			level-4	model

Turtle	graphics…
Early attempts…

Robot turtles were tried…

But a computer window was easier… Something	isn't
right	here…

In-browser	
Python...

Single-path	recursion	

a triangle
as a _script_
forward(100)
left(120)
forward(100)
left(120)
forward(100)
left(120)

And	a	starter	function:

I	don't	know	about	tri,	but	
there	sure	is	NO	return	…	!

def tri(n):
 """ draws a triangle """
 if n == 0:
 return
 else:
 forward(100) # one side
 left(120) # turn 360/3
 tri(n-1) # draw rest

tri(3)

a script is code that runs on
the left margin of a Python
file (aka, the "west coast")

A	starter	script:

Turtle's	ability?			It	varies...

widely!

functional	programming
>>> 'fun' in 'functional'
True

Functional	programming
•	functions	are	powerful!

•	leverage	self-similarity	(recursive	code	and	data)

Composition	&	Decomposition	
—	our	lever	to	solve/investigate	problems.

oh	my,	in	for	strings	
finds	substrings!

•	functions	are	“things”	just	like	numbers	or	strings

functional	programming
>>> print(print)
<built-in function print>
>>> exclaim = print
>>> exclaim("By jove!")
By jove!

Functional	programming
•	functions	are	powerful!

•	leverage	self-similarity	(recursive	code	and	data)

Composition	&	Decomposition	
—	our	lever	to	solve/investigate	problems.

oh	my,	in	for	strings	
finds	substrings!

•	functions	are	“things”	just	like	numbers	or	strings

Data

Functions

[13,14,15]

sum()

[3,4,5,6,7,8,9]

…	and	their	compositions

range()

sum													range
def mysum(L):

 """ input: L, a list of #s

 output: L's sum

 """

 if len(L) == 0:

 return 0.0

 else:

 return L[0] + sum(L[1:])

Empty	Case

Specicfic/General	Case

Base	Case

Recursive	Case

list(range(low,hi,stride))sum(L)

def myrange(low, hi):

 """ input: ints low and hi

 output: list from low to hi

 """

 if low >= hi:

 return

 else:

 return

what's	cookin'	here?

excluding		hi

sum													range
stride?

list(range(low,hi,stride))sum(L)

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're	on	target!

but	excluding		hi

, stride

Recursion's range

Extra!		Take	a	positive	third	input	in	stride	

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

Extra Extra			What	if	stridewere	negative?

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're	on	target!

but	excluding		hi

Recursion's range

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

[]
Allllllllllllm

ost...

[low] + range(low+1,hi)

Extra!		Take	a	positive	third	input	in	stride	 Extra Extra			What	if	stridewere	negative?

, stride

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're	on	target!

but	excluding		hi

Recursion's range

[]

[low] + range(low+1,hi)

Solution!	T
ry	on	the	o

ther	page	f
irst!

[low] + range(low+stride, hi, stride)

Extra	Extra!!			
What	if	stride	
were	negative?

we'd	u
se	a	di

fferen
t	test!

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

Extra!		Take	a	positive	third	input	in	stride	

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

, stride

Let's	make	some	functions…

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 first_L = L[0]
 rest_L = L[1:]
 doubled_first = 2 * first_L
 doubled_rest = double_all(rest_L)
 return [doubled_first] + doubled_rest

Let's	make	some	functions…

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 return [2 * L[0]] + double_all(L[1:])

Let's	make	some	functions…

def twice(x):
 return 2 * x

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 return [twice(L[0])] + double_all(L[1:])

Let's	make	some	functions…

def cube(x):
 return x * x * x

def cube_all(L):
 """Takes a list and returns a new list
 with all the elements cubed."""
 if L == []:
 return []
 else:
 return [cube(L[0])] + cube_all(L[1:])

Let's	generalize!

def apply_to_all(f, L):
 """Takes a function f and a list L and returns
 a new list with f applied to L's elements"""
 if L == []:
 return []
 else:
 return [] + apply_to_all(f, L[1:])

What	goes	here?

Let's	generalize!

def apply_to_all(f, L):
 """Takes a function f and a list L and returns
 a new list with f applied to L's elements"""
 if L == []:
 return []
 else:
 return [f(L[0])] + apply_to_all(f, L[1:])

def double_all(L):
 return apply_to_all(twice, L)

def cube_all(L):
 return apply_to_all(cube, L)

Python	already	has	
apply_to_all,	
it's	called	map

Let's	make	even	more	functions…

def is_even(n):
 return n % 2 == 0

def only_even(L):
 """Takes a list L and returns a new list
 with only the even numbers in L."""
 if L == []:
 return []
 else:
 if is_even(L[0]):
 return [L[0]] + only_even(L[1:])
 else:
 return only_even(L[1:])

Let's	make	even	more	functions…

def is_odd(n):
 return not is_even(n)

def only_odd(L):
 """Takes a list L and returns a new list
 with only the odd numbers in L."""
 if L == []:
 return []
 else:
 if is_odd(L[0]):
 return [L[0]] + only_odd(L[1:])
 else:
 return only_odd(L[1:])

Let's	generalize!

def keep_if(f, L):
 """Takes a function f and a list L and returns
 a new list with only the elements of L
 for which f is true."""
 if L == []:
 return []
 else:
 if
 return [L[0]] + keep_if(f, L[1:])
 else:
 return keep_if(f, L[1:])

Let's	generalize!

def keep_if(f, L):
 """Takes a function f and a list L and returns
 a new list with only the elements of L
 for which f is true."""
 if L == []:
 return []
 else:
 if f(L[0]):
 return [L[0]] + keep_if(f, L[1:])
 else:
 return keep_if(f, L[1:])

def only_even(L): return keep_if(is_even, L)
def only_odd(L): return keep_if(is_odd, L)

Python	already	has	
keep_if,	
it's	called	filter

Powerful	stuff
apply_to_all(cube, keep_if(is_odd, [1, 2, 3, 4, 5, 6]))

map(cube, filter(is_odd, [1, 2, 3, 4, 5, 6]))

a.k.a.

Math	does	it	better!

Python	won't	give	in	
that	easily!

def x2gt3(x):
 return x**2 > 3

S = map(twice, filter(x2gt3, N))

But	Python	can	do	it,	too…

This	notation	is	sometimes	called	a	“set	comprehension”.

Math	does	it	better!

Python	won't	give	in	
that	easily!

def x2gt3(x):
 return x**2 > 3

S = map(twice, filter(x2gt3, N))

But	Python	can	do	it,	too…

Math	does	it	better!

Python	won't	give	in	
that	easily!

R = [twice(x) for x in N if x2gt3(x)]

Or, more directly:

R = [2*x for x in N if x**2 > 3]

But	Python	can	do	it,	too…

List	Comprehensions

What's	the	syntax	
saying	here?

In: [2*x for x in [0,1,2,3,4,5]]

List Comprehension

result[0, 2, 4, 6, 8, 10]

In: [2*x for x in [0,1,2,3,4,5]]

What's	the	syntax	
saying	here?

List Comprehenion

result[0, 2, 4, 6, 8, 10]

Expression	to	evaluate	
for	each	list	element

Name	for	each	
list	element The	list	-	or	string		to	use

List	Comprehensions

In: [2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10]
output

input

this "each one" variable can have any name...

x	takes	on	each	value

and	2*x	is	output	for	each	one

List	Comprehensions

List	Comprehensions

In: [10*x for x in [0,1,2,3,4,5] if x%2==0]

result

In: [y*21 for y in range(0,3)]

result

In: [s[1] for s in ["hi", "5Cs!"]]

result

expression iteration condition

[n**2 for n in range(0,4)] Try	them	out	in!

[s[1::2] for s in ['aces','451!']]

A	range	of	list	comprehensions

Write	Python's	result	for	each	LC:

Got	it!	

	But	what	
about	that	
name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[-6, -5, 5]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

ut
 !!

!
Names:			

[n**2 for n in range(0,4)]

[s[1::2] for s in ['aces','451!']]

Write	Python's	result	for	each	LC:

Got	it!	

	But	what	
about	that	
name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[-6, -5, 5]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

ut
 !!

!

[0,1,4,9]
Try	them	out	in!
A	range	of	list	comprehensions

Names:			

[n**2 for n in range(0,4)] Try	them	out	in!

[s[1::2] for s in ['aces','451!']]

A	range	of	list	comprehensionsWrite	Python's	result	for	each	LC:

Got	it!	

	But	what	
about	that	
name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

ut
 !!

!

[0,1,4,9]

['cs','5!']

[-6, -5, 5]

[1, 3, 5, 7]

[42,35,-35]

[0,6,20,42]

[0,1,2]

[42,42,42]

['z','z','z']

Join	with	a	neighbor	and	try	
this	on	the	other	page	first!

[n**2 for n in range(0,4)] Try	them	out	in!

[s[1::2] for s in ['aces','451!']]

A	range	of	list	comprehensionsWrite	Python's	result	for	each	LC:

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

ut
 !!

!

[0,1,4,9]

['cs','5!']

[-6, -5, 5]

[1, 3, 5, 7]

[42,35,-35]

[0,6,20,42]

[0,1,2]

[42,42,42]

['z','z','z']

Join	with	a	neighbor	and	try	
this	on	the	other	page	first!

Hand these in,

north-ward!
heliotropically!

Syntax	?!

a	(frustrated!)	rendering	of	
an	unfamiliar	math	problem

>>> [2*x for x in [0,1,2,3,4,5]]
[0, 2, 4, 6, 8, 10]

at first…

a	jumble	of	characters	
and	random	other	stuff

Syntax	~	is	CS's	key	resource!

a	(frustrated!)	rendering	of	
an	unfamiliar	math	problem

which	was	likely	
similar	to	these…

Where'd	the	change	happen?

Designing	with	LCs,	sum,	and	range...

LC = [1 for c in 'i get it!' if c=='i']

Key idea:

answer = sum(LC)

What	question	is	answer	answering?!

What	number	is	answer?

What's	LC	here?

Designing	with	LCs,	sum,	and	range...

LC = [1 for c in 'i get it!' if c=='i']

Key idea:

answer = sum(LC)

What	question	is	answer	answering?!

What	number	is	answer?

What's	LC	here?

2

How many i's are in
'i get it' ?

[1,1]

LC = [1 for x in L]
return sum(LC)

fun1(L):def

[7,8,9]

Short	and	sweet!Two	fun:

LC = [letScore(c) for c in S]
return sum(LC)

fun2(S):def

'twelve' from hw1pr3
letScore(c):def

What	fun	are	these?

LC = [1 for x in L]
return sum(LC)

fun1(L):def

[7,8,9]

Two	fun:

LC = [letScore(c) for c in S]
return sum(LC)

fun2(S):def

'twelve' from hw1pr3
letScore(c):def

What	fun	are	these?

But	one-liners	are	
my	specialty…

len

scrabb
leScor

e

LC = [1 for x in L]
return sum(LC)

len(L):def

I	never	get	more	than	
one	line	–	who	are	the	
writers	around	here…	?

'cs5'

"One-line"	LCs

possible	in	1	line,	but	
not	recommended!

LC = [1 for x in L]
return sum(LC)

len(L):def

'cs5'

len(L):def

return sum([1 for x in L])
Maybe

	too	sh
ort!

"One-line"	LCs

possible	in	1	line,	but	
not	recommended! That's	no	one-liner!

vwl(s):
LC = [1 for c in s]
return sum(LC)

of vowels

def
'sequoia'

count(e,L):
of times e is in L

LC = [1 for x in L]
return sum(LC)

def

[3,42,5,7,42]42

if

if

vwl(s):
LC = [1 for c in s]
return sum(LC)

def
'sequoia'

count(e,L):
LC = [1 for x in L]
return sum(LC)

def

[3,42,5,7,42]42

if

if

if x == e

if c in 'aeiou'

of vowels

of times e is in L

Write	each	of	these	functions	using	list	comprehensions…

def nodds(L):

def lotto(Y,W):

input:			L,	any	list	of	#s
output:		the	#	of		odd	#s	in	L	
example:			nodds([3,4,5,7,42])	==	3

inputs:		Y	and	W,	two	lists	of	"lottery"	numbers	(ints)
output:		the	#	of	matches	between	Y	&	W	
example:			lotto([5,7,42,47]	,	[3,5,7,44,47])	==	3

Y	are	your	#s W	are	the	winning	#s

def ndivs(N):

input:		N,	an	int	>=	2
output:		the	#	of	positive	divisors	of	N
example:				numdivs(12)	==	6			(1,2,3,4,6,12)

def primesUpTo(P):

input: P,	an	int	>=	2
output:		the	list	of	prime	#s	up	to	+	incl.	P
example:				primesUpTo(12)	==	[2,3,5,7,11]	 Extra!

return sum(LC)

return sum(LC)

return LC

return sum(LC)
LC = [1 for x in L if __________]

LC = [1 for

LC = [1 for

LC = [

First,	

demos
()

Write	each	of	these	functions	using	list	comprehensions…

def nodds(L):

def lotto(Y,W):

input:			L,	any	list	of	#s
output:		the	#	of		odd	#s	in	L	
example:			nodds([3,4,5,7,42])	==	3

inputs:		Y	and	W,	two	lists	of	"lottery"	numbers	(ints)
output:		the	#	of	matches	between	Y	&	W	
example:			lotto([5,7,42,47]	,	[3,5,7,44,47])	==	3

Y	are	your	#s W	are	the	winning	#s

def primesUpTo(P):

input: P,	an	int	>=	2
output:		the	list	of	prime	#s	up	to	+	incl.	P
example:				primesUpTo(12)	==	[2,3,5,7,11]	 Whoa!

return sum(LC)

return sum(LC)

return LC

return sum(LC)
LC = [1 for x in L if __________]

LC = [1 for ___________________________

LC = [1 for ___________________________

LC = [_________________________________

def ndivs(x):

input:		x,	an	int	>=	2
output:		the	#	of	positive	divisors	of	x
example:				numdivs(12)	==	6			(1,2,3,4,6,12)

Write	each	of	these	functions	using	list	comprehensions…

def nodds(L):

def lotto(Y,W):

input:			L,	any	list	of	#s
output:		the	#	of		odd	#s	in	L	
example:			nodds([3,4,5,7,42])	==	3

inputs:		Y	and	W,	two	lists	of	"lottery"	numbers	(ints)
output:		the	#	of	matches	between	Y	&	W	
example:			lotto([5,7,42,47]	,	[3,5,7,44,47])	==	3

Y	are	your	#s W	are	the	winning	#s

def ndivs(x):

input:		x,	an	int	>=	2
output:		the	#	of	positive	divisors	of	x
example:				numdivs(12)	==	6			(1,2,3,4,6,12)

def primesUpTo(P):

return sum(LC)

return sum(LC)

return LC

return sum(LC)
LC = [1 for x in L if x%2 == 1]

LC = [1 for x in Y if x in W]

LC = [1 for d in range(1,n+1) if x%d == 0]

LC = [x for x in range(2,P+1) if ndivs(x)==2]

input: P,	an	int	>=	2
output:		the	list	of	prime	#s	up	to	+	incl.	P
example:				primesUpTo(12)	==	[2,3,5,7,11]	 Whoa!

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 4 rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

hw2pr3:			areas	from	rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 4 rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

hw2pr3:			areas	from	rectangles

LC

LC LC
LC

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Area of N rectangles in the limit

hw2pr3:			areas	from	rectangles

(0,0)

(2.5,5)

y = 2x

(5,10)

(7.5,15)

(10,20)

(0,0)

(2.5,5)

LC

LC

"two-by-four	landscape"

Maya	Lin,	Artist	and	Computer	Scientist…

hw2pr3:			Maya	Lin,	Architect…

"two-by-four	landscape"

Maya	Lin,	Artist	and	Computer	Scientist…

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS	~	Building	Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS	~	Building	Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...

Wander well
via hw#2…

...	may	th
is	and	all

	your	we
ekends	

be	syntac
tically	sm

ooth!

Next?		Coffee!	;-)

