Functions!

Recursion?

Turtles?

Bourton-on-the-water

Cairngorms
Ar_g? L} Absncd

3 n
o L
ol

VI

Dublin
®
Ireland

Limerick

o

Cork

o
Google

Isle of Man

York
(o]
Manchester
o)
Liverpool
ENGLAND
WALES
Oxgord
Bristol Lonéion
Gardiff C o
Bath

Plymouth
(o)

..h Channel
c \‘nq\\s

Bourton-on-the-water

Cairngorms
National Park Aberdeen

SCOTLAND
Dundee
o)

Edinburgh
O

o
Glasgow

United
Kingdom

- 5] v
j Isle of Man %
town of ~2000 people 4
Manchest
Bublin ancoes er
= Liverpool
Ireland
Limerick
O
ENGLAND
Cork WALES
D Oxford
Brictol P London
iff © o x
G Bath
Plymouth
O
; hanne/
Google cagis©

's 1/9 model

water

Bourton-on-the

i

&N»
:

_::

.ﬂ

has a level-2 model...

has a level-2 model...

O
©
S
S
o
O
>
<
S
©
-
s

and a level-3 model...

e
P
ﬁ‘ r" N ‘
‘s' ‘%-» o

and even a (verysmall) level-4 model

Turtle graphics...

Early attempts...

| M Turtle Graphics

&

Something isn't
right here...

But a computer window was easier...

@ msinpy - EtemalConerstela: X+

& replit.com

ExternalConcroteHacks @ » Run 2 Invite Q
[Files & mainpy ¥+ I Output ¥ +
1 une
2 This is the Template Repl for Python with Turtle

Python with Turtle lets you make graphics easily tn Python

heck out the official docs here
ocs . python.org/3/1ibrary/turtle. htal

9 tmport turtle

° 11t = turtle.Turtlef)
1a t.coler(e)
ann 15 t. forward(75)

16 t.left(36)

Console * Shel +

n turtle on Replit

H % » 06

Update

C & trinket.iofturtle

Dtrinket *Plans @ leam @©Help SignUp Logn®

= (DPtrinket »Ruin ~ ?Modules «&Share BRemix #

<

main.py
t turtle

turtle.penup()
turtle.color(color)
turtle. fillcolor(color)
turtle.goto(x,y)

>
1
2
3~ dof draw_circleCturtle, color, size, x, Y):
4
5
6
7
3 turtle.begin_fill()

9 turtle.circle(size)
10 turtle.end_fil10)
1 turtle. pendonn()
12

13 tommy = turtle.Turtle()
14 tommy.shape("turtle")
15 tommy.speed(500)

17 draw_circle(tommy, “green”, 50, 25, 0)
18 draw_circle(tommy, "

lue®, 50, @, ©) =
19 drow_circle(tommy, "yellow", 50, -25, 0) rI n e
20

© & pythonzardoox comtur)

Python Sandbox

Turtle Mode!
“Type your turtle coce In the editar window. When finished press the play button to run your code.

Python
sandbox

Single-path recursion

A starter script: And a starter function:
a triangle def tri(n):
as a script """ draws a triangle """
forward (100) if n ==
left(120) return
forward (100) else:
left (120) forward (100) # one side
forward (100) left (120) # turn 360/3
left (120) tri(n-1) # draw rest

tri (3)
I t I don't know about tri, but
a script is code that runs on there sure is NO return ... !
the left margin of a Python
file (aka, the "west coast")

Turtle's ability? It varies...

def poly(n,N):
""" n == sides to go (to be drawn) [[varies]]
N == total # of sides in the regular polygon [[constant]]

nnn

if n ==
return # stop!
else:
print("side", n)
t.forward(100)
angle = 360/N
t.left(angle)
poly(n-1,N) # draw the remaining sides...

poly(9,9)

| Help! | Grid On/off

widely!

functional programming

oh my, in for strings
finds substrings! t

>>> '"fun' in 'functional'
True

(]
M

Functional programming

e functions are powerful!
e functions are “things” just like numbers or strings

e leverage self-similarity (recursive code and data)

Composition & Decomposition
— our lever to solve/investigate problems.

functional programming

>>> print (print) oh my, in for strings
<built-in function print> s
>>> exclaim = print

>>> exclaim("By jove!")

By jove!

(]
M

Functional programming

e functions are powerful!
* functions are “things” just like numbers or strings

e leverage self-similarity (recursive code and data)

Composition & Decomposition
— our lever to solve/investigate problems.

Data

Functions

[13,14,15]

[3/4/5161718/9]

sum()

range ()

... and their compositions

sum(L) list(range(low,hi,stride))

sum range

MeAsom Ct_i, 3, \(‘)—53
def mysum(L) :

IRIRT :anL'ItI L, a list of #S

output: L's sum

mwiiw L.z,: E—x:

i1f len(L) == O0: i/////’

return 0.0

Empty Case

else: Prvsr lem red-
(' — c—4—
return L[O0O] +m3um(L[1:])
Sum(C L 30, k)j)

"N

Specicfic/General Case £t 39+ (942

sum(L) list(range(low,hi,stride))

sum range

def myrange (low, hi) :
""" jnput: 1ints low and hi

output: list from low to hi

mwiimw

if low >= hi:
return
else:

return

s
06060800

‘.-

A

t
T Y

what's cookin' here?

G

excluding hi

. myrange(3, 7) [3,4,5 6] e
Recursion's range pngtrege e T = Ceors,) (T

myrange(3 7 2) — [3 5]

gg.g r l(:} M‘AW“SF_EB) =7 El

We're on target! t

def myrange (low, hi ., stride) :
""" input: low and hi, integers

output: a list from low upto hi buteciuding ni

mwiimw

1if low >= hi:

return E 3

Empty case: What if low is greater than or equal to hi?

else: losh1d= |} S‘f':rde

+
return 2 ‘D \ -+ %ru‘ /‘“) hy
Specific/General case: How could we use ther call to range to help us?!

_—

Extra! Take a positive third input in stride Extra Extra What if stride were negative?

myrange(3,7) — > [3,4,5,6] e et

Recursion's range
myrange(3,7,2) —* [3,5]

We're on target! t

def myrange (low, hi ., stride) :
""" input: low and hi, integers

output: a list from low upto hi buteciuding ni

mwiimw

if low >= hi:

return []

Empty case: What if low is greater than or equal to hi?

else:
low + range(low+1l,hi)

Specific/General case: How could we use another call to range to help us?!

return

Extra! Take a positive third input in stride Extra Extra What if stride were negative?

Recursion's range
myrange(3,7) — [3,4,5,6]

myrange(3,7,2) — [3,5]

We're on target! t

def myrange (low, hi ., stride) :
""" input: low and hi, integers

output: a list from low upto hi buteciuding ni

mwiimw

if low >= hi:
- cest
Extra Extra!! m

What if stride " return []

were negative?

Empty case: What if low is greater than or equal to hi?

else:
[low] + range (low+l,hi)

Specific/General case: How could we use another call to range to help us?!

return

Extra! Take a positive third inputin stride [low] + range(lowtstride, hi, stride)

Let's make some functions...

def double_all(L):
"""Takes a List and returns a new Llist
with all the elements doubled."""

if L == []:
return []

else:
first L = L[0] =g N
rest L = L[1:] C2t,ord
doubled first = 2 % first L 22
doubled _rest = double_all(rest L) T&42z,7021
return [doubled first] + doubled rest

Let's make some functions...

def double_all(L):
"""Takes a List and returns a new Llist
with all the elements doubled."""

if L == []:
return []
else:
return [2 * L[0]] + double all(L[1:])
wA—)
Q- e o

S~ e Io)-

Let's make some functions...

def twice(x):
return 2 * X

def double_all(L):
"""Takes a Llist and returns a new Llist
with all the elements doubled."""
if L == []:
return []

else:
return [twice(L[02])] + double_all(L[1:])

N

Let's make some functions...

def cube(x):
return X * X * X

def cube_all(L):
""Takes @ List and returns a new List
with all the elements cubed."""
if L == []:
return []

else:
return [cube(L[0])] + cube_all(L[1:])

q\

'] Voo C,\“,; 7(\\ 'Z\,\OQ}
Let's generalize! ??S&,{b.a\\ (ede CL 2D

her pacunder__ =4

def apply_to_all(f, L):
"""Togkes a function f and a list L and returns
a new List with f applied to L's elements"""
if L == []:
return []
else:

return [G(L(C;§>] + apply_to_all(f, L[1:])

What goes here? Q\

cobe (ELLS1)
Hovee § LT,Qj\

Let's generalize!

def apply_to_all(f, L):
"""Takes a function f and a list L and returns
a new List with f applied to L's elements"""
if L == []:
return []

else:
return [f(L[0])] + apply_to_all(f, L[1:])

def double_all(L):

ret :
urn a%ﬁ_all(tWLce, L) Python already has
apply_to_all,
def CUbe_a]_],(L) . it's called map

me,
return agply:tééall(cube, L)

Let's make even more functions...
OAM_,Q\@(, CC_\\ /2 L\-Z—S)
def is_even(n): = (12D

return n % 2 ==

def only_even(L):
"""Takes a Llist L and returns a new list
with only the even numbers in L."""
if L == []:
return []
else:
if is_even(L[0]):
return [L[0]] + only_even(L[1:])
else:
return only_even(L[1:])

Let's make even more functions...

def is_odd(n):
return not is_even(n)

def only_odd(L):
"""Takes a Llist L and returns a new list
with only the odd numbers in L."""
if L == []:
return []
else:
if is_odd(L[0]):
“Feturn [L[0]] + only_odd(L[1:1)
else:
return only_odd(L[1:])

Let's generalize!

def keep_ Lf(F L): e
nnnTokes a function f and a list L and returns
a new List with only the elements of L

for which f is true. """ I ——
if L == []: - "o (LESY):
return []
else (Z,.Ek§j§1 L
return [L[0]] + Reep_if(f, L[1:])
else:

return Reep if(f, L[1:])

onl
| : Y-ven(y y.
Let's generalize! " by
d TS
o nly\odd(L). =even, 1)
. r tum hee ..
def kReep if(f, L): pJf“iww,U

"""Takes a function f and a list L and returns
a new List with only the elements of L
for which f is true."""
if L == []:
return []
else:
if f(L[0]):
return [L[0]] + Reep_if(f, L[1:])
else:
Python already has

return kReep_if(f, L[1:]) keep_if,

it's called filter &

Powerful stuff

apply_to_all(cube, keep_if(is_odd, [1, 2, 3, 4, 5, 6]))

a.k.a.

map(cube, filter(is_odd, [1, 2, 3, 4, 5, 6]))

Math does it better!

S={2-z|z€N, z* >3}
N

This notation is sometimes called a “set comprehension”.

But Python can do it, too...

def x2gt3(x):
return x*x*2 > 3

S = map(twice, filter(x2gt3, N))

Python won't give in
that easily! 3

Math does it better!

S={ 2-x \\:13/6 \N/,a:2>3}

output expression variable input set predicate

N

But Python can do it, too...

def x2gt3(x):
return x*x*2 > 3

S = map(twice, filter(x2gt3, N))

Python won't give in
that easily! 3

Math does it better!

S={ 2-x \\33/6 \N/,a:2>3}

output expression variable input set predicate

But Python can do it, too...

R = [twice(x) for x in N i1f x2gt3(x)]

Or, more directly:

Python won't give in

R = [2xx for x in N i1f Xx*x%2 > 3] that easily! @

List Comprehensions

[2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10] result

What's the syntax
saying here? =

.
A —— 4

List Comprehensions

Expression to evaluate
for each list element

Name for each
list element

VW

[2*x for x in [0,1,2,3,4,5]]

The list - or string to use

N

List Comprehenion

result

What's the syntax
saying here? =

A —— 4

List Comprehensions

this "each one" variable can have any name...

x takes on each value N\g
[2*x for x in [0,1,2,3,4,5]]

e e 2 o

and 2*x is output for each one

input

[0, 2, 4, 6, 8, 10]

output

List Comprehensions

expression iteration condition
[[[
[10*x for x in [0,1,2,3,4,5] 1f x%2==0]
EO (Zo/ L("OFS result
E-CD(\ / 2—5

[yv*21 for y in range(0,3)]

EO (Z (c LFZ.-I result

[s[1l] for s in ["h%", "595!"] 1

E': ,, ‘C'.& result

Names:

Write Python's result for each LC:

[0,1,2,3]
[n**2 for n in _range(0,4)]

A range of list comprehensions

Try them eut in!

Sk
[s[1::2] for s in ['aces',6 '451'']]

[-7*b for b in range(-6,6) if abs(b)>4]

[a*(a-1) for a in range(8) if a%2==1]

[z for z in [0,1,2]]

[42 for z in [0,1,2]] Got i
abouttha

['z for z in [0,1,2]] name? (IR

—

Names:

Write Python's result for each LC:

[0,1,2,3]
[n**2 for n in _range(0,4)]

[0,1,4,9]

A range of list comprehensions

Try them eut in!

[s[1::2] for s in ['aces','451!']]

[-7*b for b in range(-6,6) if abs(b)>4]

[a*(a-1) for a in range(8) if a%2==1]

[z for z in [0,1,2]]

[42 for z in [0,1,2]] Got i
abouttha

['z for z in [0,1,2]] name? (IR

—

Write Python's result for each LC: A range of list comprehensions
[@) 1) 2) 3]
[n**2 for n in _range(0,4)]

[0,1,4,9]

[s[1::2] for s in ['aces','451!']]

['CS','S!']

[-7*b for b in range(-6,6) if abs(b)>4]
[42,35,-35]

[a*(a-1) for a in range(8) if a%2==1]

[0,6,20,42]
[z for z in [0,1,2]] []
[42 for z in [0,1,2]] [] Got i

But what
about that

['z for z in [0,1,2]] [] name? (o

—

Write Python's result for each LC: A range of list comprehensions

[@)1)2J3]]()in ayal g . '
i Wlt)] eﬂ'tln-
[n**2 for n in range(0,4)] thisontzggféghborandt
er Sy
[0,1,4,9] sy

0,1,2]] [011/2]
[42 for z in [0,1,2]] [42,42,42]

Watch out !!!

['z for z in [0,1,2]] ['z','z",'z"]

Syntax ?!

[2*x for x in [0,1,2,3,4,5]]
[0, 2, 4, 6, 8, 10]
at first...

a jumble of characters
T v and random other stuff

a (frustrated!) rendering of
an unfamiliar math problem

Syntax ~ is CS's key resource!

©) 1 2xy*
r 3 ¢ >
28k
—~ ~ 2
,_A\) J L— 4\/x {/a

)
e Wx A

a (frustrated!) rendering of which was likely
an unfamiliar math problem similar to these...

Designing with LCs, sum, and range...

Key idea:

IC=[1 for ¢ in '1 get it!' if e=='1i"'"]

What's LC here?

answer = sum(LC)

What number is answer?

What question is answer answering?!

Designing with LCs, sum, and range...

Key idea:

IC=[1 for ¢ in 'i get it!' if c=="'1i"]
[1 y 1] What's LC here?

answer = sum(LC)

2 What number is answer?

How many i's arein

L L What question is answer answering?!
i get it'?

Short and sweet!

Two fun:

G

[7,8,9]

def £unl (L) :
LC = [1 for x in L]

return sum(LC)

letScore (c)

'"twelve'

/
def f£fun2(S):

LC = [letScore(c) for ¢ in S]
return sum(LC)

Two fun:

[7,8,9]
@ / But One-Iine_rs are
de L fun 1 (L) . my specialty...

. (-
ILC = [1 for x in L] e
return sum(LC)

letScore(c)

(I ' twelve'
scl’-‘ab‘blesco //

aef fun2 (S):
LC = [letScore(c) for ¢ in S]

return sum(LC)

"One-line" LCs

'esh!

.
def len (L) :

LC = [1 for x in L]
return sum(LC)

pOSSlble in 1 llne, but I never get more than

one line - who are the

not recommended! writers around here... ?

Gy

"One-line" LCs

'esh!

.
def len (L) :

LC = [1 for x in L]
return sum(LC)

possible in 1 line, but

That's no one-liner!
not recommended!

Gy

def len (L) :

return sum([1l for x in L])

\
o ShOT™

\iayoe o=

'sequoia’ if
of vowels

def wvwl(s):
ILC = [1 for ¢ in s
return sum(LC)

o 42 [3,42,5,7,42]
#Hof timeseisinlL

def count(e,L):
ILC = [1 for x in L
return sum(LC)

if

'sequoia'’ if
of vowels

def wvwl(s):
ILC = [1 for ¢ 1n S if c in 'aeiou']
return sum(LC)

| . 42 [3,42,5,7,42]
#Hof timeseisinlL

def count(e,L):
IC = [1 for x in L if x == e |
return sum(LC)

if

Write each of these functions using list comprehensions...

input: L, 3

nodds (L) :

ILC = [
lotto (Y,
IC=[1

ndivs (N) :
IC =11

input: P, an int >=2
output: the list of prime #s up to + incl. P
exampte:—primestpTo(12)==12;3;5;711]

primesUpTo (P) :
ILC = [

Write each of these functions using list comprehensions...

input: L, any list of #s
output: the # of odd #sin L

def nQdds (L) . example: nodds([3,4,5,7,42]) ==3
LC [1 for x in L if]

Y are your #s W are the winning #s
inputs: Y and W, two lists of "lottery" numbers (ints)
output: the # of matches between Y & W

def lotto(Y,W): example: lotto([5,7,42,47], [3,5,7,44,47]) == 3
LC [1 for

input: X, an int >=2
output: the # of positive divisors of x

def ndivs (X) . example: numdivs(12) == 6 (1,234,6,12)
LC [1 for

input: P, an int >=2
output: the list of prime #s up to + incl. P
example: primesUpTo(12)==[2,3,5,7,11] Whoa!

def primesUpTo (P) :
LC = [

Write each of these functions using list comprehensions...

input: L, any list of #s
output: the # of odd #sin L

def nodds (L) . example: nodds([3,4,5,7,42]) ==

IC=[1 for x in L 1f x%2 == 1]
Y are your #s W are the winning #s
inputs: Y and W, two lists of "lottery" numbers (ints)
output: the # of matches between Y & W
def 10tt0 (Y , W) . example: lotto([5,7,42,47],[3,5,7,44,47]) ==
IC=[1 for x in Y 1if]
input: X, an int >=2
output: the # of positive divisors of x
def ndivs (X) . example: numdivs(12) ==6 (1,2346,12)
IC =[] 1 for d in range(l,n+l) if x%d == 0]

input: P, an int >=2
output: the list of prime #s up to + incl. P
example: primesUpTo(12)==12,3,5,7,11] Whoa!

def primesUpTo (P) :
ILC = [x for x in range(2,P+1l) if ndivs(x)==2]

hw2pr3: areas from rectangles

A A

y = 2X y = 2X

Areas of 4 rectangles Areas of 8 rectangles

hw2pr3: areas from rectangles

A A

y = 2X y = 2X

¢
Y (5,10)

(2.5,5)

(0,0) (0,0)

LC LC

Areas of 4 rectangles Areas of 8 rectangles

hw2pr3: areas from rectangles

/ A (10,20) , Y = ZN y =2x

(2.5,5)

(0,0)

Area of N rectangles in the limit

BT

» »ﬂ‘
9y

"two-by-four landscape”

S
e
0
~
"
O
A
-
3
=
Q
S
)
=
<
S
0
e
)
N
<
=
]
S
>
S
=

hw2pr3: Maya Lin, Architect...

. ".'.. .
LR

"

Maya Lin, Artist and Computer Scientist... F

"two-by-four landscape”

CS ~ Building Blocks!

A

scaledfracs (low,hi,b N)
f of fracs(f,low,hi, N)

integrate (f,low,hi N)

only a few lines...

They're all LCs! (0,0)

Areas of 8 rectangles

CS ~ Building Blocks!

Next? Coftee! ;-)

