Three week "detour," featuring ...

... the ghost in the machine

OK Recursing? OKer than before?

Hw\#4: binary + Python

CS
 Today

Circuit design, part 1

A circuit for any function can be built from ...

Minterm
 Expansion Principle

That's minterm, NOT midterm
-

... just these three logic gates!

Last week's solutions

```
def blsort(L):
    """ returns a sorted version of L
        (L has only 1's and 0's)
    """"
    return count(0,L)*[0] + count (1,L)*[1]
def decipher (S):
    """ input: string that has been shifted
        output: English rotation of S
    """"
    L = [ encipher(S,n) for n in range(26) ]
    LoL = [ [wordProb(x),x] for x in L ]
    bestpr = max(LoL)
    return bestpr[1]
def gensort(L):
    """" returns a sorted version of the list L
    """
    if len(L) == 0: return L
    else:
        m}=min(L
        R=remOne(m,L)
        return [m] + gensort(R)
def jscore(S,T):
    """ returns the jotto score of S vs. T
    """"
    if S == '' or T == '': return 0
    elif S[0] in T:
    return 1 + jscore(S[1:],remOne(S[0],T))
    else: return jscore(S[1:],T)
```

```
def exact_change(t,L):
    """ returns whether t can be made by summing el's in L
    """
    if t==0: return True
    elif t<0 or L==[]: return False
    else:
        useit=exact_change(t-L[0],L[1:])
        loseit=exact_change(t,L[1:])
        return useit or loseit
def LCS (S,T):
    """ returns the longest common subseq of S and T
    """
    if S == '' or T=='': return ''
    elif S[0]==T[0]: return S[0]+LCS(S[1:],T[1:])
    else:
        result1 = LCS(S[1:], T)
        result2 = LCS(S, T[1:])
        if len(result1) < len(result2): return result2
        else: return result1
def make_change(t,L):
    """ returns how t can be made by summing el's from L
        or False, if it's not possible...
    """
    if t==0: return []
    elif t<0 or L==[]: return False
    else:
        useit=make_change(t-L[0],L[1:])
        loseit=make_change(t,L[1:])
    if useit == False: return loseit
    useit = L[0:1] + useit
    return useit

\section*{Creativity with Caesar...}

\section*{def decipher( S ):}
""" TESIJHYDW - je tusyfxuh
jxyi tesijhydw, zkij hkd tusyfxuh ed yj.
... code here ...

\section*{Creativity with Caesar...}

\section*{def decipher( S ):}
""" DOCSTRING - to decipher this docstring, just run decipher on it.
\|! リ
... code here ...
my favorite not-fully-working decipher...

\section*{Creativity with Caesar...}

\section*{def decipher( S ):}
""" This works sometimes
\| \| \|
return encipher ( S, 3 )

This
week
Circuits! .. sometimes
return encipher ( S, 3 )

Designing physical devices that work all the time!

This
week
Circuits! -. sometimes
return encipher ( S, 3 )

\section*{The big picture...}

In a computer, each bit is represented as a voltage ( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )

Computation is simply the deliberate combination of those voltages!


\section*{The big picture...}

In a computer, each bit is represented as a voltage ( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )

Computation is simply the deliberate combination of those voltages!
 voltages


\section*{The big picture...}

In a computer, each bit is represented as a voltage ( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )

Computation is simply the deliberate combination of those voltages!


All computations...
... are functions of bits
binary inputs A and B

output, A+B

\section*{Motivation: A function we want...}


What! Why do these bits get individual names?!
All 5 of these bits have names...!

2 bits of output

\section*{Motivation: A function we want...}


These three inputs can
change however we like ...
These three inputs can
change however we like ...

\section*{'0}

3 bits of input

\(\qquad\)

\section*{All 5 of these bits have names...!}

2 bits of output
but these two output bits will have to change to be correct.

\section*{Truth table}


\section*{Truth table}


\section*{Part 1: Represent your function as bits...}

Any function can be represented using only bits...

three bits in...
...one bit out

\section*{Truth table}

circuit output

\section*{Part 1: Represent your function as bits...}

Any function can be represented using only bits...


This one is named the carry function

\section*{Part 1: Represent your func as bits...}

Any function can be represented using only bits...

IN
\begin{tabular}{lllr}
\(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathbf{c}\) & circuit ou \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{tabular}

\section*{OUT}
circuit output

\section*{0 \\ 0 \\ 0}

three bits in...
...one bit out

\section*{Our building blocks: logic gates}


These circuits are physical functions of bits...
... and all mathematical functions can be built from them!

\section*{Our building blocks: logic gates}


These circuits are physical functions of bits...
... and all mathematical functions can be built from them!

\section*{Our building blocks: logic gates}

AND outputs 1 only if ALL inputs are 1


OR outputs 1 if ANY input is 1


NOT reverses its input

NOT


These circuits are physical functions of bits...
... and all mathematical functions can be built from them!


AND outputs 1 when ALL inputs are 1 otherwise it outputs 0



AND's
function:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{input} & output \\
\hline x & Y & z & w & AND ( XYZW ) \\
\hline 0 & 0 & 0 & 0 & \\
\hline 0 & 0 & 0 & 1 & \\
\hline & reow & Ot sh & & \\
\hline 1 & 1 & 1 & 0 & \\
\hline 1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

How many of the 16 rows here will output a 1?


OR outputs 1 when ANY input is 1
It outputs 0 only if all inputs are 0 .



OR's
function:

\(\Rightarrow\) output
\(\Rightarrow\) output

OR's
function:

output
OR (xyzw)
\(0 \quad 0 \quad 0 \quad 0\)

12 more rows not shown...
\(\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\)

How many of the 16 rows here will outputa 1?

OR's
function:

\(\Rightarrow\) output
output
OR (xyzw)
0
1
.. 12 more rows not shown...
\(\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{input} & output \\
\hline \(\mathbf{x}\) & Y & z & w & OR (xyzw) \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline \multicolumn{4}{|l|}{..12 more rows not shown} & 1 \\
\hline 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{NOT}

inputs


NOT's
function:
\begin{tabular}{cc}
\(\frac{\text { input }}{\mathbf{x}}\) & output \\
& NOT ( \(\mathbf{x})\) \\
0 & 1 \\
1 & 0
\end{tabular}
one 1
one 0

\section*{Our building blocks: logic gates}
\begin{tabular}{ccc}
\multicolumn{2}{c}{ input } & \\
\cline { 1 - 2 } \(\mathbf{x}\) & \(\mathbf{y}\) & output \\
0 & AND \((\mathbf{x}, \mathrm{y})\) \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}

AND outputs 1 only if ALL inputs are 1

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{input} & output \\
\hline x & y & OR ( \(\mathrm{x}, \mathrm{y}\) ) \\
\hline 0 & 0 & 0 \\
\hline & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{cc}
\(\frac{\text { input }}{}\) & output \\
& NOT \((\mathbf{x})\) \\
0 & 1 \\
1 & 0
\end{tabular}

NOT reverses its input

NOT

\section*{Our building blocks: logic gates}
\begin{tabular}{ccc}
\multicolumn{2}{c}{ input } & \\
\cline { 1 - 2 } \(\mathbf{x}\) & \(\mathbf{y}\) & output \\
0 & AND \((\mathbf{x}, \mathrm{y})\) \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}

AND outputs 1 only if ALL inputs are 1

\begin{tabular}{ccc}
\multicolumn{2}{c}{ input } & \\
\cline { 1 - 2 } \(\mathbf{x}\) & \(\mathbf{y}\) & output \\
\(\mathbf{X O R}(\mathbf{x}, \mathrm{y})\) \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}

OR outputs 1 if ANY input is 1

\begin{tabular}{cc}
\(\frac{\text { input }}{}\) & output \\
\(\frac{\mathbf{x}}{}\) & NOT \((\mathbf{x})\) \\
0 & 1 \\
1 & 0
\end{tabular}

NOT reverses its input

NOT

\section*{Our building blocks: logic gates}
\begin{tabular}{ccc}
\multicolumn{2}{c}{ input } & \\
\cline { 1 - 2 } \(\mathbf{x}\) & \(\mathbf{y}\) & output \\
0 & AND \((\mathbf{x}, \mathbf{y})\) \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}

AND outputs 1 only if ALL inputs are 1

\begin{tabular}{|c|c|c|}
\hline & & output \\
\hline x & y & OR ( \(\mathrm{x}, \mathrm{y}\) ) \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{cc}
\(\frac{\text { input }}{}\) & \\
\(\frac{\text { output }}{\mathbf{x}}\) & NOT ( \(\mathbf{x})\) \\
0 & 1 \\
1 & 0
\end{tabular}

NOT reverses its input

\section*{NOT}

\section*{Claim !?}

\section*{We need only these three building blocks to compute anything at all}


AND outputs 1 iff \(A L L\) its inputs are 1


OR outputs 1 iff ANY input is 1


NOT reverses its input

\section*{From gates to circuits...}

\section*{What inputs make this circuit output 1?}


\section*{From gates to circuits...}

What inputs make this circuit output 1?
CircuitVerse Project Circuit Tools

\section*{A circuit...}


\section*{Rails}

\section*{There is NO difference between these two circuits!}

\section*{How?}


Any disadvantages of this "rails" approach?

Any advantages?
using rails for not \(\mathbf{x}\), not \(\mathbf{y}\), not \(\mathbf{c}\)


\section*{Try it!}
\(\qquad\) Fill in the function values for this circuit (the truth table)

Each input \(\mathrm{x}, \mathrm{y}\), and z can independently be 0 or 1 , for eight total possible inputs:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{inputs} & \multirow[t]{2}{*}{circu outp} & \multirow[b]{2}{*}{Gate?} \\
\hline x & Y & C & & \\
\hline 0 & 0 & 0 & & \\
\hline 0 & 0 & 1 & & \\
\hline 0 & 1 & 0 & 1 & A \\
\hline 0 & 1 & 1 & & \\
\hline 1 & 0 & 0 & & \\
\hline 1 & 0 & 1 & & \\
\hline 1 & 1 & 0 & & \\
\hline & 1 & 1 & & \\
\hline & & & & \\
\hline & & & & utput \\
\hline
\end{tabular}
© (1) This circuit uses 8 logic gates - how many of each? AND \(\qquad\) OR \(\qquad\) NOT \(\qquad\)
©. (2) Follow upstream from A. What \(\mathrm{x}, \mathrm{y}, \mathrm{c}\) bits make A output 1 ? (and why is that all we need to know for A?)
(3) For each possible input, write the circuit output in the truth table above.

\section*{Real! logic gates...}


\section*{74LS04 NOT gate}

\section*{Try it!}

Each input \(\mathrm{x}, \mathrm{y}\), and z can independently be 0 or 1 , for eight total possible inputs:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{inputs} & \multirow[t]{2}{*}{circuit output} & \multirow[b]{2}{*}{Gate?} \\
\hline \(\mathbf{x}\) & y & c & & \\
\hline 0 & 0 & 0 & 0 & \\
\hline 0 & 0 & 1 & 0 & \\
\hline 0 & 1 & 0 & 1 & A \\
\hline 0 & 1 & 1 & 1 & B \\
\hline 1 & 0 & 0 & 0 & \\
\hline 1 & 0 & 1 & 1 & C \\
\hline 1 & 1 & 0 & 0 & \\
\hline \multirow[t]{3}{*}{1} & 1 & 1 & 1 & D \\
\hline & & & \(\uparrow\) & \\
\hline & & & \multicolumn{2}{|l|}{Each output is 0 or 1} \\
\hline
\end{tabular}

(3) For each possible input, write the circuit output in the truin table above. \(\square\)

\section*{The claim...}


AND outputs 1 only if ALL its inputs are 1


OR outputs 1 if ANY input is 1

NOT reverses its input

We need only these three building blocks to compute anything at all

\section*{The proof...!}


\section*{AND outputs 1 only if \(A L L\) its inputs are 1}
\(\Longrightarrow \square D\) constructively using We prove this conansion principle. the minterm not reverses its input

We need only these three building blocks to compute anything at all

I need proof!

\section*{A constructive proof...}

Specify a truth table defining any function you want

For each input row whose
ii output needs to be 1, build an AND circuit that outputs 1 only for that specific input!
\begin{tabular}{ccc}
\(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}

\section*{A constructive proof...}

Specify a truth table defining any function you want
output


For each input row whose ii output needs to be 1, build an AND circuit that outputs 1 only for that specific input!

The ZERO rows ALREADY work with no connections at all!

\section*{A constructive proof...}

(i)
Specify a truth table defining any function you want


For each input row whose ii output needs to be 1, build an AND circuit that outputs 1 only for that specific input!


\section*{A constructive proof...}

(i)
Specify a truth table defining any function you want


For each input row whose ii output needs to be 1, build an AND circuit that outputs 1 only for that specific input!


\section*{A constructive proof...}

MINTERM or each input row whose utput needs to be 1, build expansion princple AND circuit that outputs 1 expansion princple -pr that specific input!
This is a constructive proof that AND, OR, NOT all together suffice to build any function of bits!

A and Altive proof... functions of bits ! expansion princple prits!

\section*{This is a constructive} proof that AND, OR, NOT all ogether suffice to build any
function of bits!

\section*{Minterm Expansion Principle}


\section*{What input "activates" each of these minterms?}
we did this before!
-(D)OUTPUT

A minterm is an AND gate connected to all input bits either directly or inverted

For each 1 in the truth table, use one AND gate, called a minterm.

\section*{Each minterm selects one input:}
a minterm is an AND gate that "selects" a single input row



input output
\begin{tabular}{ccc}
\(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathrm{OR}(\mathrm{x}, \mathrm{y})\) \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{tabular}

\section*{OR else ?!}

Can you get rid of ORs by using only NOTs and ANDs?

x OR Y

\section*{Lab5: adders!}
\begin{tabular}{|ccccc|}
\hline \(\mathbf{x}\) & y & \(\mathrm{c}_{\text {in }}\) & carry \(_{\text {out }}\) & sum \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{tabular}

Full Adder (FA)

A full adder sums three input bits to create \(a\) 2-bit binary output
```

