
Three	week	"detour,"	featuring	...	

...	the	ghost	in	the	machine

CS							Today

Minterm
Expansion
Principle

That's	minterm,	NOT	midterm

A	circuit	for	any	function	can	be	built	from	…

…	just	these	three	logic	gates!

Hw#4:		binary	+	Python

Circuit	design,	part	1

This	c
ircuit	

was	N
OT,	

in	fact
,	desig

ned!

OK	Recursing?
OKer	than	before?

Last	week's	solutions too compressed, admittedly!

too recursive?

def decipher(S):
 """ TESIJHYDW - je tusyfxuh
 jxyi tesijhydw, zkij hkd
 tusyfxuh ed yj. """
 … code here …

Creativity	with	Caesar...

def decipher(S):
 """ DOCSTRING - to decipher
 this docstring, just run
 decipher on it. """
 … code here …

Creativity	with	Caesar...

my favorite not-fully-working decipher…

def decipher(S):
 """ This works sometimes
 """
 return encipher(S, 3)

Creativity	with	Caesar...

and	the		docstring	
is	100%	correct!

Designing	physical	devices	
that	work	all	the	time!

def decipher(S):
 """ This works sometimes
 """
 return encipher(S, 3)

Circuits!
This	
week

Designing	physical	devices	
that	work	all	the	time!

def decipher(S):
 """ This works sometimes
 """
 return encipher(S, 3)

Circuits!
This	
week

42
101010

In a computer, each bit is represented
as a voltage (1 is +5v and 0 is 0v)

9
001001

ADDER
circuit

Computation is simply the deliberate
combination of those voltages!

What's	in	that	
green	box?

(1) set input
voltages

The	big	picture...

42
101010

In a computer, each bit is represented
as a voltage (1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

Computation is simply the deliberate
combination of those voltages!

What's	in	that	
green	box?

(1) set input
voltages

(2) perform computation

The	big	picture...

42
101010

In a computer, each bit is represented
as a voltage (1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

51

Computation is simply the deliberate
combination of those voltages!

What's	in	that	
green	box?

(3) read output
voltages

(1) set input
voltages

(2) perform computation

Richard Feynman: "Computation is just a
physics experiment that always works!"

The	big	picture...

All	computations… …	are	functions	of	bits

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

A B

binary	inputs	A	and	B output,	A+B

bitwise
addition	
function

This	week,	you'l
l	

build	the	addB		

function	in	

Circuitverse

You	built	this	in	
Python	

last	week	as	add
B

purely	syntactica
llyadd

four	bits	in
...

...three	bits
	out

addB

1
0
1

Motivation:			A	function	we	want...

3	bits	of	input

10
+

2	bits	of	output

What!	Why	do	these	bits	
get		individual	names?!

All	5	of	these	bits	
have	names...	!

"three-bit"
adder

1
0
1

Motivation:			A	function	we	want...

3	bits	of	input

10
+

2	bits	of	output

What!	Why	do	these	bits	
get		individual	names?!

sum
bit

carry
bit

x

y

c

Because	each	is	an	
individual	wire!

All	5	of	these	bits	
have	names...	!

These	three	inputs	can	
change	however	we	like	...

...	but	these	two	output	bits	will	
have	to	change	to	be	correct.

"three-bit"
adder

1
0
1

Truth	table

3	bits	of	input

10

Which output
bit is this

truth table ?!?

+

x y

0 0
0 0
0 1
0 1

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
0
1

circuit output

sum
bit

carry
bit

x

y

c

1
0
1

Truth	table

3	bits	of	input

10

Which output
bit is this

truth table ?!?

+

x y

0 0
0 0
0 1
0 1

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
0
1

circuit output

"sum"	bit

"sum" bit

sum
bit

carry
bit

Part	1:		Represent	your	function	as	bits…
Any	function	can	be	represented	using	only	bits…

x y

0 0
0 0
0 1
0 1

circuit output

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
0
1

This	one	is	
named	the	
sum	function

That's some
function, all right!

three	bits	in
...

...one	bit	ou
t

c
y
x+

sum
bit

carry
bit

c
x
y

Truth	table

3	bits	of	input

??

What truth
table for the
"carry" bit?

+

x y

0 0
0 0
0 1
0 1

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
0
1

circuit output

"carry" bit

sum
bit

carry
bit

Part	1:		Represent	your	function	as	bits…
Any	function	can	be	represented	using	only	bits…

x y

0 0
0 0
0 1
0 1

circuit output

0
0
0
1

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

0
1
1
1

This	one	is	
named	the	
carry	
function

I'm feeling carried
away, in fact!

three	bits	in
...

...one	bit	ou
t

c
y
x+

sum
bit

carry
bit

Part	1:		Represent	your	func	as	bits…
Any	function	can	be	represented	using	only	bits…

x y

0 0
0 0
0 1
0 1

circuit output

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

0
0
1
1

another	f'n!
fun!

three	bits	in
...

...one	bit	ou
t

Use a

truth

table

For	
any	
func!

Our	building	blocks:			logic	gates

AND OR NOT

These	circuits	are	physical	functions	of	bits…

…	and	all	mathematical	functions	can	be	built	from	them!

not	just	theoretical	models

Our	building	blocks:			logic	gates

AND OR NOT

These	circuits	are	physical	functions	of	bits…

…	and	all	mathematical	functions	can	be	built	from	them!

not	just	theoretical	models

XOR

Our	building	blocks:			logic	gates

AND	outputs	1	only	
if	ALL	inputs	are	1

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	
its	input

AND OR NOT

These	circuits	are	physical	functions	of	bits…

…	and	all	mathematical	functions	can	be	built	from	them!

not	just	theoretical	models

AND

AND		outputs	1	when	ALL	inputs	are	1

otherwise	it	outputs	0

inputs outputAND

drill	sergeant	
metaphor?

Strict!	Everything	input	must	be	
True	to	output	a	True

AND

AND's	
function:

inputs outputAND

x y

0 0
0 1
1 0
1 1

AND(x,y)
0
0
0
1

input output

x

y
output

"Trut
h	tabl

e"

Strict!	Everything	input	must	be	
True	to	output	a	True

AND

inputs outputAND

x y

0 0
0 0

1 1
1 1

AND(xyzw)z

0
0

1
1

w

0
1

0
1

w
output

input output

…12 more rows not shown…

z
y
x

AND's	
function:

Strict!	Everything	input	must	be	
True	to	output	a	True

How	many	
of	the	

16	rows	he
re	will	

output	a	1?

AND

inputs outputAND

x y

0 0
0 0

1 1
1 1

AND(xyzw)
0
0

0
1

z

0
0

1
1

w

0
1

0
1

w
output

input output

…12 more rows not shown… 0

z
y
x

one	1

AND's	
function:

Strict!	Everything	input	must	be	
True	to	output	a	True

fifteen	0s

OR

OR		outputs	1	when	ANY	input	is	1
It	outputs	0	only	if	all	inputs	are	0.

inputs outputOR

camp	counselor	
metaphor?

easy-going:	if	anything	is	
OK,	everything's	OK

OR

inputs output

x y

0 0
0 1
1 0
1 1

OR(x,y)
0
1
1
1

input output

x

y
output

OR's	
function:

OR

easy-going:	if	anything	is	
True,	the	output	is	True

OR

outputOR
w

outputz
y
x

x y

0 0
0 0

1 1
1 1

OR(xyzw)z

0
0

1
1

w

0
1

0
1

input output

…12 more rows not shown…

OR's	
function:

easy-going:	if	anything	is	
OK,	everything's	OK

How	many	
of	the	

16	rows	he
re	will	

output	a	1?

inputs

OR

inputs outputOR
w

outputz
y
x

x y

0 0
0 0

1 1
1 1

OR(xyzw)
0
1

1
1

z

0
0

1
1

w

0
1

0
1

input output

…12 more rows not shown… 1

one	0
OR's	

function:

easy-going:	if	anything	is	
OK,	everything's	OK

fifteen	1s

NOT

inputs outputNOT

"NOT	bubble"	
(optional	–	or	the	only	

thing	needed!)

x

x

0
1

NOT(x)
1
0

input output

one	1

one	0

NOT's	
function:

Our	building	blocks:			logic	gates

x y

0 0
0 1
1 0
1 1

AND(x,y)
0
0
0
1

AND	outputs	1	only	
if	ALL	inputs	are	1

x y

0 0
0 1
1 0
1 1

OR(x,y)
0
1
1
1

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	
its	input

input output

x

0
1

NOT(x)
1
0

input output

input output

AND OR NOT

Our	building	blocks:			logic	gates

x y

0 0
0 1
1 0
1 1

AND(x,y)
0
0
0
1

AND	outputs	1	only	
if	ALL	inputs	are	1

x y

0 0
0 1
1 0
1 1

XOR(x,y)
0
1
1
0

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	
its	input

input output

x

0
1

NOT(x)
1
0

input output

input output

AND OR NOT

Our	building	blocks:			logic	gates

x y

0 0
0 1
1 0
1 1

AND(x,y)
0
0
0
1

AND	outputs	1	only	
if	ALL	inputs	are	1

x y

0 0
0 1
1 0
1 1

OR(x,y)
0
1
1
1

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	
its	input

input output

x

0
1

NOT(x)
1
0

input output

input output

AND OR NOTALL ANY

Claim	!?
I need
proof!We	need	only	these	three	building	

blocks	to	compute	anything	at	all

AND

OR

NOT

AND	outputs	1	iff	ALL	
its	inputs	are	1

OR	outputs	1	iff	ANY	
input	is	1

NOT	reverses	its	input

ALL
must	be

	1

ANYcan	be	1

From	gates	to	circuits...	
What inputs make this circuit output 1?

What inputs make this circuit output 0?

000
001
010
011
100
101
110
111

Too	small	

to	read...

Eight 3-bit
inputs

From	gates	to	circuits...	
What inputs make this circuit output 1?

What inputs make this circuit output 0?

cc

cyx

000
001
010
011
100
101
110
111

Eight 3-bit
inputs

A	circuit…

What inputs make this circuit output 0?

What inputs make this circuit output 1?

What are all the outputs?CircuitVerse.org

each AND is one row!

Rails
There	is	NO	
difference	

between	these	
two	circuits!

How?

Any	advantages	?

Any	disadvantages	
of	this	"rails"	
approach?

using	rails	for	not	x,		not	y,	 not	c

Fill	in	the	function	values	for	
this	circuit	(the	truth	table)	

(3)	For	each	possible	input,	write	the	circuit	output	in	the	truth	table	above.							

A

B

C

D

(ec)	Could	this	circuit	use	fewer	logic	gates?								If	so,	how?!							If	not,	how	do	you	know?!

Try	it!

y c

0 0
0 1
1 0
1 1

inputs

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output

Each	output	
is	0	or	1

(1)	This	circuit	uses	8	logic	gates	–	how	many	of	each?				AND ___ OR ___ NOT ___

1

(2)	Follow	upstream	from	A.	What	x,y,c	bits	make	A	output	1	?		(and	why	is	that	all	we	need	to	know	for	A?)

circuit

Each	input	x,	y,	and	z	can	independently	be	0	or	1,	for		eight		total	possible	inputs:	

This circuit
is prime!

to
ge

th
er

Gate?

A

c

Names:

Real!					logic	gates...

74LS04 NOT gate

Fill	in	the	function	values	for	
this	circuit	(the	truth	table)	

(3)	For	each	possible	input,	write	the	circuit	output	in	the	truth	table	above.							

A

B

C

D

(ec)	Could	this	circuit	use	fewer	logic	gates?								If	so,	how?!							If	not,	how	do	you	know?!

Try	it!

y c

0 0
0 1
1 0
1 1

inputs

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output

Each	output	
is	0	or	1

(1)	This	circuit	uses	8	logic	gates	–	how	many	of	each?				AND ___ OR ___ NOT ___

1

(2)	Follow	upstream	from	A.	What	x,y,c	bits	make	A	output	1	?		(and	why	is	that	all	we	need	to	know	for	A?)

circuit

Each	input	x,	y,	and	z	can	independently	be	0	or	1,	for		eight		total	possible	inputs:	

This circuit
is prime!

to
ge

th
er

Gate?

A

c

Try	this	on	the	other	page	first…

A
B

C

D

4 1 3

010

it's zero

otherwise

see

above!

two can be
combined!

Each	output	
is	0	or	1

Gate?

A
B

C

D1

0
0

1

1
0
1

0

The	claim…

I need
proof!

We	need	only	these	three	building	blocks	
to	compute	anything	at	all

AND

OR

NOT

AND	outputs	1	only	if	
ALL	its	inputs	are	1

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	its	input

The	proof…	!

I need
proof!

We	need	only	these	three	building	blocks	
to	compute	anything	at	all

AND

OR

NOT

AND	outputs	1	only	if	
ALL	its	inputs	are	1

OR	outputs	1	if	
ANY	input	is	1

NOT	reverses	its	input

We	prov
e	this	co

nstructi
vely	usin

g	

the	mint
erm	exp

ansion	p
rinciple

.

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together
Hey! This is a
3-i'ed proof!

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together

OR
The ZERO rows ALREADY work –

with no connections at all !

x y

x
y

We ensure this OR
outputs zero by

default.

0

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together

OR

x y

x
y

NOT AND

This wire DOES turn on for the red input row?
Does this wire turn on for any other input rows?

A

A

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together

OR

x y

x
y

NOT

NOT
AND

blue row?
other rows?

AND
A

B

B
A

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together

OR

x y

x
y

NOT

NOT
AND

blue row?
other rows?

AND
A

B

B
A

MINTERM
expansion princple

This is a constructive

proof that AND, OR, NOT

suffice to build any

function of bits!

Specify a truth table defining
any function you want

A	constructive	proof…	

x y

0 0
0 1
1 0
1 1

f(x,y)
0
1
1
0

input output

i ii
For each input row whose

output needs to be 1, build
an AND circuit that outputs 1

only for that specific input!

iii OR them all together

OR

x y

x
y

NOT

NOT
AND

blue row?
other rows?

AND
A

B

B
A

MINTERM
expansion princple

This is a constructive

proof that AND, OR, NOT

suffice to build any

function of bits!

and ALL functions are just functions of bits !

What	input	"activates"	
each	of	these	minterms?

Minterm	Expansion	Principle

we did this before!

A	minterm	is	an	AND	gate	
connected	to	all	input	bits	-	
either	directly	or	inverted

For	each	1	in	the	truth	
table,	use	one	AND	gate,	
called	a	minterm.

Each	minterm	selects	one	input:
a	minterm	is	an	AND	gate	that	"selects"	a	single	input	row

111 the ONLY input to make
this minterm output 1

110

x y c

x y c
the ONLY input to make
this minterm output 1

010
x y c

the ONLY input to make
this minterm output 1

Minterm	Expansion	Principle
Looks a little
wiry to me!

(2) Draw the upstream wires that will
implement this function as a circuit.

Hint: Determine the input
that turns each AND gate –
each minterm -- to True

A

B

C

D

(1) Fill in all 8 rows of
the function values
(truth table) for this

circuit…

y c

0 0
0 1
1 0
1 1

input

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output Take	2…

c

SUM

A

B

C

D

CarryOut

OR

c

y c

0 0
0 1
1 0
1 1

input

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output

0
0
0
1
0
1
1
1

A

B
C
D

(Extra #2) How could
you replace the OR with

only ANDs and NOTs?
ORs aren't needed!

(Extra #3) How do the
two circuits on this page
implement addition of

any two binary #s!?

1011
1111

11010

111

+
x
y

(Extra #1) Any gates you
can optimize away here?

Try two more of these...

(2) Draw the upstream wires that will
implement this function as a circuit.

Hint: Determine the input
that turns each AND gate –
each minterm -- to True

A

B

C

D

(1) Fill in all 8 rows of
the function values
(truth table) for this

circuit…

y c

0 0
0 1
1 0
1 1

input

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output Take	2…

c

SUM

0
1
1
0

0
0
1

1

A
B

C

D

A

B

C

D

CarryOut

OR

c

y c

0 0
0 1
1 0
1 1

input

0 0
0 1
1 0
1 1

x

0
0
0
0
1
1
1
1

output

0
0
0
1
0
1
1
1

A

B
C
D

(Extra #2) How could
you replace the OR with

only ANDs and NOTs?
ORs aren't needed!

(Extra #3) How do the
two circuits on this page
implement addition of

any two binary #s!?

1011
1111

11010

111

+
x
y

(Extra #1) Any gates you
can optimize away here?

try solving these on the
previous page first!

OR	else	?!
Can	you	get	rid	of	ORs	by	using	

only	NOTs	and	ANDs?

x y

0 0
0 1
1 0
1 1

OR(x,y)

0
1
1
1

input output

x OR y

OR

x

y

A	full	adder	sums	three	
input	bits	to	create	a						
2-bit	binary	output

3 bits of input 2 bits of output

carryout sum

0 0 0
cin

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1
1 0

x y

0 1
1 0
1 0
1 1

Lab5:		adders!

these	columns	
look	familiar!

the full adder

FA

x y cin

sum
carryout

Full Adder (FA)

(considered individually) (considered a binary #)

Full Adder (FA)

