Software

Python

&l How does Python function ?

—_—

Hmmm

RAM

registers

1-bit memory: flip-flops
arithmetic

bitwise functions

logic gates

transistors / switches

Hardware

N

4 Hmmm problems

+ 1 loop problem
due Tues. 3/5

* Fall break?!...

N
> ‘

| I

Assembly Language

Machine Language

I have a looming sense... Sk

Fun with circuits?

%cwcultVerse Project v Circuit v Tools v Help v ALU Fun

4-Bit Adder x

CIRCUIT ELEMENTS & TIMING DIAGRAM O

Search..
Input
Output
3 2 1 (]
Gates
X3 X2 X1 X0
y X y x ¢ y x ¢ y X ¢
FA FA FA FA
carryout carryout carryout carryout
sum sum sum sum
e 0 0
b zZ4 z3 z2 z1 z0

Sequential Elements

Annotation

Misc

Making memories... ~1952-
2024

— 1
— 1

CRCRO

Write@ |
— O L i O
read- - - -
[[[
D
v

Inside the 12nGbits of memory...

© © ©

72 b4l 0

n‘g My head is spinning... Circu itS ~ Mem 0 ”'y!

Enable

32x 8-bit

32 bytes of memory

the power of composition

ro [1}
Al@_|
Az [1}

A3 |

A4 |O =

o

32x 1-bit

Bit-In

O

A0 A1 A2 A3 Enable
Bit-In Bit-Out

R 16x 1-bit RAM RD

!

—ﬂ
A0 A1 A2 A3 Enable
Bit-In Bit-Out
RD =

R 16x 1-bit RAM

wr [O}—

WR Ao A1 A1 A1 A1

|_o__| [oTZToT 1]}

RD

[

Ino@

IHIE

Ian

In3 |O

In4

Ins |O

ne [1}

In7

Enable
AD A1 AR £3 A4 Enable
BitIn Bit-Out §= ===
= -
W 4x 1-bit RAM RO
AD A1 A2 £3 A4 Enable
BitIn Bit-Out §= ==
W 4x 1-bit RAM ROT]
AD A1 A £3 A4 Enable
BitkIn Bit-Out §= ==
- P m—
W X 1-bit RAM RD
Ab £1 A A3 A4 Enable
BitIn Bit-Out §= ===
- p
w $x 1-bit RAM ROT =
Ab £1 A A3 A4 Enable
BitIn Bit-Out §= ===
=, b m—
W 3Px 1-bit RAM RD
T A1 A2 £3 A4 Enable
BitIn Bit-Out §= ===
= e
w Px 1-bit RAM RD
Ao A1 Ag A3 A4 Enable
BitIn Bit-Out §= ==
- o
w Px 1-bit RAM RD
A0 A1 A2 A3 A4 Enable
Cit-In Bit-Out
it
WR 32X 1-bit RAM RD

Fun with control?

X3 X2 X1 XO X3 X2 X1 XO
|O|1|O|O| |O|1|O|O|
| $ | 1
1 1 T 1
2 y1 yO X3 X2 X1 XO 2 y1 yO X3 X2 X1 XO
Y3 y2 y1 yO X3 X2 X1 XO 2y2yiy 3 Y3 y2 y1 yO X3 X2 X1 XO Y3 YR &
-Bi Enable -Bit Sub Enable
Add Enable 4 p; 4-Bit Sub Add |1 Enable 4 p; 4
4-Bit Adder =4 Borrow Out Borrow In '—@ 4-Bit Adder =4 Borrow Out Borrow In '—@
z4 23 72 71 Z0 z3 z2 71 z0 z4 z3 z2 71 20 73 z2 71 20

z1

= }> =
Z3
z4

-) =
|

2 Pt

E’E’E’g’

Early Bmary Control...

]acquard Loom 1804 NGO

Babbage's Analytical Engine, 1833 y

| = Data
Contro
Big idea:

se
lne can u
machin : f
torage for bo"t
f:ode and data!

?

936
§ Machine, 1

1€ subjg thlspa, Turlng
it j 03t eqy 11

of an integ,.

— N - ‘\h.
v unjte means
LY the Compy, le 7
O define and Invegy; ate
€gra) vaz-iab]e or
predjcates an

Ll
Umbeyg.

computable Unctjop

or computable Variap) . Co. mputah]

- The fu amenty) Oblems

> tlesame in €ach Case, and have choge

OF explio; rent.men,a-s mvoly; g

shortly 0 give 4, ac

functioz , ¢

1
w7 '
nvoh red are,
N the
Olving the |
Coung of

tabje munbers
cum Tong ique
e re, ations of
O one 4 Othe,.
“feory of (
DPutapy,

Some memory is more equal than others...

Registers Main Memory Disk Drive
on the Central Processing Unit (replaceable RAM) magnetic storage

adb db 9 dpp dfp dfp dfp a

bs |Ps IPs IPs [Ps [Ps |bs

100 Registers of 64 bits each

10 GB memory 4 TB drive

~ 10,000 bits ~ 100 billion bits ~ 42 trillion bits (or more)
memory from "Leaky Bucket” remagnetizing

logic gates capacitors surfaces

Some memory is more equal than others...

Registers Main Memory Disk Drive
on the Central Processing Unit (replaceable RAM) magnetic storage

8 flip-flops are an 8-bit register

D Qb QA QY Yjp Yo Ap Qp Q
bs IPs [Ps Ibs IDs IDPs |bs [bs

100 Registers of 64 bits each 10 GB memory 4 TB drive

~ 10,000 bits ~ 100 billion bits ~ 42 trillion bits (or more)

Atleast at my store! Sl

_—

Price ~$50 ~$50 ~$50
— 1 clock cycle 100 cycles 107 cycles
109 sec 1077 sec 10-2 sec

If aclock cycle

== 1 minute 1 min 1-5 hOllrS 19 YEARS

Some memory is more equal than others...

Registers

on the Central Processing Unit

Main Memory
(replaceable RAM)

8 flip-flops are an 8-bit register

Q

UI
UI

H dfp Q ab dib 4pp dp @
bs |Ps bs |Ps D s

o
N~

S S

100 Registers of 64 bits each
~ 10,000 bits

If ac _,wic

== 1 minute 1 min

10 GB memory
~ 100 billion bits

1.5 hours

Disk Drive
magnetic storage

4 TB drive
~ 42 trillion bits (or more)

" Off“ data iS
saVv ed way

out here---
1074 sec

19 YEARS

How do we execute sequences of operations?

processor CPU stores all instructions and almost all data
the instruction's RAM live memory
bits select which
circuit to use... sends next instruction to the CPU ...
[| []
L‘D" | (L
R.= I x2[@]
T gividet By I
il L o
=D — e w@o— 7} Fﬁ

runs 1 instruction
and sends back

I &
2

results for storage,
—@
if requested... |, =
™ |L‘ ﬁ| ®
“ Inside the 12nGbits of memory...
jouer ="

sends next instruction to the CPU ...

75 years ago...

stored program

RAM

random access memory locations

fetch

processing

CPU

central processing unit registers

pd
~

it

s
=
=
=
-
g
%

Eall o

Manchester Baby, 1948

larger, slower memory

limited, fast registers
+ no computation

+ arithmetic

75 years later...

processing fetch stored program

RAM

random access memory locations

N

CPU

central processing unit registers

limited, fast registers larger, slower memory
+ arithmetic + no computation

John von Neumann

” g B e Polymath
e On EDVAC team...

- Wasn't first stored-
program computer!

e Based on the work of J.
Presper Eckert and John
Mauchly and other
EDIAC/EDVAC designers.

2 — Prevented their patent.

“Von Neumann” Architecture

processing

CPU —

central processing unit registers

program

Von Neumann
bottleneck

— RAM

rl the read instruction

Q/r‘andom access memory locations

General-purpose register, rl |

r2

General-purpose register, r2

Programs are run in
machine language

0 | 0000 0001 0000 0001
1 | 1000 0010 0001 0001
2 | 0110 0010 0010 0001
3 | 0000 0010 0000 0010
4 | 0000 0000 0000 0000
Z — @ ——

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by X', TY', and 1Z', while
numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'tX' 'tY' or 'rZ'. The available

instructions are:

| Assembly |Binary

]Description

Language

lhalt [0000 0000 0000 0000 [Halt program

inop o110 0000 0000 0000 [Do nothing

read tX 0000 XXXX 0000 0001 IS);(I)rIl)t sf(')% 111;:; ;ILI;E:;C‘:h"lctg ;?(I)II;E:?; sb;er igorr(i::lipiunt register rX (input is an integer from -32768 to +32767).
|write rX |oooo XXXX 0000 0010 ’Print the contents of register rX on standard output

|setn X, # |0001 XXXX #### #HAH ’Load an 8-bit integer # (-128 to +127) into register rX

|loadr X, rY |0100 XXXX YYYY 0000 ’Load register rX from memory word addressed by rY: tX = memory[rY]

|storer X, 1Y |01oo XXXX YYYY 0001 ’Store contents of register rX into memory word addressed by rY: memory[rY] = rX

|p0pr XrY |0100 XXXX YYYY 0010 ’Load contents of register rX from stack pointed to by register rY: r¥Y -= 1; tX = memory[rY]

|pushr XrY |0100 XXXX YYYY 0011 ’Store contents of register rX onto stack pointed to by register rY: memory[rY] =tX;r¥ +=1

|loadn X, # |00 10 XXXX #### #### ’Load register rX with memory word at address #

|storen X, # |00 11 XXXX #### #### ’Store contents of register rX into memory word at address #

|addn X, # |0101 XXXX #### #H## ’Add the 8-bit integer # (-128 to 127) to register rX

|copy X, rY |0110 XXXX YYYY 0000 ’Set X=rY

|neg X, rY |0111 XXXX 0000 YYYY ’Set rX=-rY

|add X, 1Y, 1Z |0110 XXXX YYYY 2222 ’SetrX:rY+ Z .
|sub X, 1Y, 1Z |0111 XXXX YYYY 2222 ’SetrX:rY—rZ M h
Imul £X, 1Y, 1Z [1000 xxxx Yyvy 2222 [SetrX =r1Y *1Z aC ln e
|div X, 1Y, 1Z |1001 XXXX YYYY Z2%Z% ’Set tX=rY//1Z

|m0d X, rY, rZ|101o XXXX YYYY 2Z22Z% ’Set X=rY%1Z

Liumpr X |oooo XXXX 0000 0011 ’Set program counter to address in rX

ljumpn n |10 11 0000 #### #### ’Set program counter to address #

ljeqzn X, # |1100 XXXX #### #HAH ’If rX = 0 then set program counter to address #

ljnezn X, # |1101 XXXX #### #HAH ’If rX # 0 then set program counter to address #

ljgtzn X, # |1110 XXXX #### #HAH ’If rX > 0 then set program counter to address #

ljltzn X, # |1111 XXXX #### #HAH ’If rX < 0 then set program counter to address #

|calln X, # |10 11 XXXX #### #### ’Set rX to (next) program counter, then set program counter to address #

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by X', TY', and 1Z', while

numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'tX' 'tY' or 'rZ'. The available
instructions are: t h e re ad

| Assembly |Binary]Description

lhalt [0000 0000 0000 0000 [Halt program Instruction

inop o110 0000 0000 0000 [Do nothing 1'

read rX 0000 XXXX 0000 0001 Stf)p f(:r user input, whulch will then be storc.:d in register rX (input is an integer from -32768 to +327
Prints "Enter number: " to prompt user for input

|write rX |0000 xxxI \00 10 ’Print the contents of register rX on standard output \I
|setn X, # |0001 xxxm\ N¢## [Load an 8-bit integer # (-128 to +127) into register rX

|loadr X, rY |0100 XXXX yy}\ nory word addressed by rY: rX = memory[rY]

|storer X, 1Y |0100 XXXX YYYY wW h Ic h X into memory word addressed by rY: memory[rY] =X

|p0pr XrY |0100 XXXX YYYY . X from stack pointed to by register rY: r¥ -= 1; rX = memory[rY]

|pushr XrY |0100 XXXX YYYY regl Ste r to X onto stack pointed to by register r¥: memory[rY] =tX;rY +=1

|loadn X, # |oo 10 XXXX #### °

|st0ren X, # |0011 XXXX #### r e ad I nto ? X into memory word at address #
|addn X, # |0101 XXXX #### #### |Add the 8-bit integer # (-128 to 127) to register rX

|copy X, rY |0110 XXXX YYYY 0000 ’Set X=rY

ory word at address #

|neg X, rY |0111 XXXX 0000 YYYY ’SetrX:—rY

|add X, 1Y, 1Z |0110 XXXX YYYY 2222 ’SetrX:rY+ Z

4
|sub X, 1Y, 1tZ |0111 XXXX YYYY ZZZZ ’SetrX:rY—rZ Ma Ch ln e
|mul X, 1Y, 1Z |1ooo XXXX YYYY zzzzJ;/lr.X;r.L Z I

|div X, 1Y, 1Z |1001 XXXX YYYY zZ — n
|m0d X, rY, rZ|101o XXXX YYYY |b‘tpatterns

\
Liumpr rX |oooo XXXX 0000 th

\

\
jumpn n [1011 0000 #### ####\ dO matter J\
lieqzn IX, # [1100 xxxx #### #### —eccorro addresS #
ljnezn X, # |1101 XXXX #### #HAH Lﬁumpmgram counter to address #
ljgtzn X, # |1110 XXXX #### #HAH ’If rX > 0 then set program counter to address #

ljltzn X, # |1111 XXXX #### #HAH ’If rX < 0 then set program counter to address #
|calln X, #

|1011 XXXX #### #HAH ’Set rX to (next) program counter, then set program counter to address #

“Von Neumann” Architecture

processing program
Von Neumann
C P U bottleneck RAM
central processing unit registers random access memory locations
rl the read instruction 0000 0001 0000 0001
General-purpose register, rl 1000 0010 0001 000]T
01100010 0010 0001
r2
General-purpose register, r2 00000 read rl

Programs are shown
in assembly language

00000 mul r2 rl rl

add r2 r2 rl

o O & W N B O

write r2

halt

. "mnemonics”
instead of bits

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by X', TY', and 1Z', while
numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'tX' 'tY' or 'rZ'. The available
instructions are:

| Assembly |Binary]Description
lhalt o000 0000 00 e
nop [0134 0000 000 the read
read rX _0 h will then be stored in register rX (input is an integer from -32768 to +32767).
—— H H b prompt user for input
|write r 000 XXXX 000 I n St r u Ct ! O n ster rX on standard output
THT] |Y = | O

it integer # (-128 to +127) into register rX

er rX from memory word addressed by rY: rX = memory[rY]

which
register to
read into?

storer rX,rY
popr rX rY
pushr rX rY
loadn rX, #
storen rX, #

nts of register rX into memory word addressed by rY: memory[rY] = rX

nts of register rX from stack pointed to by register rY: r¥ -= 1; rX = memory[rY]

nts of register rX onto stack pointed to by register rY: memory[rY] =tX;r¥ +=1

er rX with memory word at address #

nts of register rX into memory word at address #

|addn X, # ’0101 XXXX #### #HAH# ’Add the 8-bit integer # (-128 to 127) to register rX

|copy X, rY ’0110 XXXX YYYY 0000 ’Set rX=rY

|neg X, rY ’0111 XXXX 0000 YYYY ’Set rX=-rY

|add X, 1Y, 1Z ’0110 XXXX YYYY 2222 ’Set X=rY+1Z

|sub X, 1Y, 1Z ’0111 XXXX YYYY 2222 ’SetrX:rY—rZ A bI
Imul £X, 1Y, 1Z [1000 xxxx Yyvy 2222 [SetrX =r1Y *1Z Ssem y
|div X, rY,rZ ’1001 XXXX YYYY 2ZZ%Z ’SetrX—rY//rZ I

|m0er,rY,rZ’1010 XXXX YYYY 2Z22Z% ’SetrX—rY% 1Z \ L

lumpr rX [o000 xxxx 0000 01— b t a\'_ternS | a ng u ag e
jumpn n 1011 o000 ### ### { h 1 p \

lleqzn X, # [1100 xxxx #### ###4 % ma‘\'_ter \

linezn X, # [1101 xxxx #### ####\ d n /,.mmureﬁ#/

ljgtzn X, # ’1110 XXXX #### #HAH \//«mcn(program counter to address #

ljltzn X, # ’1111 XXXX #### #HAH ’If rX < 0 then set program counter to address #

|calln X, # |1011 XXXX #### #HAH ’Set rX to (next) program counter, then set program counter to address #

The Hmmm I

There are 26 diff
signed numerica
and 255. All othg
numerical argu

instructions are:

Assé
halt
nop

read rX

write rX

setn rX,
loadr rX, rY
storer X, rY

popr rXrY
pushr rX rY
loadn rX, #
storen rX, #
addn rX, #
copy X, 1Y

neg rX,rY
add rX, 1Y, §
sub rX, rY, 1
mul rX, rY,
div rX, 1Y,
mod rX, rY]
jumpr rX

jumpn n

jeqzn X, 4

jnezn rX, 4

jgtzn X, #
jitzn X, #
calln rX, 4

storer rx ry

Documentation for HMMM
(Harvey Mudd Miniature Machine)

Last update: 2024

Quick reference: Table of Hmmm Instructions

write rx Print contents of register rx

nop Do nothing

setn rX N Set register rx e
,addn rX N Add integer N

Copy rX ry

Setting register data

qual to the integer N (-128 to +127)
(=128 to 127) to register rx

Set rX = ry

,add rX rY rgz Set rX = ry + rz

sub rX ry rg Set rX = ry - o

neg rx ry Set rX = _ry

mul rX ry rgz Set rX = ry * rz

Arithmetic

the realm of

11
[]
ns
div rX ry rgz Set rX = ry // 1z (integer 4 m/er)
'mod rX rY rz Set rx = Nteger division) ,

rY % rZ (returns the

Instruction Description l Aliases
System Imstructions

halt Stop!

read rx Place user input in register rx

+32767).

Jumps!
W[WW
jeqzn rx N Wr\
jnezn rx N f_____——__

jeqz
If rx 1=, then jump to line N jnez
jgtzn rx N

If rX > 0, then jump to line N 'jgtz
jltzn rx N If rX < 0, then jump to line y

Assemb
Language

jltz
calln rX N ,Copy addr. of next instr. into rX and then jump to mem. addr. N ,call
’ Interacting with memory (RAM)
Pushr rx ry ,Store contents of register rX onto stack pointed to by reg. ry '

Popr rX ry Load contents of register rx from stack pointed to by reg. ry

loadn rx N Load register rx with the contents of memory address N ,

’stoten rX N Store contents of i i

r““““““" - Ny -

loadr rx ry in

“Von Neumann” Architecture

processing

CPU

program

Von Neumann
bottleneck

— RAM

central processing unit registers

rl

General-purpose reg

random access memory locations

0000 0001 0000 0001

the mul instruction

1000 0010 0001 0001

r2

General-purpose register, r2

Programs are shown
in assembly language

01100 7d ril

00000 m31 r2 r1 ri1

00000 3dd r2 r2 ril

| | write r2

o O & W N B O

halt

- "mnemonics”
— instead of bits

“Von Neumann” Architecture

processing program
Von Neumann
— —>
CPU RAM
central processing unit registers random access memory locations
0
rl read rl
General-purpose register, rl 1 mul r2 r1 r1
2 ladd r2 r2 r1
r2 _
General-purpose register, r2 3 write r2
4 | halt
Assembly language ° oo
6 - mnemonics
instead of bits

is human-readable

Human

machine language s 98

&=

~

Example #1.:

a five-line assembly-

language program

N

v
read rl

mul r2 rl rl

add r2 r2 rl

write r2

halt

Demo

of assembly-language programming in Hmmm...

Example #1.:

Screen 6 (input)

Von Neumann
bottleneck

CPU —

— RAM

central processing unit registers

rl

General-purpose register rl

r2

General-purpose register r2

random access memory locations

6

v
read rl

mul r2 rl rl

add r2 r2 rl

write r2

halt

Hmmm: Harvey mudd miniature machine

CPU RAM

central processing unit registers random access memory locations

o ' read rl
rl

General-purpose register rl

1 mul r2 r
r2 — OVV _1
oregse” T 296 o S
A 5 |y \Odﬁ¥) ‘

1 halt

Really, it's only 15, Q
vs. 2024 ? r0 is special -

Hmmm vs 2024

CPU RAM

central processing unit registers random access memory locations

o ' read rl
rl

General-purpose register rl

1 mul r2 r
r2 — OVV _1
oregse” T 296 o S
A 5 |y \Odﬁ¥) ‘

1 halt

2022 Arm M1: 37-40 registers per core 2024: ~16,000,000,000 mem loc's

Why Assembly?

Oct 2018 Oct 2017 Programming Language Ratings Change
Java 17.801% +5.37%
C 15.376% +7.00%
C++ 7.593% +2.59%
Python 7.156% +3.35%
Visual Basic .NET 5.884% +3.15%
C# 3.485% -0.37%
PHP 2.794% +0.00%
JavaScript 2.280% -0.73%
SQL 2.038% +2.04%
Swift 1.500% -0.17%
MATLAB 1.317% -0.56%
Go 1.253% -0.10%
Assembly language 1.245% -1.13%

R 1.214% -0.47%

Objective-C 1.202% -0.31%

Why Assembly?

Oct 2019 Oct 2018 Programming Language Ratings Change
Java 16.884% -0.92%
Cc 16.180% +0.80%

9.089% +1.93%

6.229% -1.36%
C# 3.860% +0.37%
Visual Basic .NET 3.745% -2.14%
JavaScript 2.076% -0.20%
SQL 1.935% -0.10%
PHP 1.909% -0.89%
Objective-C 1.501% +0.30%
Groovy 1.394% +0.96%
Swift 1.362% -0.14%

Ruby 1.318% +0.21%

Assembly language 1.307% +0.06%

R

Unsafe vehicles, hills, and hilosophy go hand in hand.

Why Assembly?

Oct 2018 Oct 2017 Programming Language Ratings

Oct 2019 Oct 2018 Change Programming Language Ratings Change
May 2021 May 2020 Change Programming Language Ratings Change
1 1 C 13.38% -3.68%
2 3 A Python 11.87% +2.75%
3 2 v Java 11.74% -4.54%
4 4 C++ 7.81% +1.69%
5 5 C# 4.41% +0.12%
6 6 Visual Basic 4.02% -0.16%
7 7 JavaScript 2.45% -0.23%
8 14 A Assembly language 2.43% +1.31%

13 18 : Ruby

14 13 v Assembly language 2 02 1 o

R +0.05%

Unsafe vehicles, hills, and philosophy go hand in hand.

Why Assembly?

May

May 2022

May 2021 Change Programming Language

2 ~ -~ Python

1 v (E;i ©

3 L Java

4 @ C++

o @ C#

6 @ Visual Basic

7 JS JavaScript

8 @ Assembly
language

Objective-C

Unsafe vehicles, hills, and philosophy go hand in hand.

Ratings

12.74%

11.59%

10.99%

8.83%

6.39%

5.86%

212%

1.92%

Change

+0.86%

-1.80%

-0.74%

+1.01%

+1.98%

+1.85%

-0.33%

-0.51%

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

WH

May

Oct 2022

1

10

1

12

13

14

w/

/
(]

A1110

Oct 2021 Change

1

10

12

14

29

13 v

Unsafe vehicles, hills, and philosophy go hand in hand. ||

TIOBE Index for October 2022

October Headline: The big 4 languages keep increasing their dominance

Programming Language

A

@

(= JOMY

Js

Python

Java

C++

C#

Visual Basic

JavaScript

Assembly language

PHP

SQL

Go

Objective-C

MATLAB

Ratings

17.08%

15.21%

12.84%

9.92%

4.42%

3.95%

2.74%

2.39%

2.04%

1.78%

1.27%

1.22%

Change

+5.81%

+4.05%

+2.38%

+2.42%

-0.84%

-1.29%

+0.55%

+0.33%

-0.06%

-0.39%

-0.01%

+0.03%

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%

-0.23%

+1.31%

Feb 2024

1

10

1

12

13

14

15

16

17

18

19

Feb 2023

1

1

10

24

14

13

18

15

33

20

30

Change

A

«

«

|!

Programming Language

A

v Ve l@ e

Python

C

C++

Java

C#

JavaScript

SQL

Go

Visual Basic

PHP

Fortran
Delphi/Object Pascal
MATLAB

Assembly language
Scratch

Swift

Kotlin

Rust

COBOL

Rubv

i FEl

Ratings

15.16%

10.97%

10.53%

8.88%

7.53%

3.17%

1.82%

1.73%

1.52%

1.51%

1.40%

1.40%

1.26%

1.19%

1.18%

L UKE

Change

-0.32%
-4.41%
-3.40%
-4.33%
+1.15%
+0.64%
-0.30%
+0.61%
-2.62%

+0.21%
+0.82%
+0.45%
+0.27%
-0.19%

+0.42%

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

1T Sl FEEL UKE ﬂ f
Feb 2024 Feb 2023

Change

Programming Language

Ratings Change

15.16% -0.32%

10.97%

JavaScript 3.17% +0.64%

1.73% +0.61%

Visual Basic

+0.21%

+0.82%

Delphi/Object Pascal 1.40% +0.45%

+0.27%

Assembly language 1.19%

-0.19%
Scratch

1.18% +0.42%

Swift

Kotlin

Rust

COBOL

Rubv

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

)

”] j
Feb 2024 PR o — FEEL UKE AR
ange Programmin _—
g Language Rati =
! atings Cha "\ f
1 nge
[J° Y
- Python 15.16%)

2 2 e -0.32%

G c 10.97% =
0

3 3 i -4.41%

-3.40%

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

Scratch

Swift

Kotlin

= " man
written in many &«
languages COBOL

Rubv

The

Economist YN politics Business & finance Economics Science & technology Culture deSign Of What?

The Economist explains e

Explaining the world, daily FROM lifts to cars to airliners to smartphones, modern civilisation is powered by software,
the digital instructions that allow computers, and the devices they control, to perform
calculations and respond to their surroundings. How did that software get there?
Someone had to write it. But code, the sequences of symbols painstakingly cr d by
programmers, is not quite the same as software, the sequences of instructions| |t

Previous Next Latest The Economist explains

e
The Economist explains computers execute. So what exactly is it? Syn tax

What iS code? : Coding, or programming, is a way of writing instructions for computers that bridges the

gap between how humans like to express themselves and how computers actually work.
Programming languages, of which there are hundreds, cannot generally be executed by
computers directly. Instead, programs written in a particular “high level” language such as
: : e Siii :
response - client.api.statuse C . Pythorjn or Java are t.ranslatfed by a ‘speCIaI piece of software (a compiler or an
R U el (nterpreter) into low-level instructions which a computer can actually run. In some cases

len(response.data) 0: programmers write software in low-level instructions directly, but this is fiddly. It is usually
ltdate CSMEERLEICIB] 1 easier to use a hioh-level proarammina lanauace. because such lanauages make it
ltdate2 - datetime.strptife JAte, "5a B0 “60 “oli1s a1 5> TOUOO *
today - datetime.now()
howlong - (today- ltdate2).days
howlong < daywindow:
i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets len(response.data)
j response.data:
j.entities.urls: I/
k j.entities.urls: ::} I?),tlit)ll'
newurl = k['expanded_url']
urlset.add((newurl, j.user.screen_name))

Sep 8th 2015, 23:50 BY T.S.

i people.data.users:

to run!

i.screen_name, 'has not tweeted in the past', daywind

Assembly!!

Instruction [Description | Aliases
System instructions
halt Stop!
read rx Place user input in register rX H mmm
write rX Print contents of register rX
L o one . . the complete reference
Setting register data
setn rX N Set register rX equal to the integer N (-128 to +127)
addn rX N Add integer N (-128 to 127) to register rX
copy rX ry Set riX =rY mov
Arithmetic
add rX rY rZ Set rX =rY + rZ
sub rX rY rZ SetrX=rY -rZ
neg rX ry set rX = -r¥ At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html
|mul rX rY rZ Set rX =rY * rZ
div rX rY rZ Set rX = rY / rZ (integer division; no remainder)
mod rX rY rZ Set rX = rY ¥ rZ (returns the remainder of integer division)
Jumps!
Jumpn N Set program counter to address N
Jumpr rX Set program counter to address in rX Jump
jegzn rX N If rX == @, then jump to line N jeqz
jnezn rX N If rX != @, then jump to line N jnez
jgtzn rX N If rX > 8, then jump to line N jgtz
jltzn rX N If rX < 8, then jump to line N jltz Today
calln rX N Copy the next address into rX and then jump to mem. addr. N call
Interacting with memory (RAM) Thursda
pushr rX rY Store contents of register rX onto stack pointed to by reg. rY 3’
popr rX rY Load contents of register rX from stack pointed to by reg. rY
loadn rX N Load register rX with the contents of memory address N
storen rX N Store contents of register rX into memory address N
loadr rX rY Load register rX with data from the address location held in reg. rY|loadi, load
storer rX rY Store contents of register rX into memory address held in reg. rY¥ storei, store

ought to be called register language

Assembly Language o

read rl reads from keyboard into reg rl
Write r2 outputs reg r2 onto the screen
setn rl 42 regl = 42 L 127
addn rl —1 regl = regl - 1 a shortcut
This is vjhy assignment is written R to L in Python!
add r3 rl r2 reg3 = regl + reg2
sub r3 rl r2 reg3 = regl - reg2
mul r2 rl rl reg2 = regl * regl

ints
only!

div rl rl r2 regl = regl / reg2

Names(s):

rl

r2

r3

r4

Hmmm...‘.?

CPU }@

central processing unit

(GO

General-purpose register rl

-+

General-purpose register r2

k? U8 =0

General-purpose register r3

A

General-purpose register r4

Extra! Change only the instruction on line 4 to create
the overall output of 56 or 349 orQor6 ... ?

"QuiZ n screen

RAM

random access memory

100 (input)

(output)

Python

100 |

olread rl

rl =100

1 setn r2 7

2imod r4 rl

3/div r3 rl

r4 r3=rl1//ra

4/sub r3 r3 r2 e
5 addn r3 _1 r3=r3+-1
6 | write r3 int 13

7 halt

exQuiz.hmmm

solutions...

. . screen 100 (input)
_ e first! Q
Try this on the back pag fi UlzZ
42 (output)
CPU RAM
central processing unit random access memory Python
100 |
rl 100 o/read rl 1=100
General-purpose register rl 1 Se tn r2 7 |
r2=7
r2 7 2 |
mod r4d rl r2 4 =r1% 2
General-purpose register r2 |
3|div r3 rl r4 o1/ vs
r3 50
& sub r3 r3 r2 r3=r3-r2
General-purpose register r3]
iy 2 5/addn r3 -1 e
General-purpose register r4 6 Wri te r3
. print r3
dd Extra.! Change the instruction on line 4 to crea mod div mul
; the overall output of 56 or 349 or0Qor6 ... ?L 0 J L 6 349 7 halt

[s this all we need?

olread rl

wbat’g 1imul r2 rl rl
migsing 2ladd r2 r2 rl
B¢
phere: 3\'write r2

s ' halt

Why couldn't we implement Python using only our
Hmmm assembly language up to this point?

For systems, innovation 1s
adding an edge to create a cycle,
not just an additional node.

feedback

1 bit of storage

Loops and ifs

We couldn't implement Python using Hmmm so far... swolinea®

"straight-line code"

ojsetn rl 42

1write rl

2laddn rl 1

3)Jumpn 1

s halt

CPU

central processing unit

RAM

random access memory

rl

setn rl 42

General-purpose register rl

r2

write rl

General-purpose register r2

Screen

Jjumpn!

addn rl 1

Jumpn 1

halt

rl

r2

CPU

central processing unit

45 A4 43 42

General-purpose register rl

General-purpose register r2

42
43
44
45
46
477

Screen

CTaS“"

RAM

random access memory

setn rl 42

write rl

addn rl 1

Jumpn 1

halt

ifwe jumpn 1

What would happen IF...
e we replace line 3 with jumpn 0
e we replace line 3 with jumpn 2
e we replace line 3 with jumpn 3
e we replace line 3 with jumpn 4

rl

r2

Screen

42

CPU

central processing unit

General-purpose register rl

General-purpose register r2

Screen Screen

42 42

cr‘aS“"

Screen

42
42
42
42
42

RAM

random access memory

setn rl 42

write rl

addn rl 1

Jumpn 1

halt

Screen

42
43
44
45
46

cras““

<~ What would happen IF...

e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn

> W IN O

CPU

central processing unit

rl

General-purpose register rl

jumpn 4 jumpn 3 jumpn 2
Screen Screen Screen
42 42 42

craS“"

jumpn 0

Screen

42
42
42
42
42

RAM

random access memory

o setn rl 42
llwrite rl
[addn 11 2
3)Jumpn 1 jg
¢+ halt 4i@

<~ What would happen IF...

e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn

> W IN O

Jumps in Hmmm

Conditional jumps

jeqzn
jgtzn
Jjltzn

jnezn

rl 42
rl 42
rl 42
rl 42

Unconditional jump

Jjumpn 42

[Fr1 ==0 THEN jump to line number 42

[Fr1 >0 THEN jump to line number 42

[Fr1 <0 THEN jump to line number 42

[Fr1!=0 THEN jump to line number 42

Jump to program line # 42

This is making me

jumpy!

=

.
—

Jumps in Hmmm

Conditional jumps
j eqgz n- if equal to zero... THEN jump to line number 42
j gtzn- if greater than zero ... EN jump to line number 42

j 1 tzn- if Less than zero... THEN jump to line number 42

j ne ZR- if not equal to zero ... HEN jump to line number 42

This is making me

Mnemonics! jumpy! el

.
—

Unconditional jump

jumpn 42 Jump to program line # 42

Instruction [Description | Aliases
System instructions
halt Stop!
read rx Place user input in register rX H mmm
write rX Print contents of register rX
e - notne . . the complete reference
Setting register data
setn rX N Set register rX equal to the integer N (-128 to +127)
addn rX N Add integer N (-128 to 127) to register rX
copy rX ry Set X = mov
Arithmetic
add rX rY rZ Set rX =rY + rZ
sub rX rY rZ SetrX=rY -rZ
neg rX ry set rX = -r¥ At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html
|mul rX rY rZ Set rX =rY * rZ
div rX rY rZ Set rX = rY / rZ (integer division; no remainder)
mod rX rY rZ Set rX = rY ¥ rZ (returns the remainder of integer division)
i Jumps!)
Jumpn N Set program counter to address N
Jumpr rX Set program counter to address in rX jump
jegzn rX N If rX == @, then jump to line N jeqz
jnezn rX N If rX != @, then jump to line N jnez
jgtzn rX N If rX > 8, then jump to line N jgtz
jltzn rX N If rX < 8, then jump to line N jltz
calln rX N Copy the next address into rX and then jump to mem. addr. N call
Interacting with memory (RAM)
pushr rX rY Store contents of register rX onto stack pointed to by reg. rY
popr rX rY Load contents of reglster rX from stack pointed to by reg. r¥
loadn rX N Load register rX with the contents of memory address N
storen rX N Store contents of register rX into memory address N
loadr rX rY Load register rX with data from the address location held in reg. rY||loadi, load

storer rX rY

Store contents of register rX into memory address held in reg. rY

storei, store

Gesundheit!

j gtzn o= What Python f'n is this?

A

CPU RAM

central processing unit random access memory

rl read rl

jgtzn rl 7

General-purpose register rl

setn r2 -1

r2 mul rl rl r2

General-purpose register r2 nop

nop future
expansio™

Screen

-6 (inpuy nop

write rl

halt

0o Jd o U1 x W N Br»r O

With an input of -6, what does this code write out?

I think this language has

Try it! injured my craniuhmmm! '5

—

Follow this Hmmm program.
1| Firstrun: userl=42andr2=5.
Next run: userl=5andr2=42.

7 | Writean assembly-language program that reads a
positive integer into rl. The program should compute

write r2

Registers - CPU Memory - RAM
Runl | Run2 0 | read rl
rl 1| read r2
r2 2 sub r3 rl r2
3 | nop
r3
— 4 | jgtzn r3 7
(__] (__j 5| write ril
Output1 | Output2 6 | jumpn 8
7
8

halt

(1) What common function does this compute?
Hint: try the inputs in both orders...

(2) Extra! How could you change only line 3 so that, if inputs
rl and r2 are equal, the program will ask for new inputs?

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

Memory - RAM

Registers - CPU read rl
setn r2 1
rl
input
r2

result — so far

r3

not needed; OK to use

write r2

halt

©O 00 J4 o U1 b W N B O

Hint: On line 2, could you write a test that checks if the factorial
is finished; if it's not, compute one piece and then jump back!

Extra! How few lines can you use here? (Fill the rest with nops...)

