
Hardware

CS	5	this	we
ek

logic	gates

transistors	/	switches

bitwise	functions

arithmetic

1-bit	memory:	flip-flops

registers

RAM

Hmmm

4	Hmmm	problems	
+	1	loop	problem	
due	Tues.	3/5

Python

Fall	break?!…

How	does	Python	function	?

Software

Machine Language
Assembly Language

Jotto	Corner

robot: 1
zebra: 1

hymns: 2
fluid: 1
hurry: 3

diner: 1
alien: 0
ghost: 2
lucky: 0
foods: 3

ZD guessCS5 guess
Diya!

I	have	a	looming	sense…

Fun	with	circuits?

Circuits	~	Memory!

Making	memories…

My	head	is	spinning…

~1952-
2024

One	way…

32	bytes	of	memory

32x	1-bit

32x	8-bit

the	power	of	composition

Fun	with	control?

Early	Binary	Control…
Jacquard	Loom,	1804	

Babbage's	Analytical	Engine,	1833	

Big	idea:	Control	=	Data	
Jacquard	Loom,	1804	

Babbage's	Analytical	Engine,	1833	

Turing	Machine,	1936	

A	machine	can	use	
the	same	kind	of	
storage	for	both	
code	and	data!

Registers Main	Memory
	(replaceable	RAM)

Disk	Drive
	magnetic	storageon	the	Central	Processing	Unit

Some memory is more equal than others…

~	100	billion	bits		~	10,000	bits ~	42	trillion	bits	(or	more)
4	TB	drive

memory	from	
logic	gates

"Leaky	Bucket"	
capacitors

remagnetizing	
surfaces

100	Registers	of	64	bits	each

s
D Q

8	flip-flops	are	an	8-bit	register

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

10	GB	memory

~$50 ~$50~$50

1.5	hours

Time

1	min

1	clock	cycle 100	cycles 107	cycles
10-9	sec 10-7	sec 10-2	sec

19	YEARS

Some memory is more equal than others…

If a clock cycle
== 1 minute

Price

Registers Main	Memory
	(replaceable	RAM)

Disk	Drive
	magnetic	storageon	the	Central	Processing	Unit

~	100	billion	bits		~	10,000	bits ~	42	trillion	bits	(or	more)
4	TB	drive100	Registers	of	64	bits	each

s
D Q

8	flip-flops	are	an	8-bit	register

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

10	GB	memory

At	least	at	my	store!

~$100 ~$100~$100

1.5	hours

Time

1	min

1	clock	cycle 100	cycles 107	cycles
10-9	sec 10-7	sec 10-2	sec

19	YEARS

Some memory is more equal than others…

If a clock cycle
== 1 minute

Price
running	

program
s	

are	store
d	

here…

program
s	are	

fetched	a
nd	

executed
	1	

instructio
n	at	a	

time	here
…

"Off"	dat
a	is	

saved	wa
y	

out	here.
..

Registers Main	Memory
	(replaceable	RAM)

Disk	Drive
	magnetic	storageon	the	Central	Processing	Unit

~	100	billion	bits		~	10,000	bits ~	42	trillion	bits	(or	more)
4	TB	drive100	Registers	of	64	bits	each

s
D Q

8	flip-flops	are	an	8-bit	register

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

s
D Q

10	GB	memory

How	do	we	execute	sequences	of	operations?

multip
lier

divider

memor
y	

locatio
ns	

(RAM)

CPU
RAM

stores all instructions and almost all data

runs 1 instruction
and sends back

results for storage,
if requested…

sends next instruction to the CPU …

sends next instruction to the CPU …

the instruction's
bits select which
circuit to use…

live	memory

processor

75	years	ago…

limited,	fast		registers	
+	arithmetic

larger,	slower		memory		
+	no	computation

central processing unit registers random access memory locations
CPU RAM

stored		programprocessing fetch

execute

Manchester	Baby,	1948

limited,	fast		registers	
+	arithmetic

larger,	slower		memory		
+	no	computation

central processing unit registers random access memory locations
CPU RAM

stored		programprocessing fetch

execute

75	years	later…

John	von	Neumann

• Polymath
• On	EDVAC	team…

– Wasn't	first	stored-
program	computer!

• Based	on	the	work	of	J.	
Presper	Eckert	and	John	
Mauchly	and	other	
EDIAC/EDVAC	designers.
– Prevented	their	patent.

Programs	are	run	in	
machine	language

central processing unit registers random access memory locations
CPU RAMVon Neumann

bottleneck

“Von	Neumann”	Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

(all	b
its)

the read instruction

Machine	
Language

Machine	
Language

the read
instruction

which
register to
read into?

the "bitpatterns"

do matter!

Programs	are	shown	
in	assembly	language

central processing unit registers random access memory locations
CPU RAMVon Neumann

bottleneck

“Von	Neumann”	Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

(all	b
its)

"mnemonics"	
instead	of		bits

read r1

halt

mul r2 r1 r1
add r2 r2 r1
write r2

the read instruction

Assembly	
Language

the read
instruction

which
register to
read into?

the "bitpatterns"

don't matter!

the read
instruction

which
register to
read into?

the "bitpatterns"

don't matter!

Assembly	
Language

the realm of

"instructions"

Programs	are	shown	
in	assembly	language

central processing unit registers random access memory locations
CPU RAMVon Neumann

bottleneck

“Von	Neumann”	Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

(all	b
its)

"mnemonics"	
instead	of		bits

read r1

halt

mul r2 r1 r1
add r2 r2 r1
write r2

the mul instruction

“Von	Neumann”	Architecture

read r10

1

2

3

4

5

6

halt

mul r2 r1 r1
add r2 r2 r1
write r2

programprocessing

"mnemonics"	
instead	of		bits

Human		
readable?	
I	doubt	it!

central processing unit registers random access memory locations
CPU RAMVon Neumann

bottleneck

Assembly	language	
is	human-readable	
machine	language	

r1

r2
General-purpose register, r2

General-purpose register, r1

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

0

1

2

3

4

Screen

6

6 (input)

Example	#1:

a five-line assembly-
language program

Demo
of assembly-language programming in Hmmm…

in hw6, CS

stands for

Chin-

Scratchin
g?!

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1
General-purpose register r1

r2
General-purpose register r2

CPU RAMVon Neumann
bottleneck

Screen

6

6 (input)

Example	#1:

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1
General-purpose register r1

r2
General-purpose register r2

CPU RAM

Hmmm:			Harvey	mudd	miniature	machine

16 registers 256 memory

locations

Von Neumann
bottleneck

256 memory

locations

vs.	2024	?
Really,	it's	only	15,	
r0	is	special

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1
General-purpose register r1

r2
General-purpose register r2

CPU RAM

Hmmm			vs			2024

16 registers 256 memory

locations

Von Neumann
bottleneck

2022	Arm	M1:		37-40	registers	per	core

256 memory

locations

2024:		~16,000,000,000	mem	loc's

2018

Why	Assembly?

Why	
Assembly?

2019

Why	Assembly?

2021...

Why	Assembly?

May	2022	...

Why	Assembly?

Why	Assembly?

October	2022	

Why	Assembly?

October	2022	February	2024	

Why	Assembly?

October	2022	February	2024	

Software	is	
written	in	many	

languages

Why	Assembly?

October	2022	February	2024	

Software	is	
written	in	many	

languages

...	but	the	CPU	only	RUNs	in	only	one	language!

Design… design	of	what?	

Code? syntax

Python!

Assembly!!

to	write

to	run!

Hmmm	
the	complete	reference

At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html

Today
Thursday

Assembly	Language

div r1 r1 r2

add r3 r1 r2 reg3 = reg1 + reg2

This is why assignment is written R to L in Python!

sub r3 r1 r2 reg3 = reg1 – reg2

reg2 = reg1 * reg1

reg1 = reg1 / reg2 ints	
only!

mul r2 r1 r1

read r1
write r2

reads	from	keyboard	into	reg r1	

setn r1 42 you	can	replace	42	with	
anything	from	-128	to	127

addn r1 -1 a	shortcut

reg1 = 42

reg1 = reg1 - 1

outputs	reg r2	onto	the	screen

ought	to	be	called	register	language

screen"Quiz"

halt

setn r2 7

read r1

div r3 r1 r4

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3

addn r3 -1

write r3

5

6

100

100 (input)

RAM
random access memory

CPU
central processing unit

r4

General-purpose register r4

mod r4 r1 r2

sub r3 r3 r2

7

(output)

Python

r1 = 100

Extra! Change only the instruction on line 4 to create
the overall output of 56 or 349 or 0 or 6 ... ?

Hmmm...!?

r2 = 7

r4 = r1 % r2

r3 = r1 // r4

r3 = r3 – r2

r3 = r3 + -1

print r3

Try	it!

Names(s):			__________________________________

Extra! Change the instruction on line 4 to create
the overall output of 56 or 349 or 0 or 6 ... ?

screen

Quiz

halt

setn r2 7

read r1

div r3 r1 r4

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3

addn r3 -1

write r3

5

6

100

100 (input)

RAM
random access memory

CPU
central processing unit

r4

General-purpose register r4

mod r4 r1 r2

sub r3 r3 r2

7

Try	this	on	the	back	p
age	first!

(output)

Python

r1 = 100

r2 = 7

r4 = r1 % r2

r3 = r1 // r4

r3 = r3 – r2

r3 = r3 + -1

print r3

100

7

mod div

0 6
mul
349

Hmmm...!?

exQuiz.hmmm solutions...

add
56

2

50

42

Is	this	all	we	need?

0

1

2

3

4 halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

What’s

missing

here?

Why	couldn't	we	implement	Python	using	only	our	
Hmmm	assembly	language	up	to	this	point?

For systems, innovation is
adding an edge to create a cycle,

not just an additional node.

NOR

NOR

S

R

0

1

0

"Set"

"Reset"

1

0

0

Q 1	bit	of	storage

feedback	
loops

"Output"

Loops	and	ifs

It's	too	lin
ear!

"straight-line	code"

jumpn!

We	couldn't	implement	Python	using	Hmmm	so	far...

0

1

2

3

4 halt

write r1

setn r1 42

addn r1 1

jumpn 1

loop

jumpn!

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen

not used in this program…

exJump.hmmm

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

not used in this program…

Screen42
43
44
45
46
47
...

42434445...

if	we			jumpn 1
What	would	happen	IF…	
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

crash!

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen

not used in this program…

Screen Screen Screen

42 42 42 42
42
42
42
42
...

Screen

42
43
44
45
46
...

What	would	happen	IF…	
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

crash!

crash!no	
crash

no	
crash

no	
crash

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen

not used in this program…

Screen Screen Screen

42 42 42 42
42
42
42
42
...

Screen

42
43
44
45
46
...

What	would	happen	IF…	
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

jumpn 4 jumpn 3 jumpn 2 jumpn 0

crash!no	
crash

no	
crash

no	
crash

crash!

jumpn	answer
s

Jumps	in	Hmmm
Conditional	 jumps

jeqzn r1 42
jgtzn r1 42
jltzn r1 42
jnezn r1 42

IF	r1	==	0		THEN	jump	to	line	number	42

IF	r1	>	0				THEN	jump	to	line	number	42

IF	r1	<	0			THEN	jump	to	line	number	42

IF	r1	!=	0			THEN	jump	to	line	number	42

This is making me
jumpy!

Unconditional		jump

jumpn 42 Jump	to	program	line	#	42

Jumps	in	Hmmm
Conditional	 jumps

jeqzn r1 42
jgtzn r1 42
jltzn r1 42
jnezn r1 42

IF	r1	==	0		THEN	jump	to	line	number	42

IF	r1	>	0				THEN	jump	to	line	number	42

IF	r1	<	0			THEN	jump	to	line	number	42

IF	r1	!=	0			THEN	jump	to	line	number	42

This is making me
jumpy!

Unconditional		jump

jumpn 42 Jump	to	program	line	#	42

if	equal	to	zero…		

if	greater	than	zero	…

if	less	than	zero…		

if	not	equal	to	zero	…		

Mnemonics!

Hmmm	
the	complete	reference

At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html

Jumps
!

off-pr
ocesso

r	

access
...

[Thur
sday]

jgtzn

RAM
random access memory

read r10

1

2

3

4

5

6

7

8

jgtzn r1 7

setn r2 -1

mul r1 r1 r2

nop

nop

nop

Gesundheit!

write r1

halt

CPU
central processing unit

r1

General-purpose register r1

r2

General-purpose register r2

With an input of -6, what does this code write out?

What Python f'n is this?

Screen -6 (input)

space	for	

future	

expansion
!

Try	it!

1
Follow this Hmmm program.
First run: use r1 = 42 and r2 = 5.
Next run: use r1 = 5 and r2 = 42.

Write an assembly-language program that reads a
positive integer into r1. The program should compute

2

Hint:		On	line	2,	could	you	write	a	test	that	checks	if	the	factorial	
is	finished;	if	it's	not,	compute	one	piece	and	then	jump	back!

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

read r1

read r2

sub r3 r1 r2

nop

jgtzn r3 7

write r1

jumpn 8

Memory	-	RAM
0

Memory	-	RAM

Registers	-	CPU
1

2

3

4

5

6

7

8

9

r1

r2

Registers	-	CPU

0

1

2

3

4

5

6

write r2

halt

7

8

r3

r1

r2

r3

read r1

setn r2 1

1

I	think	this	language	has	
injured	my	craniuhmmm!

(1)	What	common	function	does	this	compute?	
Hint:	try	the	inputs	in	both	orders...

(2)	Extra! How	could	you	change	only	line	3	so	that,	if	inputs	
r1	and	r2	are	equal,	the	program	will	ask	for	new	inputs? Extra! How few lines can you use here? (Fill the rest with nops…)

Run 1 Run 2

42

5

Output 1 Output 2

42

5
5input

result – so far

write r2

halt

not needed; OK to use

