COding il’l Cil”CleS! hw #6 due Mon., Oct. 25

hw5's circuits due tonight!

Thinking loopily - and cumulatively
L oswpsl oD
;. sounds natural to me! ‘_,s_,e_,

.
—

Today Loops have arrived...

Next week: putting loops to good use:

Jumping for Conditionals

00
01
02
03
04
05
06
Q7
038
09

read rl
read r2
sub r3 rl r2

jltzn
write
write
jumpn
write
write

halt

r3 07
r2
rl
09
rl
r2

Hmmm — Assembly

100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 170
140 PRINT Y

150 PRINT X

160 GOTO 1960

170 PRINT X

180 PRINT Y

190 STOP

BASIC — Dartmouth College, 1963

Jumping for Conditionals

X = int(input()) 100 INPUT X
y = int(input()) 110 INPUT Y
if x < y: 130 IF X < Y THEN GOTO 170
print(y) 140 PRINT Y
print(x) 150 PRINT X
else: 160 GOTO 190
print(x) 170 PRINT X
print(y) 180 PRINT Y
190 STOP

Python BASIC — Dartmouth College, 1963

Factorial Revisited

00
01
02
03
04
05
06
Q7

read rl

seth r2 1
jeqzn rl 06
mul r2 r2 rl
addn rl1 -1
jumpn 02
write r2
halt

Hmmm — Assembly

100 INPUT N
110 LET R =

120 IF N ==
130 LET R =
140 LET N =

150 GOTO 120
160 PRINT R

176 STOP
BASIC — Dartmouth College, 1963

THEN GOTO 166
* N
1

= 0 O BB

in
. ished !
dynamic Progress is only ¢ lis
Ay Statemeng Jump ingtroee cell
i c:::c:; ;::t’ Uction, conditiong] clauge, alter;mtivepcla,usemrt !
e, Ve oo s N
H R ategorxes-pr: 32;&111 2 o lgibility, py Ogram Sequencing “‘GoTo Considered Harmful’
© 4.99)
Epirog Considered Har

mful” Considered
Harmful?

I'enjoyed Frank Rubin’s Jetter
(“‘GOTO Considered Harmfu)’

Considered Harmful,” March 1aa-

Factorial Revisitec

P90 read
rl
1 setn r2 1 128 INPUT N
jeaq LET R =
n rl =
06 e TE N

N GOTO 1660

I
o O -

THE
* N

V)
N
s U

P b, W ki

wl O AT

UL RO QL 3 o L
T

“C
nsidered Harmful” o —

s C o o B s
onsidered Harmf
u

.

mful' essays cons'\dered
onsidered harmful

se 'l eventually

Essay

one or
more “ i
pe consider
' e
me obvious that thc(aiirh i

productiv,)
e both in terms of en,
couragir

words, “consi
dered harmfu]” essays ca
mConsidered Har
ul" essays €

a bitof 2 brain twister. He

make some kind of

What 177
Are Considered Hg harmf

The Jar
<argon File ha
$ a short entry on “con
) Okay, that title is

ar me out though, | promi
ays, b

related €ssays, namely so-called »considered harmful® ess
bout why something progra

pe of computer-
mewhat mainstream

Edsger W,
" Dijkstra’
theﬁrst J'straSnote .
S”PPliedsZ;vg Xl the struct;’,l«etze Marci
CM’s editor, Nikg;ftfrg"'
l
Considered harmful essay

e o]
e g

Since the late 60°s, @ ty
and page down a

s are all about writing page up
| essay, at |east the first SO

he first considered harmfu

Factorial Revisitec

100 INPUT N

110 LET R =

120 IF N ==

130 LET R =

140 LET N =

150 GOTO 120
160 PRINT R

170 STOP

BASIC — Dartmouth College, 1963

THEN GOTO 166
*

= X0 O K
R 2 m

n = int(input())
r=1

while n !'= 0:
r=r % n
n=n-1

print(r)

Two ways to program...

Imperative code’ Functional coder

e Inspired by machine e Inspired by math
e Modify old variables ¢ Make new variables

e Repeat using loops e Repeat using
recursion

What we're doing now... What did in week one...

Happy birthday to... ?

-

"Birthday room experiment..."

Happy birthday to... ?

7/8 9/24

"Birthday room experiment..."

A common pattern...

foods = ["apple", '"banana", '"cherry"]

1 =20

while i < len(foods):
food = foods[il
print(food)
1 =1+ 1

A common pattern...

foods = ["apple", '"banana", '"cherry"]

1 =20

while i < len(foods):
food = foods[il
print(food)
1 =1+ 1

for food in foods:
print(food)

for 1 in [0,1,2]:
print("i is", 1)

n indented

block of code it'll
eculte each ime

There's a

eX

Imperative design in Python

X [40,41,42]:
fOr print (x) <:
x = 42
. x > 0:
while print (x)

x =1

_ X addn rl1l 1
variables vary

= 41
=10y

This slide is
four for for! s

for loops: four examples... o

for i in [0,1,2]:
print("i is", 1)

This slide is
four for for! s

for loops: four examples... o

for i in [0,1,2]: 4

print("i is", i)\ i1s O
<

i is 1

i is 2

This slide is
four for for! 8

for loops: four examples... &
for 1 in [0,1,2]: 4 o
print ("i is", i) i1is 0
+10,1,2] /< i1is 1
for i in range(0,3): i1 1s 2

print("i is", 1) \

four for fox!
for loops: four examples... o
i [0,1,2]: -
print("i is", i) i1is O
e i 1is 1
[0,1,2]
/ .
i range (0, 3) : i1 1s 2
print ("1 is", 1) \
X is 2 °
x in [2,5,2024]: d L ie s
print("x iS", X) x is 2024
i \ How could we get

print ('Happy birthday!')

There are a range of answers to this one...

this to run 42 times?

This slide is
four for for! £

for loops: four examples... o

i [0,1,2]: -
print("i is", i) i1s O
[0,1,2] /< 1l 1S 1
. / //// - -
i range (0, 3) : i 1s 2
print ("1 is", 1) .
X 1is 2
X [2,5,2024]: % is &
print("x 1s", Xx) x is 2024
i range (42) ‘\I—L(.)wcouldr;e.get)
print ('Happy birthday!') range (1,43)

range (0,42)

There are a range of answers to this one...

for fun(ctions)

funa () : o funB () : (0,221
i range (0, 3) : i range (0, 3) :
print("i is", 1) print("i is", 1)
return return

for fun(ctions)

[0,1,2] [0,1,2]
def funA() : ye def funB() :
for i in range(0,3): for i in range(0,3):
print("i is", 1) print("i is", 1)
return return

Epic keyword battle...

for fun(ctions)

[0,1,2] [0,1,2]
def funA() : ye def funB() :
for i in range(0,3): for i in range(0,3):
print("i is", 1) print("i is", 1)
return return

/

teyword battle...

for fun(ctions)

[0,1,2]
funa () : e
i range (0,3) :
print("i is", 1)

return
i is O
i is 1
i is 2

\
re\’—“rn ’

[0,1,2]
funB () : e
i range (0,3) :
print("i is", 1)
return

i is O

\
ret“rn ’

v S
funl () : y &,2,8(4/,%/1 fun3 () :

for i in range(l,6): [ioun
1f 1%2 == 0:
lprint("i is", 1)

return
s, Dl
fun2 () : [\'Z’Bf [5'51
for 1 in range(1l,6):
if i%2 == 0:
print ("1 is", 1)

return
C

four fors

of times the
if-test is True?

return

fund () :

return

what prints: A B C

what prints: what prints:

aX
syn®
rO¥

i is 2

The loop runs;tlme, The loop never runs... The loop runs;tlmes,
then the function returns The function never runs... then thze function returns
i=1 i=1, i=

The if-test is never True The if-test never runs The if-test is True 1 time

Y ex™" Y

Name: BDay!

Qf(z fgf Z%IS'—S

(A

for 1 in range(1l,6):
if i%2 ==
print ("1 is", 1)

or i in range(1l,6):
if i%2 ==
print ("1 is", 1)

\B

what prints: D
i is 2
i 1is 4

J

The loop runs 5 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The if-test is True 2 times

It's what the fox
says: Duck! 8

for! =

X is assigned each value
from this sequence

=

<

: X [2,4,6,8]: 3

.E; LOOP back to

N ' . ' the top for

S (X 1S p X) EACH value in

o the list

S < the BODY or BLOCK of the

° for loop runs with that x

S

I

4'?:: \ T D 17

- ('Done! ')

2

= 4 Code AFTER the loop will not run anatomy?
until the loop is finished. ?

empty”

X unused?

Iterative design in Python

X [40,41,42]:
fOr print (x) <:
X = 42
. x > 0:
while print (x)

x =1

ften not
the end

variables vary

X +=
ut xe s we go...

the initial value is o
/ the one we want in

addn rl1l 1

That's why they're called variables

Only in code can one's
newer age be older than

age — 4 1 The "old" value (41) one'solderage..! ogf

— =

age + 1

age

The "new" value (42)

age +=1

age *= 2
age -= 74
age /=7

Echoes from Hmmm: addn rl 1

Hmmm

Recursive Hmmm
factorial, hw6pr4

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

setn rl5 42
read rl
calln rl1l4 5
write rl3 ‘
halt O S .
jnezn rl 8 LO

setn r13 1

jumpr rl4

pushr rl4 ril5
pushr rl rl5
addn rl -1
calln rl1l4 5
popr rl rl5
popr rl4d rl5
mul rl3 rl rl3
jumpr rl4

Functional
programming

Looping Hmmm factorial,
similar to hwépr2 and pr3

00
01

read rl
setn r2 1

rl 06
mul r2 r2 ril
addn rl -1

03
04

06
07

write r2
halt

Iterative
programming

Hmmm... I think I'll

take Python! s

.
—

That's why they're called variables

Only in code can one's
newer age be older than

age —_— 4 1/ The "old" value (41) one's older age...! s
age = age + 1
age +=1

The "new" value (42)

Python shortcuts

hwToGo 7

hwToGo = hwToGo - 1 hwToGo -= 1
amoebas = 21000000 b w= 2
amoebas = amoebas * 2 amoebas =
u235 = 84000000000000000; _

u235 = u235 / 2 u235 /= 2

what list is this!?

four questions for for i the sumof the It

printing partial sums?

factorial function?

234,569
X range(1,8):

print('x 1s', x)

what list is this!?

four questions for for i the sumof the It

printing partial sums?

factorial function?

[1121314151617]
X range(1,8):

print('x 1s', x)

how to use N?

tsum W]th for find the sum of the list?

printing partial sums?

create factorial?!

Four questions... s

.
M

tsum(N):

X range (&-5) :

" q LA

tsum with for

tsum(N): et et
= YET
result = 0
X range (0 ,N+1) :

result = result + x

result

fac with for

fac (N) . Hey!? This is not

s the right answer...
YET

result =1

X range (1,N+1) :

result = result * x

result

how to use N?

fac Wlth for find the sum of the list?

printing partial sums?

create factorial?!

Four questions... 8

o
e

fac(N):

X range () :

result

for-loop "laddering”

result =1

X [2,5,1,4]:

result *= x

(result)

result X

QUIZ What does the loop say?

res.

01T 234567891 12 13 17 18 21 22 23 24
S = 'time to th1nk th1s over' ’

result = "' 012 . 24]

/ﬁg/k¥mgﬁ\

for i in range(len(S)):
= S[1-1] == ' ':
result += S[1i]

nt (result)

Looks like a four-'t' "to" to me! agfes

0
—

S[i-1]

s

0O Jd o in WDKK O

for: two types

«—\/\ \
L = [3, 15, 17, 7]

=

X

esS
Elements V5 1nd€X ndices

for x in L:
print (x)

element-based loops

for: two types

L[O] L[1] L[2] L[3]

L. = [3, 15, 17, 7]
0 1 2 3

N

1l

for 1 in Ii35:ange(len(L)) :
print (L[1i])

X

index-based loops

for x in L:
print (x)

element-based loops

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17, 7]
0o 1 2 3 Sy
\7// s NOT &7 pugit's
. p('\ﬂn“% “\00 ST gl
- Commog }of pugd™
for 1 in Ii35:ange(1en(L)): 900

index-based loops

print (L[1i])

X

for x in L:
print (x)

element-based loops

simpler vs. flexibler

X

m
L = [3, 15, 17, 7]

x)y.’z.’e.’ 5

element-based loops

sum (L) :
total = 0
for x in L:

total += x

return total

0 1 2 3
Ny =
i

index-based loops

sum (L) :
total = 0
for 1 in range(len(L))
total += L[i]
return total

simpler vs. flexibler

X

m
L = [3, 15, 17, 7]

O\}. 2 3
X,Y,Z,€,2, /'/7 i,j,k,a,
i

element-based loops index-based loops
sum (L) : sum (L) :)
indices
total = 0 (

es.
Elements V5 Indexes .

_ _cus11 ToOtal return total

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17, 7]
0o 1 2 3 Sy
\7// s NOT &7 pugit's
. p('\ﬂn“% “\00 ST gl
- Commog }of pugd™
for 1 in Ii35:ange(1en(L)): 900

index-based loops

print (L[1i])

X

for x in L:
print (x)

element-based loops

What we give you
on the midterm...

halt

setn rX N
addn rX N
copy rX rY

Arithmetic

add rX rY rZ
sub rX rY rZ
neg rX rY

ml rX rY rZ
div rX rY rZ
mod rX rY rZ

Jumps!
jumpn N
jumpr rX
jeqzn X N
jnezn X N
jgtzn rX N
jlezn X N
calln rX N

Interacting with
pushT X rY
popr rX rY
1oadn rX N
storen rXx N
1o0adr X rY
storeT rX rY

abs (¥)

ind(e,L)
1en(l)
max (L)
min(L)

sort (L)
sum (L)

count (e ,L)

Hmmim lnstructions

System instructions

Stop!

read rX Place user input in register X
write X print contents of register X
nop Do nothing

getting register data

Set register rX equal to the integer N (-1281t0 +127)
Add integer N (-1281t0 127) to register X
setrX=1Y

getrX=1Y + 1Z

Set X =1Y - 1Z

Set1X = Y

SetrX = Y *1Z

SetrX=1Y // 1Z (integer division; rounds down; 00 remainder)
SetrX = Y % 1Z (returns the remainder of integer division)

Set program counter 10 address N

Set program counter 10 address in X

frX == 0, then jump to line N

11X =0, then jump 0 line N

1frX >0, then jump to line N

1frX <0, then jump to line N

Copy addr. of nextinstt- into rX and then jump 0 mem. addr. N

memory (RAM)
Store contents of register rX onto stack pointed o by reg. Y
Load contents of register X from stack po'mted 1o by reg: Y
Load register X with the contents of memory address N
gtore contents of register X into memory address N
Load register X with data from the address Jocation held in reg. Y
Store contents of register X into memory address held in reg: Y

Useful Python Functions

The following aré Ppython functions we've created in assignments OF built-in functions that you may find useful-
You can us€ these functions in answers you \write without needing 10 define/ explain them.

Returns the absolute value of X

Returns the number of times € appears inL
Returns the index of the first occurrence ofeinl
Returns the number of elements inL

Returns the largest element in L

Returns the smallest element in L

removeAll (e,l) Removes all occurrences of e fromL
removeOne (e,l) Removes the first occurrence of e from L
removeUpto (e,) Removes all elements from L up t0 and including the first occurrence of e

Returns anew list with the elements of L sorted
Returns the sum of the elements i L

S

