
z	=	z	2	+	c The	rule:		Don't	
follow	this	rule.	

Simple rules can create complex results...

[1, 11, 21, 1211, 111221, ?]

[-35, -24, -13, -2, 9, 20, 31, ?]
[26250, 5250, 1050, 210, ?]
[90123241791111 , 93551622, 121074, 3111, ?]

What's
	

next?
I'm	glad	

you	asked!

Hw	9:			due	Mon.,	04/02						hw9	is	mostly	lab	~	join	for	lab! How about that
costume?!

What's	the	meaning	of	Life?

When does the
first 4 appear?

str vs. int

How fast do these
terms grow?

The	read	it	and	weep	sequence

Extra	extra	credit	this	wk9

1
11
21

1211
111221
312211

13112221
…

hw9pr1	lab:		Conway's	Game	of	Life

Evolutionary	rulesGrid	World

•	Everything	depends	on	a	
cell's	eight	neighbors

red	cells	are	"alive"

white cells are empty

•	Exactly	3	neighbors	give	
birth	to	a	new,	live	cell.

•	Exactly	2	or	3	neighbors	
keep	an	existing	cell	alive.

•	Any	other	#	of	neighbors	
and	there's	no	life…

Only 2 rules of life…

NW
N NE

543210

A

B

C

D

E

F

SW SES

EW

For each cell…

•	3	live	neighbors	–	life!

•	2	live	neighbors	–	same

•	0,	1,	4,	5,	6,	7,	or	8	live	
neighbors	–	death

•	computed	all	at	once,	not	
cell-by-cell,	

•	so	the	?	at	left	DOES	come	to	
life,	but	the	?	does	not...

http://www.math.com/students/wonders/life/life.html

?

next_life_generation(A)

?

hw9pr1	lab:		Creating	Life

543210

A

B

C

D

E

F

old	generation	is	the	input,	A returns	the	next	generation

?

next_life_generation(A)

hw9pr1	lab:		Creating	Life

543210

A

B

C

D

E

F

543210

A

B

C

D

E

F

5 cells alive 5 cells alive

5 cells alive5 cells alive

5 cells alive

Follow	"the	glider"

Life's	simplest	self-
propagating	form...

5 cells alive 5 cells alive

5 cells alive5 cells alive

5 cells alive

Follow	"the	glider"

Life's	simplest	self-
propagating	form...

Geometer	J.	Conway	'37-'20

hw9pr1:		Conway's	Game	of	Life

60˚ 70˚

20˚ 10˚

?

(can	we	find	?	w/o	trig)

Simple	rules		~		Surprising	results	

19951970

not	really	solitaire...

Thank	you,	
Emma!

Geometer	J.	Conway	'37-'20

hw9pr1:		Conway's	Game	of	Life

60˚ 70˚

20˚ 10˚

?

(can	we	find	?	w/o	trig)

Simple	rules		~		Surprising	results	

19951970

not	really	solitaire...

Thank	you,	Emma!

really,	it's	a	zero-player	game!

Geometer	J.	Conway	'37-'20

hw9pr1:		Conway's	Game	of	Life

60˚ 70˚

20˚ 10˚

?

(can	we	find	?	w/o	trig)

Simple	rules		~		Surprising	results	

19951970

not	really	solitaire...

Thank	you,	Emma!

really,	it's	a	zero-player	game!

Stable	configurations:

Periodic

"rocks"

"plants"

"animals"

period	3
period	2

Self-propagating

glider Copperhead:	2016

hw9pr1	lab:		Creating	Life

Life	lessons…
• Incredibly	simple	rules	can	allow

arbitrarily	complex	
computational	structures

• Just	because	you	know
“how	it	works”	(at	a	low	level)	
doesn't	mean	you	know
“what	it	is”	or	“what	it's	really	doing”	(at	a	high	level)

Life	@	HMC?

Samir Kothari

Samir Kothari

Many	life	configurations	expand	forever…

What	is	the	largest	amount	of	the	life	
universe	that	can	be	filled	with	cells?

How	sophisticated	can	Life-structures	get?

www.ibiblio.org/lifepatterns/

"glider"

"Gosper	
glider	
generator"
(or	"gun")

hw9pr1	lab:		Creating	Life

Samir Kothari

Samir Kothari

Life	@	HMC!

www.youtube.com/watch?v=xP5-iIeKXE8

2D	
Data

with 42' diameter!

ddata!

Math	+	CS:		shareful	siblings!

2D	Data

2D	data rows? cols?

M = [[2,9], [1,-2]]

M[0] M[1]

M[0][0]
M[0][1]

M[1][0]
M[1][1]

Math	+	CS:		shareful	siblings!

M = [[2,9], [1,-2]]

M[0] M[1]

M[0][0]
M[0][1]

M[1][0]
M[1][1]

Handling	2D	d
ata	

requires	no	new
	rules!

2D	data rows! cols!

Mutable	vs	Immutable

Which	of	these	make	sense?

• X = 42
• 42 = 7
• "wow" = "what"
• "wow"[1] = '?'
• [3.14, 2.17, 1.44][1] = 1.62

Diversion!

Mutable	vs	Immutable

Which	of	these	make	sense?

• X = 42
• 42 = 7
• "wow" = "what"
• "wow"[1] = '?'
• [3.14, 2.17, 1.44][1] = 1.62

You	can	modify	variables	
and	you	can	modifylist	elements!

Diversion!

You	can
't	alter	a

	number
	or	a	

string,	o
nly	mak

e	a	new
	one

Example:	Double	all	the	values
Three	ways:

for i in range(len(L)):
 L[i] *= 2

L = [x*2 for x in L]

M = [x*2 for x in L]

Change	e
lements	o

f	L

Store	new
	list	in	L

Make	new
	var,	M

Looking	at	Pythons	innards!
From	the	Python	documentation…

id(object)
– Return	the	“identity”	of	an	object.	This	is	an	integer	which	
is	guaranteed	to	be	unique	and	constant	for	this	object	
during	its	lifetime.	Two	objects	with	non-overlapping	
lifetimes	may	have	the	same	id()	value.	

For	immutable	objects,	operations	that	compute	new	
values	may	return	a	pre-existing	object	with	the	same	
value,	while	for	mutable	objects	this	is	not	allowed

CPython	implementation	detail: This	is	the	address	of	the	object	in	memory.

Looking	at	Pythons	innards!
From	the	Python	documentation…

id(object)
– Return	the	“identity”	of	an	object.	This	is	an	integer	which	
is	guaranteed	to	be	unique	and	constant	for	this	object	
during	its	lifetime.	Two	objects	with	non-overlapping	
lifetimes	may	have	the	same	id()	value.	

For	immutable	objects,	operations	that	compute	new	
values	may	return	a	pre-existing	object	with	the	same	
value,	while	for	mutable	objects	this	is	not	allowed

CPython	implementation	detail: This	is	the	address	of	the	object	in	memory.

def isSameMemory(x, y): print("The id of x is", id(x))
 print("The id of y is", id(y))
 if id(x) == id(y): print("=> They are the same object")
 else:
 print("=> They are different objects")

Shallow				vs.				Deep
Python's two methods for copying data

L = [5, 'hi']

M

M = L

M[0] = 42

What's L[0] ?!
1,000,000,042

L and M are the same memory address

L L[0] L[1]

"Reference"
"Pointer"

id L = [5,'hi']

5 'hi'1,000,000,042

Shallow				vs.				Deep
Python's two methods for copying data

L = [5,	'hi']
M = L[:]

M[0] = 42

What's L[0] ?!

L and M are different memory addresses

M
3,141,592,653

L L[0] L[1]

"Reference"
"Pointer"

id L = [5,'hi']

5 'hi'1,000,000,042

L[0] L[1]

5 'hi'

slicing makes a copy
but only one-level deep

Shallow				vs.				Deep
Python's two methods for copying data

L = [5,	'hi']
M = deepcopy(L)

M[0] = 42

What's L[0] ?!

L and M are different memory addresses

M
3,141,592,653

L L[0] L[1]

"Reference"
"Pointer"

id L = [5,'hi']

5 'hi'1,000,000,042

L[0] L[1]

5 'hi'

from copy import *

deepcopy is deep!

Python	functions:		pass	by	copy

def main()

 print(" Welcome! ")

 fav = 7
 fav = conform(fav)

 print(" My favorite # is", fav)

7

fav

fav

def conform(fav)

 fav = 42
 return fav

shallow
^

this	line	is	the	"abstraction	boundary"	between	conform	and	main

Python	functions:		pass	by	copy

def main()

 print(" Welcome! ")

 fav = 7
 fav = conform(fav)

 print(" My favorite # is", fav)

7

fav

fav

def conform(fav)

 fav = 42
 return fav

shallow
^

this	line	is	the	"abstraction	boundary"	between	conform	and	main

this	line	is	the	"abstraction	boundary"	between	conform	and	main

def main()

 print(" Welcome! ")

 fav = 7
 fav = conform(fav)

 print(" My favorite # is", fav)

7

fav

def conform(fav)

 fav = 42
 return fav

7

copy	of	fav

fav

What	if	we	didn't	have	the	
underlined	part	re-assigning	fav?

Python	functions:		pass	by	copy^
shallow

"pass	by	copy"	means	the	contents	
of	fav	are	copied	to	fav

42

42

42	is
	retu

rned 42

The	original	7	is	"clobbered."

this	line	is	the	"abstraction	boundary"	between	conform	and	main

def main()

 print(" Welcome! ")

 fav = 7
 conform(fav)

 print(" My favorite # is", fav)

7

fav

def conform(fav)

 fav = 42
 return fav

copy	of	fav

fav

Python	functions:		pass	by	copy^
shallow

"pass	by	copy"	means	the	contents	
of	fav	are	copied	to	fav

7

7

No	
assignment	
here!

42

The
	ori
gina

l	7	i
s	st
ill	

her
e	–	
and

	stil
l	us
ed.

Rules,	Rules,	Rules!?

def conform(fav)
 fav = 42
 return fav

def conformOne(L)
 L[0] = 42
 L[1] = 42

Trace	each	function.		What	do		conformOne	and	conformTwo	produce?

def conformTwo(L)
 L = [42,42]
 return L

fav

fav

L

L
7

Notice	that	there	are	NO	assignment	statements	after	these	function	calls!			The	return	values	aren't	being	used…

L[0]
7

def mainOne()
 L = [7,11]
 conformOne(L)
 print(L)

def main()
 fav = 7
 conform(fav)
 print(fav)

def mainTwo()
 L = [7,11]
 conformTwo(L)
 print(L)

L

L[1]
111,000,000,042

1,000,000,042 1,000,000,0427 42

7

Name(s) ______________________________

L L[0]
7

L[1]
111,000,000,042

Lists	are	Mutable

You	can	change	the	contents	of	lists	from	
within	functions	that	take	lists	as	input.

Those	changes	will	be	visible	
everywhere.

-		Lists	are	MUTABLE	objects

Numbers	and	strings	are	IMMUTABLE	–	
they	can't	be	changed

(but	the	“box”	that	holds	them	can	be!)

All	and	only	the	rule
s	that	govern	1D	

data	apply	here	–	no
	new	rules	to	learn!

~	pure	composition

A = [42, 75, 70]

2D	data?

Even with 3 eyes,
this looks 1d!

All	and	only	the	rule
s	that	govern	1D	

data	apply	here	–	no
	new	rules	to	learn!

~	pure	composition

A = [42, 75, 70]

2D	data?

Even with 3 eyes,
this looks 1d!

What	does		A		
"look	like"	?

A = [42, 75, 70]

42 75 70
int int intlist

A

1D	lists	are	familiar	–	but	lists	can	hold	
ANY	kind	of	data	–	including	lists!

len(A) ?
id(A) ?
id(A[0]) ?

1D	data	~																															Lists

A = [[1,2,3,4], [5,6], [7,8,9,10,11]]

len(A) len(A[0]) Replace 10 with 42.Where's 3?
len(A[1])

What	does	this
	 A		"look	like"	

?

2D	data	~																															Lists	of		Lists

I think I've seen
this story before!

list
A

list

list

list

A[0]

A[1]

A[2]

A = [[1,2,3,4], [5,6], [7,8,9,10,11]]

A[0][0] A[0][1] A[0][3]

A[1][0] A[1][1]

A[2][0] A[2][1] A[2][2] A[2][3] A[2][4]

len(A) len(A[0]) Replace 10 with 42.

1 2 4

A[0][2]

3

5 6

7 8 109 11

What are 3's
"coordinates"?

len(A[1])

A[2][3] = 42

2D	data	as	Lists	of	Lists												

list
A

list

list

list

A[0]

A[1]

A[2]

A = [[1,2,3,4], [5,6], [7,8,9,10,11]]

A[0][0] A[0][1] A[0][3]

A[1][0] A[1][1]

A[2][0] A[2][1] A[2][2] A[2][3] A[2][4]

len(A) len(A[0]) Replace 10 with 42.

1 2 4

A[0][2]

3

5 6

7 8 109 11

What are 3's
"coordinates"?

len(A[1])

A[2][3] = 42

2D	data	as	Lists	of	Lists												

A[0][2]

A[2][3] = 42

3
4

2

A[0][2]

A[2][3] = 42

row col

row col
row col

row col

rows

cols

cols

list
A

list

list

list

A[0]

A[1]

A[2]

A[1][2]

A[0][0]

A = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]

0 0 0 0

0 0 42 0

0 0 0 0

Rectangular	2D	data

Original
data...

A[1][2] = 42

A[r][c] = value

row == 1

col == 2
A[2][3]

row == 1 col == 2

row r col c

list
A

list

list

list

A[0]

A[1]

A[2]
A[2][3]

A[0][0]

A = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]

0 0 0 0

0 0 0 0

0 0 0 0

Rectangular	2D	data

NROWS = len(A) # HEIGHT
 NCOLS = len(A[0]) # WIDTH

 for r in range(0,NROWS):
 for c in range(0,NCOLS):
 if r == c: A[r][c] = 4
 else: A[r][c] = 2

Original
data...

Nested	Loops	~	2d	Data

How many 4's?
How many 2's?

list
A

list

list

list

A[0]

A[1]

A[2]
A[2][3]

A[0][0]

A == [[4,2,2,2], [2,4,2,2], [2,2,4,2]]

4 2 2 2

2 4 2 2

2 2 4 2

Rectangular	2D	data

NROWS = len(A) # HEIGHT
 NCOLS = len(A[0]) # WIDTH

 for r in range(0,NROWS):
 for c in range(0,NCOLS):
 if r == c: A[r][c] = 4
 else: A[r][c] = 2

Changed
data ...

How many 4's?
How many 2's?

Nested	Loops	~	2d	Data

A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2]

def two_in_a_row_North(A):
 """ let's see... """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):

 if r == 0:
 B[r][c] = False
 elif A[r][c] == A[r-1][c]:
 B[r][c] = True
 else:
 B[r][c] = False

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

What	elif	will	produce	these?

How	could	we	change	the	starred	
code	above	to	check	for	two-in-a-
row	EAST	or	DIAGONALLY	!?

Extra:

East: .A[r][c] == A[r][c+1]

N.East: A[r][c] == A[r-][c+1]

2	North!

4 2 2 2
 2 2 4 4
 2 4 4 2

A
row 0

row 1

row 2

col 0 col 1 col 2 col 3

B
F F
F
T

F
F
F

F
T F
F T

row 0

row 1

row 2

col 0 col 1 col 2 col 3

East

N.East what	would	check	these?

North

def two_in_a_row_North(A):
 """ let's see... """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):

 if r == 0:
 B[r][c] = False
 elif A[r][c] == A[r-1][c]:
 B[r][c] = True
 else:
 B[r][c] = False

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

What	elif	will	produce	these?

How	could	we	change	the	starred	
code	above	to	check	for	two-in-a-
row	EAST	or	DIAGONALLY	!?

Extra:

2	North!

4 2 2 2
 2 2 4 4
 2 4 4 2

A
row 0

row 1

row 2

col 0 col 1 col 2 col 3

B
F F
F
T

F
F
F

F
T F
F T

row 0

row 1

row 2

col 0 col 1 col 2 col 3

N.East what	would	check	these?
East: A[r][c] == A[r][c+1]

N.East: A[r][c] == A[r-1][c+1]

East

A[r][c] == A[r-1][c]:
North

Answ
ers

def two_in_a_row_North(A):
 """ let's see... """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):

 if r == 0:
 B[r][c] = False
 elif A[r][c] == A[r-1][c]:
 B[r][c] = True
 else:
 B[r][c] = False

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

What	elif	will	produce	these?

How	could	we	change	the	starred	
code	above	to	check	for	two-in-a-
row	EAST	or	DIAGONALLY	!?

Extra:

2	North!

4 2 2 2
 2 2 4 4
 2 4 4 2

A
row 0

row 1

row 2

col 0 col 1 col 2 col 3

B
F F
F
T

F
F
F

F
T F
F T

row 0

row 1

row 2

col 0 col 1 col 2 col 3

N.East what	would	check	these?
East: A[r][c] == A[r][c+1]

N.East: A[r][c] == A[r-1][c+1]

East

A[r][c] == A[r-1][c]:
North

Answ
ers

Use	as	hw9pr2's	

starting	point...	!

What	about	N-in-a-row?

A = [[' ','X','O',' ','O'],
 ['X','X','X','O','O'],
 [' ','X','O','X','O'],
 ['X','O','O',' ','X']]

inarow_3east('X', 1, 0, A)

inarow_3south('O', 0, 4, A)

inarow_3southeast('X', 2, 3, A)

inarow_3northeast('X', 3, 1, A)

checker
start
row

start
col LoL

True

col 0 col 1 col 2 col 3 col 4

row 0

row 1

row 2

row 3

Let's	try	it...

the data does

not "wrap

around"

First,	try	it	by	eye…

A = [[' ','X','O',' ','O'],
 ['X','X','X','O','O'],
 [' ','X','O','X','O'],
 ['X','O','O',' ','X']]

inarow_3east('X', 1, 0, A)

inarow_3south('O', 0, 4, A)

inarow_3southeast('X', 2, 3, A)

inarow_3northeast('X', 3, 1, A)

checker
start
row

start
col LoL

True

col 0 col 1 col 2 col 3 col 4

row 0

row 1

row 2

row 3

the data does

not "wrap

around"

…	then,	by	Python!

True

False

False

This	week	we're

Lifing	it	up

in	lab!
on	over…so

glide

