[-35, -24, -13, -2, 9, 20, 31, ?] whats ma
[26250, 5250, 1050, 210, ?] next!
[90123241791111, 93551622, 121074, 3111, ?]
[1, 11, 21, 1211, 111221, ?]
meampt > the
9 of Life?

Simple rules can create complex results... ‘

The rule: Don't
follow this rule.

zZ=z°+cC

Hw 9: due MOD., 04/02 hw?9 is mostly lab ~ join for lab! How about that g,

costume?!

The read it and weep sequence

1
11 str vs. 1nt
21
1211 fret 4 spmer? 4
111221 e
312211 ow fast o these
13112221 UL

Extra extra credit this wk9

hw9prl lab: Conway’s Game of Life

Grid World

red cells are "alive"
0 1 2 3 4

white cells are empty

Evolutionary rules

e Everything depends on a
cell's eight neighbors

e Exactly 3 neighbors give
birth to a new, live cell.

e Exactly 2 or 3 neighbors
keep an existing cell alive.

e Any other # of neighbm&

and there's no life...

hw9prl1 lab: Creating Life

next life generation(A)

0 1 2 3 a4 5 For each cell...
........... e 3 live neighbors - life!
B i e 2 live neighbors - same
e e neighbors - death
D e e computed all at once, not
E cell-by-cell,

e so the ? at left DOES come to
life, but the ? does not...

http://www.math.com/students/wonders/life/life.html

Creating Life

hw9prl lab

generation(A)

next life

returns the next generation

A

)

old generation is the input

g ;
| | |l
Ll JHEIL

77,
2

215

vb\\\\\\&

NI

5 cells alive

5 cells alive

5 cells alive
| | [|

Follow "the glider™”

Life's simplest self-
propagating form...

N

Z

L
¥

|

\

Gz

5 cells alive

5 cells alive

DD

5 cells alive

Follow "the glider™”

Life's simplest self-

propagating form...

1 2
5 cells alive
| | [|

1 2

5 cells alive

5 cells alive

hw9prl: Conway's Game of Life

1970

The Lasting Lessons of John Conway’s Game
of Life

Fifty years on, the mathematician’s best known (and, to him, least
favorite) creation confirms that “uncertainty is t ertainty.”

L
TT1TTTTTTTTn

Geometer J. Conway '37-'20

Simple rules ~ Surprising results

The fantastic combinations of John Conway's

new solitaire game "'life"

by Martin Gardner

Scientific American 223 (

(October 1970): 120-123.

IATHEMATICAL GAMES

The fantastic combinations of John

Conwav’s new

by Martin Gardner

ost of the work of John Horton

Gonville and Caius College of
the University of Cambridge, has been in
pure mathematics. For instance 7
he discovered a new group—some call it
“Conway’s constellation”—that includes
all but two of the then known sporadic
groups. (They are called “sporadic” be-
cause they fail to fit any classification
scheme.) It is a breakthrough that has
had exciting repercussions in both group
theory and number theory. It ties in

a mathematician at

solitaire game

MOVES
1

“life”

closely with an earlier discovery by John
Leech of an extremely dense packing of
unit spheres in a space of 24 dimensions
where each sphere touches 196,560 oth-
ers. As Conway has remarked, “There is
alot of room up there.”

In addition to such serious work Con-
way also enjoys recreational mathemat-
ics. Although he is highly productive in
this field, he seldom publishes his discov-
eries. One exception was his paper on

“Mrs. Perkins’ Quill,” a dissection prob-
lem discussed in “Mathematical Games”
fm Sepleml)el 1966. My topic for July,
was sprouts, a topological pencil-
Jnd—p.xpcr game invented by Conway
has been
mentioned here several other times.

The fate of five triplets in “life”

© 1970 SCIENTIFIC AMERICAN, INC

not really solitaire...

This month we consider Conway’s
latest brainchild, a fantastic solitaire
pastime he calls “life.” Because of its
analogies with the rise, fall and altera-
tions of a society of living organisms, it
belongs to a growing class of what are
called “simulation games”—games that
resemble real-life processes. To pla

life you must have a fairly large ch
erboard and a plentiful supply of flat
counters of two colors. (Small checkers

“go” board can be used if you can find

flat counters that are small enough to fit
within its cells. (Go stones are unusable
because they are not flat.) It is possible
to work with pencil and graph paper but
it is much easier, particularly for begin-
ners, to use counters and a board

‘The basic idea is to start with a simple
configuration of counters (organisms),
one to a cell, then observe how it changes

as you apply Conway
for births, deaths and surv
chose his rules carefully, after a long pe-
riod of experimentation, to meet three
desiderata:

1. There should be no initial pattern
for which there is a simple proof that the
population can grow without limit.

2. There should be initial patterns
that apparently do grow without limit.

3. There should be simple initial pat-
terns that grow and change for a consid-
erable period of time before coming to
an end in three possible ways: fading
away completely (from overcrowding or
from becoming too sparse), settling into
le configuration that remains un-
changed thereafter, or entering an oscil-
lating phase in which the
endless cyele of two or more periods.

In brief, the rules should be such as
to make the behavior of the population
unpredictable.

Conway's genetic laws are delightful-
ly simple. First note that each cell of the
checkerboard (assumed to be an infinite
plane) has eight neighboring cells, four
adjacent orthogonally, four adjacent di

counter with two
or three neighboring counters survives
for the next generation

. Deaths. Each counter with four or
more neighbors dies (is removed) from
overpopulation. Every counter with one
neighbor or none dies from isolation.

3. Births. Each empty cell adjacent to
exactly three neighbors—no more, no
fewer—is a birth cell. A counter is placed
onitat the next move.

It is important to understand that all
births and deaths occur simultancously.
Together they constitute a single genera-

x
X X Y160
tut r
X
-
¥
x
Y e
x
Oy
¥
b 4 ¥
3 .
1 RN
app— .o
— AMNENEST 15511
0 ryxxxyxexx L oYYy xexy
Yy Trxx ™
CLEXEX s ALXXXXXE
r
. FYYXYCXYX t
YIYTYYYE»
b 4
TXEXLL £ Yy YTYXY XX
X
- ,' 22317 ¥ i F
4 ’
FYYTIXY |
2. X X
\ vvvz’ Yy ¥ vil4x ¥ X
rTrry v Y N
% ¥yyYryyxxx A
Yy 3
YYTREYYE ! sy % XX '
rYYXYIYY ¥ ' 1 L B8
xXyy» ¢ vy '3 4 X
»
1 Xy Y
x b 4 X X
v ¥ :"',, 19 eyxxse
- A4
v a % o ¥ 3 X
" - v 1
- ! b
Y - Yy 1y '
x X cx 1Y ¥ XX
4 v ¥ %Y X
»
I - b 4
Yy LA r X
g 5 W
T
[¥ L 8
{
xx XX Yy ¥ Y X
- S ¥ 4 e Y YYYYRY X
P ; ' v b § x X .
',, Ty T
e ¥ X XS X e
Vg x X 1) : ' Y
Y T rxyrxy v
b \J '," — ¢y L &
'Y
\
e s ne — W '._' "W
I V- ’"- oy &
A tha = NE-
- /=
< ’ /
1 W N LA A |
} = ;

‘ightv"\ :‘\ .

X spacaahiy
;
X

SRR

-

-
-
“

Y
-y

2t tive
oeagmeny, gnd

O s |
PeATr Y SmAD ATH
0 L) ,
\ T 'O
nyYsm § . .

.-..?v B* -l -

et inn

5 .2%) oy Bawnll by » hIOCK | ‘
- v L =v : v

‘v, s ';“_“
Tr rx .
L XX XxX¥

Liookné

Vh
rYy
ey |

TXXXXX

rre ald !
.""' b 4

-
A L

Y XY
‘ Y X
]

really, it's a zero-player game!

we consider Conway's
d, a fantastic solitaire
s “life.” Because of its
he rise, fall and altera-
of living organisms, it
wing class of what are
n games’—games. that
e processes. To play
e a fairly large check-
lentiful supply of flat
olors. (Small checkers
o nicely.) An Oriental
be used if you can find
are small enough to fit
0 stones are unusable
not flat.) It is possible
il and graph paper but
bparticularly for begin-
frs and a board.
to start with a simple
ounters (organisms),
bserve how it changes
way's “genetic laws”
d survivals. Conway
fully, after a long pe-
ation, to meet three

be no initial pattem
simple proof that the
without limit.

be initial patterns
row without limit.
e simple initial pat-
change for a consid-
e before coming to
sible ways: fading
m overcrowding or
parse), settling into
that remains un-
r entering an oscil-
they repeat an
 more periods.
should be such as
of the population

ws are delightful-
at each cell of the
l to be an infinite
_ Bboring cells, four
four adjacent di-

unter with two
unters survives

nter with four or
removed) from
unter with one
m isolation.

cell adjacent to
—no more, no
unter is placed

erstand that all
simultaneously.
a single genera-

Visit the main page

'
%
"
X |
YT .8 v .
X é ry ® 3 22 ot by 4 C 'h
: consider Conway
: : .) s “life.” Because of its
l | % B.Lid he rise, fall and altera-
' ' | . : | : 1 | of living organisms, it
Y ’ : : lev oo wing class of what are
' ’ " ' ' : . . games"—games that
‘ | ' | 5. : - @ e procsses, To h‘ii’
' A . > a fairly large check-
. g =, i ' A g
‘ | : Iv : ' o colors. (Small checkers
" ' ' I v . \ o nicely.) An Oriental
(| 4 be used if you can find
§ (. 7 + are small enough lal?‘
- : s are unusable
‘ - — : : il paper but
| - | FI : . arly for begin-
—

Wiki home

Tutorials

Random page
Links

Tools

What links here
Related changes
Special pages
Printable version
Permanent |ink
Page information

LirEWik1

.§ Conwaylife com
How to contribute

LifeWiki discussion
Recent changes

Main page Discussion

Home - LifeWiki

Welcome to LifeWiki,

the wiki for Conway's Game of Life.
Currently contains 2 566 articles.

Overview - How to contribute - ConwayLife.com

This week's featured article

known eater. The block w.

structs& new p6 c/2 orthogonal gre
stripes are bounded by extended tables.

* March 18: Nathanig| Johnston
period-15 glider gun and periog- i
* March17: Jsree o ..

* Book - Catagolue - Forums -

N patterns without -
€S specifically refer o
as the first known -

Create account Lo

Read View source

View history | Search LifeWiki

Discord - Golly

* Guns ® Puffers * Wicks
* Methuselahs . Spaceships ¢ All patterns
¢ Oscillators o Still lifes . Everything else
Image gallery - A-Z index
Did you know...

® ... that there is an infinite series of period 3 oscillators that
are polyominoes in one phase, starting with the cross?
* ... that there are Spaceships withoy

Some damage to themselves?

e ... that the R-pentomino creates a queen bee in generation
774, which lasts 17 generations before being destroyed?

he earliest constructive proofs
rarily high periods?

atterns that grow Quadratically
density 1/2 (zebra stripes)?
placed traffic lights is one of
be extended by "pushing"

that oscillators can have arbit
* ... that there are Spacefiller p,
to fill space with an agar with
* ... that a row of appropriately
the few known wicks that can

from
its Stationary end?

® ... that space nonfiller patterns hav
expand to affect the amiiv. 1 e .

e been constructed that l

hw9prl1 lab: Creating Life

Stable configurations:

"rocks"

Periodic amm
"plants”
period 2
Self-propagating
"animals”

glider

period 3

Copperhead: 2016

Life lessons...

e Incredibly simple rules can allow

arbitrarily complex

computational structures

e Just because you know
“how it works” (atatowleven
doesn't mean you know
“what it is” or “what it's really doing” (tanighleven

.-
-
=,
.
S
&
~

hw9prl1 lab: Creating Life

Many life configurations expand forever...

. I:::l ﬂ "= "Gosper
"

glider ..
- generator”
(Or llgun") ..-

"glider”

What is the largest amount of the life
universe that can be filled with cells?

How sophisticated can Life-structures get?

www.ibiblio.org/lifepatterns/

[y

] k¢l €

Life @ HMC!

with 42' diameter ! é’

.
=

2D Data -

Math + CS: shareful siblings!

2D data -

M[1][e]
Me][e] \ ML)

\ M[t}][l] /
M=1[2,9], [1,-2]]

Y Y

Mle] M[1]

2D data -

M[1](e]
Me][e] \ ML)

\\ m?m /

M=1[2,9], [1,-2]]

M[O] M[1]

Mutable vs Immutable

Which of these make sense?

o X = 42
e 42 =7
e "wow" = "what"
e "wow"[1] = '?°

e [3.14, 2.17, 1.44][1] =

Diversion:

1.62

. ;|
Mutable vs Immutable Diversion:

Which of these make sense?

o X = 42
e 42 =7
e "wow" = "what"
e "wow"[1] = '?°

e [3.14, 2.17, 1.44][1] =

Example: Double all the values

Three ways:

for i in range(len(L)):
L[i] *= 2

L
Change [ementS of
L = [x*2 for x 1In L o
[tore pew listib =

M= [x*2 for x in L]

Looking at Pythons innards!

From the Python documentation...

id(object)
- Return the “identity” of an object. This is an integer which
is guaranteed to be unique and constant for this object

during its lifetime. Two objects with non-overlapping
lifetimes may have the same 1d () value.

For immutable objects, operations that compute new
values may return a pre-existing object with the same

value, while for mutable objects this is not allowed

CPython implementation detail: This is the address of the object in memory.

Looking at Pythong:

lSsameMemOr
print "The y(x,

From the Python document

id(object)
- Return the “identity” of an object. This is an integer which
is guaranteed to be unique and constant for this object

during its lifetime. Two objects with non-overlapping
lifetimes may have the same 1d () value.

For immutable objects, operations that compute new
values may return a pre-existing object with the same

value, while for mutable objects this is not allowed

CPython implementation detail: This is the address of the object in memory.

Shallow vs. Deep

Python's two methods for copying data

"Reference"”

"Pointer" .
L = [5,'hi'] o ey
1,000,000,042 5 "hi
L L[O] L[1] M= L

/ M[@] = 42

What's L[O] ?!

1,000,000,042

M

L and M are the same memory address

Shallow vs. Deep

Python's two methods for copying data

"Rgference"
"Pointer" .
. I, = 5 "hi' _ .
id l\A [’] L — - 5 , | hl 1]
|
1,000,000,042 5 "hi' .
- L[0] L[1] M = —[.]
3,141,5;2,653 5 'hi'
I
M L[O] L[1] What's L[O] ?!

slicing makes a copy

but only one-level deep

L and M are different memory addresses

Shallow vs. Deep

Python's two methods for copying data

from copy import *

“Reference"”
"Pointer" — Thq!
idl\L—A LT L = [SJ Ihi']
|
= vy M = deepcopy(L)

deepcopy is deep!
L and M are different memory addresses

shallow

Python functions: pass by copy

def conform(fav) ‘\32
bz

fav = 42
return fav

fav

this line is the "abstraction boundary" between conform and main

def main|()

print (" Welcome! ")
7
fav = 7
€875 conforn(fay) fav
e~

print (" My favorite # is", fav)

shallow

Python functions: pass by copy

def conform(fav)
WA

fav = 42
fav
return fav

this line is the "abstraction boundary" between conform and main

def main|()

print (" Welcome! ")

fav = 7 4%77§

fav = conform(fav)

fav
L/M
&/ LeL

print (" My favorite # is", fav)

shallow

Python functions: pass by copy

def conform(fav)

4
22

fav = 42
fav
return fav
copy of fav
this line is the "abstraction boundary" between conform and main
def main () "pass by copy"” means the contents

of £av are copied to fav }

fav =
fav =

/[
127
v

fa

print (" My favorite # is" ’ fav) The original 7 is "clobbered."

What if we didn't have the 42
underlined part re-assigning fav?

shallow

Python functions: pass by copy

conform(fav) ¥
12
fav = 42
fav
fav
copy of fav
this line is the "abstraction boundary" between conform and main
main () "pass by copy” means the contents
of £av are copied to fav }
(" Welcome! ") /
-/
- fav = 7
assignment - conform (fav
llsesrle !ll men () f av
o
(" My favorite # is", fav) @biﬁ&‘
A és‘\

(V)
'7 p¢ - _o®
(‘\ o

Name(s)

Rules, Rules, Rules!?

def conform(fav)
fav =42
return fav &3

fav

7
fav

def main()
fav=7
conform(fav)
orint(fav)

7

Trace each function. What do conformOne and conformTwo produce?

def conformOne(L)

def conformTwo(L)

L[O] =42 L =1[42,42]
L[1] =42 return L
L L
\q [ct-z{c:,zj
1,000,000,042 % % % 1,000,000,042 7 1 1
L L[O] L[1] L L[O] L[1]
def mainOne() def mainTwo()
L=1[7,11] L=1[7,11] «.
conformOne(L) conformTwo(L)
orint(L) orint(L)

L6227

L7, 01

Notice that there are NO assignment statements after these function calls! The return values aren't being used...

Lists are Mutable

You can change the contents of lists from
within functions that take lists as input.

- Lists are MUTABLE objects

Those changes will be visible
everywhere.

Numbers and strings are IMMUTABLE -
they can't be changed
(but the “box” that holds them can be!)

2D data?

Even with 3 eyes,
this looks 1d! &.

.
—

s that govern 1D
ew rules to learn!

~ pure composition

All and only the rule
data apply here - 1O n

2D data?

Even with 3 eyes,

this looks 1d! é.
v.

ules that goveri 1D |
o new rules to learn:
~ pure composition

All and only the T
data apply here -1

1D data ~ Lists

A =1 42, 75, 70]

/42/ 75/ 70/
list [int [int [int

1;2&’;) ; 1D lists are familiar - but lists can hold

id(A[0]) ? ANY Kkind of data - including lists!

2D data ~ Lists of Lists

A=11[1,2,3,4], [5,6], [7,8,9,10,11]]

Where's 3? len (A) len(A[O0]) Replace 10 with 42.

len(A[1])

2D data as Lists of Lists

A=11[1,2,3,4], [5,6], [7,8,9,10,11]]

list /1//2//3//4
list A[O] [A[0][0] [Al0][1] | |_A[0113] |§

L5

| A[1][0]

list
All]

list /7//8//9/ 10 11/
A[2] [Ar21[0] [A2]01] [A[2][2] [A2](3] [Ar21[4]

What are 3's len (A) len(A[O]) Replace 10 with 42.

"coordinates"?
len(A[1])

2D data as Lists of Lists

A=11[1,2,3,4], [5,6], [7,8,9,10,11]]

list /1//2//3//4
list A[O] [A[0][0] [Al0][1] | |_A[0113] |§

A[0][2]
6 row col
list / S %A/llllll ooooo 1

Al1] L Attio A[2][3] =42

T /T //3 //9 / 10 11/
A[2] [A[2][0] [AL21[1] [A2][2] [Al2](3] [Ar2114]
A[0][2] H

What are 3's len () len (A[O] >ﬂ Replace 10 with 42.

"coordinates"?

Rectangular 2D data

=) eSS

A[0][0]

o iy Yoy L7,

;:/W%VVWM
A[l][Z]) row r col c
/ \ A[r][c] = value

row == 1 col == 2

Rectangular 2D data

1) LGS

A A[0][0]
list / // %/ %/ /
A[1] I I
il e Y S =
2 A[2][3]
NROWS = len(A) # HEIGHT
NCOLS = len(A[@]) # WIDTH

for r in range(©,NROWS):
for ¢ in range(O,NCOLS):

if r ==c: A[r][c]

else: A[r][c]

N

Rectangular 2D data Changed

data ...

4,2,2,2 2,4,2,2 2,2,4,2

1) LA 2 200 2

A A[0][0] A[0][1] A[0][2] A[0][3]
]2 // 4 // // /
AlL] | | I I
A[1]1[0] A[1]1[1] A[l1l]1[2] A[1][3]
list /ZWZ//A//Z/
A[2] I I I I
A[2][0] A[2]1[1] A[2]1[2] A[2] [3]

NROWS = len(A) # HEIGHT
NCOLS = len(A[@]) # WIDTH

for r in range(©,NROWS):
for ¢ in range(O,NCOLS):

if r == c: A[r][c]

else: A[r][c]

N B

A [[4[2[2[2]’
ZNOI"th! [2, 2, 4, 4],
[2, 4, 4, 2]]
def two _in a row North(A):
mwww let| s See ... wiiw A

NROWS = 1en (A) row 0 4 2 2 2
NCOLS = len(A[0]) | 2 2| 4| a4

B = deepcopy(A)
row 2 2 4 4 2

for r in range(O,NROWS) : 0 coll col2 col3
for ¢ in range(O0,NCOLS) :

1if r ==
B[r] [c] = False wo | B F | F F
or
elif A[r][c] == : owt | BT | F
B[r] [c] = True w2z | T | F | T F
else:
col0 col1 col 2 col 3
B[r][c] = False
What elif will produce these?
Extra: *
How could we change the starred* East: A[r][c] == East
code above to check for two-in-a- X N.East¢«— Wwhat would check these?

row EAST or DIAGONALLY !? N.East: A[r][c] ==

ﬁs A = [[41 2/ 2/ 2]/
ZNOI"th! pns¥e [2, 2, 4, 4],
[2, 4, 4, 2]]

def two _in a row North(A):
mwiiw let| s See. .. wiiw A
NROWS = len(A) o 4 5 5 5
NCOLS = len(A[0]) . > 5 A A

B = deepcopy(A)
row 2 2 4 4 2

for r in range(O,NROWS) : 0 coll col2 col3
for ¢ in range(O0,NCOLS) :

if r ==
B[r] [c] = False S vorth owo | B | F | F F
. or
elif A[r][c] == A[r-1]][c]: row 1 F T F F
B[r] [c] = True w2 | T | F | T F
else:
col0 col 1 col 2 col 3
B[r] [c] = False
What e11if will produce these?
Extra: *
Howcouldwechanqethestarred* East: A[r] [c] == A[r] [c+1] fast
de ab heck fi -in-a- h 1d check these?
LI TecOrMOIE: ot A[r) [c] — Alz-1] [orL ¥ MBS Whstuoid e e

-;S A = [[41 2/ 2/ 2]/
ZNOI"th! pns¥e [2, 2, 4, 4],
[2, 4, 4, 2]]

two_in a row North(A):
mwiiw letl S See. .. wiiw

il Use as hwopr's

= deepcopy(A

r range (tartlng pOlnt--- .

c rang
B

r == .
B[r] [c] = False & North owo | B F | F F
or
A[r][c] == A[r-1][c]: ow1 | B | T | F F
B[r] [c] = True w T g
: col 0 coll col 2 col 3
B[r] [c] = False
What will produce these?
Extra: *
Howcouldwechanqethestarred* East: A[r][c] == A[r] [c+1] Fast
de ab heck fi -in-a- h ld check th /
letbom QRO N a (1] [o] == A[z-1] [o+L] MEes Whatvoul kb

What about N-in-a-row?

col0 coll col 2

A= [~[" ','X','O',
w[I'X', "X, "X,
o[V XY, 'O,
~«['X','0','0',

start start
checker row col LoL

inarow 3east('X', 1, 0, A)

inarow 3south('0', 0, 4, A)

Let's try it...

col 3 col4
' ','O'],
No} , IOV] ,
X! , IOV] , e data doeS

not "WraP

—_—

nd'
v | v |]] arou
, X

= True

inarow 3southeast('X', 2, 3, A)

inarow 3northeast('X', 3, 1, A)

First, try it by eye... ... then, by Python!

col0 col 1 col 2 col 3 col 4

A = [mwo[v v’vx|,|01,| ','O'],

I I
rowl[[x y
row2[! !
’
row 3 ' !
['X',
start start
checker row col Lol
inarow 3east('X', 1, 0, A) > True
inarow 3south('0', 0, 4, A) > True

inarow 3southeast('X', 2, 3, A) —> False

inarow 3northeast('x', 3, 1, aA) —> False

This week we're
Lifing it up

in lab!

SO

glide

Oon over...

