$[-35,-24,-13,-2,9,20,31$, $[26250,5250,1050,210, ~ ? ~]$

What's the meaning of Life?

 Simple rules can create complex results...$$
z=z^{2}+c
$$

The rule: Don't follow this rule.

The read it and weep sequence

$$
\begin{array}{|r|l}
1 & \\
11 & \text { str vs. int } \\
21 & \\
1211 & \substack{\text { When does the } \\
\text { first qappear? }} \\
111221 & \\
312211 & \substack{\text { Hew fast dothese } \\
\text { terms grow? }} \\
13112221 &
\end{array}
$$

hw9pr1 lab: Conway's Game of Life

Grid World

red cells are "alive"

white cells are empty

Evolutionary rules

- Everything depends on a cell's eight neighbors
- Exactly 3 neighbors give birth to a new, live cell.
- Exactly 2 or 3 neighbors keep an existing cell alive.
- Any other \# of neighbors and there's no life...

hw9pr1 lab: Creating Life

next_life_generation(A)

For each cell...

- 3 live neighbors - life!
- 2 live neighbors - same
- $0,1,4,5,6,7$, or 8 live neighbors - death
- computed all at once, not cell-by-cell,
- so the ? at left DOES come to life, but the ? does not...

hw9pr1 lab: Creating Life

next_life_generation(A)

old generation is the input, A

returns the next generation

hw9pr1: Conway's Game of Life

Simple rules \sim Surprising results

The fantastic combinations of John Conway's new solitaire game "life"

Wiki home
ConwayLife.com
How to contribute
Tutorials
LifeWiki discussion
Recent changes
Random page
Links

Tools
What links here
Related changes
Special pages
Printable version
Permanent link Page information

Main page Discussion

Home - LifeWiki • Book • Catagolue Forums

Discord - Golly

Welcome to LifeWiki,

the wiki for Conway's Game of Life.
Currently contains 2,566 articles.
Overview • How to contribute • Conwayl ife com

- Guns
- Methuselahs
- Oscillators
- Puffers
- Spaceships
- Still lifes
- Wicks
- All patterns
- Everything eise

This week's featured article

An eater is any still life that has the ability to interact with certain patterns without to eater 1 , a very permanent damage. The term may also sometimes specifically refer eater, being found to be capable of eknown eater. The block was the first known the construction of the queen bee shuttl beehives from a queen bee, allowing eater 5 feasting on an incoming strutle. The animation to the right shows an stabilize and control debris created by of gliders. Eaters are extremely important, as they help useful parts of those reactions. Stable reflectors in pactions, allowing for the manipulation of the work.

In the news
 Read more...

- March 20: Period1GliderGun discovers图 a period-26 bouncer-based reflector, the first independent reflector of this period, using components by Nico Brow reflector, the first
- March 19: Keith Amling constructs尿 new p6 c/2 onts by Nico Brown and Dean Hickerson. stripes are bounded by extended tabies.
- March 18: Nathaniel Johnston posts a

March 18: Nathaniel Johnston posts a YouTube video ${ }^{\text {a }}$ about the discovery of the true

- March 17: James Po glider gun, and the history leading un to thoon

Image gallery $\cdot \mathrm{A}-\mathrm{Z}$ index

Did you know..

-... that there is an infinite series of period 3 oscillators that
are polyominoes in are polyominoes in one phase, starting with the cross?

- ... that there are spaceships without any sparks which can nevertheless perturb objects due to their ability to repair some damage to themselves?
- ... that the R-pentomino creates a queen bee in generation 774, which lasts 17 generations before being destroyed?
- ... that a relay glider bouncing back and forth between two pentadecathlons was one of the earliest constructive proofs
that oscillators can have arbitrarily high periods?
to fill space with spacefiller patterns that grow quadratically
... that a row on agar with density $1 / 2$ (zebra stripes)? the few known wicks the its stationary end?
-

expand to affect the entiro lif have been constructed that

hw9pr1 lab: Creating Life

Stable configurations:
"rocks"

Periodic
"plants"

period 3

Self-propagating

"animals"

Life lessons...

- Incredibly simple rules can allow
arbitrarily complex computational structures
- Just because you know "how it works" (atalowlevel) doesn't mean you know "what it is" or "what it's really doing" (ata high level)

Life @ HMC?

hw9pr1 lab: Creating Life

Many life configurations expand forever...

What is the largest amount of the life universe that can be filled with cells?

How sophisticated can Life-structures get?

2D Data

Math + CS: shareful siblings!

2D data

Handling 2D data requires no new rules!

Mutable vs Immutable

Which of these make sense?

- $X=42$
- $42=7$
- "wow" = "what"
- "wow"[1] = '?'
- [3.14, 2.17, 1.44][1] = 1.62

Mutable vs Immutable

Diversion!

Which of these make sense?

- $X=42$
- $42=7$
- "wow" = "what"
- "wow"[1] = '?'
- $[3.14,2.17,1.44][1]=1.62$

Example: Double all the values

Three ways:
for i in range(len(L)):

$$
\mathrm{L}[\mathrm{i}] \quad *=2
$$

Change elements of L

$$
L=\left[x^{*} 2 \text { for } x \text { in } L\right]
$$

$$
\begin{aligned}
& \text { L] } \\
& \text { Store new list in L }
\end{aligned}
$$

$$
M=\left[x^{*} 2 \text { for } x \text { in } L\right]
$$

Looking at Pythons innards!

From the Python documentation...
id(object)

- Return the "identity" of an object. This is an integer which is guaranteed to be unique and constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id() value.

For immutable objects, operations that compute new values may return a pre-existing object with the same value, while for mutable objects this is not allowed

CPython implementation detail: This is the address of the object in memory.

Looking at Pythonfinnards!

From the Python documenta
id(object)

$$
\begin{aligned}
& \text { print("The id } x, y \text {): } \\
& \text { print("The id of } x \text { is", id(} x \text {)) } \\
& \text { if id(} x \text {) }==\text { id(} y \text {): is", id(} y \text {)) } \\
& \text { print("=> They are the same object") } \\
& \text { else: } \\
& \text { print("" }=>\text { They are different objects") }
\end{aligned}
$$

- Return the "identity" of an object. This is an integer which is guaranteed to be unique and constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id() value.

For immutable objects, operations that compute new values may return a pre-existing object with the same value, while for mutable objects this is not allowed

CPython implementation detail: This is the address of the object in memory.

Shallow vs. Deep

Python's two methods for copying data

$$
\begin{aligned}
& L=\left[5, ' h i^{\prime}\right] \\
& M=L \\
& M[0]=42
\end{aligned}
$$

What's L[0] ?!

L and M are the same memory address

Shallow vs. Deep

Python's two methods for copying data

$$
\begin{aligned}
& L=[5, \text { 'hi' }] \\
& M=L[:] \\
& M[\theta]=42 \\
& \text { What's } L[0] ?!
\end{aligned}
$$

slicing makes a copy

Shallow vs. Deep

Python's two methods for copying data

from copy import *

$$
\begin{aligned}
& L=[5, \text { 'hi'] } \\
& M=\operatorname{deepcopy}(\mathrm{L}) \\
& M[0]=42 \\
& \text { What's L[0] ?! }
\end{aligned}
$$

deepcopy is deep!
L and M are different memory addresses

Python functions: pass by copy

def conform(fav)

$$
\begin{aligned}
& \text { fav }=42 \\
& \text { return fav }
\end{aligned}
$$

def main()

```
print(" Welcome! ")
    fav = 7
    释住 conform(fav)
```

 print(" My favorite \# is", fav)

Python functions: pass by copy

def conform(fav)

$$
\begin{aligned}
& \text { fav }=42 \\
& \text { return fav }
\end{aligned}
$$

def main()

```
print(" Welcome! ")
    fav = 7
    fav = conform(fav)
        * *
    print(" My favorite # is", fav)
```


Python functions: pass by copy

Python functions: pass by copy

def conform(fav)
fav $=42$
return fav

def main()
print(" Welcome! ")
fav $=7$
No
assignment here!
conform(fav)
"pass by copy" means the contents of fav are copied to fav
print(" My favorite \# is", fav)

def conform(fav)

$$
\mathrm{fav}=42
$$

return jav

def main() fave $=7$ conform(fav) print(fav)

7

def mainOne()
$\mathrm{L}=[7,11]$
conformOne(L)
print (L)
$[42,42]$

def mainTwo() $L=[7,11]$ c. conformTwo(L) print (L)
$[7,11]$

Lists are Mutable

You can change the contents of lists from within functions that take lists as input.

\author{

- Lists are MUTABLE objects
}

Those changes will be visible everywhere.

Numbers and strings are IMMUTABLE they can't be changed
(but the "box" that holds them can be!)

2D data?

$$
A=[42,75,70]
$$

 $A=[42,75,70]$

 $A=[42,75,70]$}All and only the rules that govern 1D data apply here - no new rules to learn!
~ pure composition

2D data?

$$
A=[42,75,70]
$$

All and only the rules that govern 1D data apply here - no new rules to learn!
~ pure composition
t does A "look like"?

1D data~
 Lists

$A=[42,75,70]$


```
len(A) ?
id(A) ?
id(A[0]) ?
```

1D lists are familiar - but lists can hold ANY kind of data - including lists!

2D data ~

Lists of Lists

$A=[\quad[1,2,3,4],[5,6],[7,8,9,10,11]]$

len (A[0])

2D data as Lists of Lists

$A=[\quad[1,2,3,4],[5,6],[7,8,9,10,11]]$

What are 3's
"coordinates"?
$\operatorname{len}(A) \quad \operatorname{len}(A[0])$

2D data as Lists of Lists

$A=[\quad[1,2,3,4],[5,6],[7,8,9,10,11]]$

A[0]][2]

What are 3's
"coordinates"?

3
len (A)
$\operatorname{Len}(\mathbb{A}[0])^{4}$

Replace 10 with 42.

$$
\mathrm{A}[2][3]=42
$$

Rectangular 2D data

$A=[\quad[0,0,0,0],[0,0,0,0],[0,0,0,0]]$

$\mathrm{A}[1][2]=42$

$$
\operatorname{col}==2
$$

cor cold
 $\mathrm{A}[\mathrm{r}][\mathrm{c}]=$ value

Rectangular 2D data

NROWS $=\operatorname{len}(A) \quad$ \# HEIGHT
NCOLS $=\operatorname{len}(A[0]) \quad \#$ WIDTH
Nested Loops ~ 2d Data
for r in range(0,NROWS):
for c in range(0,NCOLS):

$$
\text { if } r==c: \quad A[r][c]=4
$$

else:
$A[r][c]=2$
f How many 4's?
How many 2's?

Rectangular 2D data

$\mathrm{A}==[\quad[\underline{4}, 2,2,2],[2, \underline{4}, 2,2],[2,2, \underline{4}, 2]]$

NROWS = len(A) \# HEIGHT
NCOLS $=\operatorname{len}(A[0])$ \# WIDTH
Nested Loops ~ 2d Data
for r in range(0,NROWS):
for c in range(0,NCOLS):
if $r=c: \quad A[r][c]=4$
else:
$A[r][c]=2$
How many 4's?
How many 2's?

2 North!

def two_in_a_row_North (A) :
""" let's see... """
NROWS = len (A)
NCOLS $=$ len (A[0])
B = deepcopy (A)
for r in range ($0, N R O W S$): for c in range ($0, N C O L S$):

$$
\begin{aligned}
& \text { if } r= 0: \\
& B[r][c]=\text { False } \\
& \text { elif } A[r][c]== \\
& B[r][c]=\text { True } \\
& \text { else }: \\
& B[r][c]=\text { False }
\end{aligned}
$$

def two_in_a_row_North (A):
""" let's see... """
for c in range (0, NCOLS $)$:
$A=\left[\begin{array}{ll} & 2,2,2], \\ \hline\end{array}\right.$ $[2,2,4,4]$, $[2,4,4,2]$]

	A			
row 0	4	2	2	2
row 1	2	2	4	4
row 2	2	4	4	2
	colo	col 1	col 2	col 3

B

What elif will produce these?

Extra:

How could we change the starred ${ }^{\star}$ code above to check for two-in-arow EAST or DIAGONALLY !?

East: $A[r][C]=$ N.East: $\quad A[r][c]==$
\star East
\star N.East \longleftarrow what would check these?

2 North! answexs

 $A=[\quad[4,2,2,2]$, $[2,2,4,4]$, $[2,4,4,2]$]```
def two_in_a_row_North(A):
```

    """ let's see... """
    NROWS = len(A)
    NCOLS \(=\) len(A[0])
    B = deepcopy ( A )
    for \(r\) in range ( \(0, N R O W S\) ):
        for c in range( \(0, N C O L S\) ):
    $$
\text { if } \begin{aligned}
r= & 0: \\
& B[r][c]=\text { False }
\end{aligned}
$$

$$
\mathrm{B}[\mathrm{r}][\mathrm{c}]=\text { False }
$$ for $c$ in range ( $0, N C O L S$ ):

$$
\text { elif } A[r][c]==A[r-1][c]^{\star} \text { : }
$$

$$
B[r][c]=\text { True }
$$

else:

## Extra:

How could we change the starred ${ }^{\star}$ code above to check for two-in-arow EAST or DIAGONALLY !?

East: $A[r][c]==A[r][c+1]^{\star}$
N.East: $\mathbf{A}[\mathbf{r}][\mathbf{c}]==\mathbf{A}[\mathbf{r}-1][\mathbf{c}+1]^{\star}$ N.East $\leftarrow$ what would check these?

2 North! answers $A=[\quad[4,2,2,2]$, $[2,2,4,4]$, $[2,4,4,2]$ ]
def two_in_a_row_North(A): """ let's see... """

```
NROWS = len(A)
 NCOLS = len(A[0
```

    B = deepcopy ( A
    for \(r\) in range (
        for c in rang
        Use as hw9pr2's
    $$
\begin{aligned}
\text { if } \begin{aligned}
& \mathrm{r}=0: \\
& \mathrm{B}[\mathrm{r}][\mathrm{C}]=\text { False } \\
& \text { elis } \mathrm{A}[\mathrm{r}][\mathrm{C}]=\mathrm{A}[\mathrm{r}-1] \\
& \mathrm{B}[\mathrm{r}][\mathrm{c}]=\text { True } \\
& \mathrm{Else}: \\
& \mathrm{B}[\mathrm{r}][\mathrm{c}]=\text { False }
\end{aligned}
\end{aligned}
$$

$$
\text { elis } \mathrm{A}[r][\mathrm{c}]=\mathrm{A}[r-1][\mathrm{c}]^{\text {North }} \quad \text { row } 1
$$



What elif will produce these?

## Extra:

How could we change the starred $\star$ code above to check for two-in-arow EAST or DIAGONALLY !?

East: $\mathrm{A}[\mathrm{r}][\mathrm{c}]=\mathrm{A}[\mathrm{r}][\mathrm{c}+1]^{\star}$ East
N.East: $A[r][c]==A[r-1][c+1]^{\star}$ N.East $\leftarrow$ what would check these?


|  | start | start |
| :---: | :---: | :---: |
| checker | row | col |

inarow_3east('X', 1, 0, A)

inarow_3south ('O', 0, 4, A)
inarow_3southeast('X', 2, 3, A)
inarow_3northeast('X', 3, 1, A)

First, try it by eye... ... then, by Python!


inarow_3south('O', 0, 4, A)

inarow_3southeast('X', 2, 3, A) $\longrightarrow$ False
inarow_3northeast('X', 3, 1, A) $\longrightarrow$ False


This week we're
Lifing it up
SO
in lab!

on over...

