
Lec	18	~	Python	gets	*classy*
It's an alien
date!

Ann Clark
Sur la Table
Ali Express

What are classes and objects?
What are their methods?
And why do they matter?

Lec	18	~	Classes	and	Objects...

CS-specific names class, type, user-defined type, template
object, instance, target, self,
attribute, container
method, function
 constructor, initializer, __init__
 __repr__, printer

CS-specific topics syntax needed to define a class
syntax needed to create an object
the use of self to refer to a specific object
 + within the definition of a class!

Also! All Python values are objects...
Examples:
 + Student class (that we define)
 + str class (Python-defined)
 + Date class (that we define)

Let’s
immerse

ourselves!

Lists	are	all	you	need…				 						(and	yet…)

Represent "Hello" as a list of characters
S = ['H', 'e', 'l', 'l', 'o']
S = [72, 101, 108, 108, 111] # or just ASCII values

Instead of the complex number 3 + 7j
C = [3, 7]

Instead of the dictionary { 'a': 1, 'b': 2 }
D = [['a', 1], ['b', 2]]

The time 3:45:02 PM
T = [15, 45, 02]

What's	not	to	like
?

Two	ways	to	do	complex	numbers

C = [3, 7]
Re = C[0]
Im = C[1]

What's	better?

C = complex(3, 7)
Re = C.real
Im = C.imag

index syntax attribute syntax

make list type make complex-number type

S = "Hello" * 2

Different	types	“behave”	differently!

Need	a	universal	
way	to	say	

“use	your	way	to
	do	whatever”

N = 21 * 2

doesn't mean the same thing!

Float1 = 3.14
Float2 = -Float1

Cplex1 = 3 + 7j
Cplex2 = -Cplex1
Cplex3 = Cplex1

negation operation
complex conjugate operation

Normal	functions	have	just	one	way	to	work

this	is	how	mathematicians	write	it,	can't	do	overbar	in	Python!

complex	numbers	have	additional	operations	compared	to	floats

Methods	— Identity-based	functions
target method

The	universal	way	to	say	“use	your	way	to	do	whatever”

Cplex3 = Cplex1.conjugate()

I = 1234
Bits = I.bit_length() # How many bits do we need?

S = " harvey mudd college "
S = S.strip() # remove leading/trailing whitespace
S = S.upper() # convert to upper case
L = S.split() # split into words at whitespace

L.sort() # sort the list
L.reverse() # reverse the list
L.remove('COLLEGE') # remove the word 'COLLEGE'
L.extend(['CS','DEPT']) # add two words to the list

Special	Methods

Behin
d	the	s

cenes,
	Pytho

n	

calls	a
	lot	of	

metho
ds!

N = -22
N = N.__add__(1) # same as N + 2
N = N.__mul__(2) # same as N * 2
N = N.__neg__() # same as -N

S = "Hello"
S = S.__add__("World") # same as S + "World"
S = S.__mul__(2) # same as S * 2

Examples:

Classes	and	Objects

• A	class	is	a	type
• An	object	is	an	instance	of	that	type

An	object-oriented	programming	language	
allows	you	to	build	your	own	customized	types.

Class Objects

Customizing	

Classes	and	Objects

• A	class	is	a	type
• An	object	is	an	instance	of	that	type

An	object-oriented	programming	language	
allows	you	to	build	your	own	customized	types.

Class Objects

Customizing	
Python

We	can	define	our	own	new	classes!

Designing	a	Student	class	!

Data in each instance (e.g., self)

Methods provided by the class

self.name self.year

• method we design: defer(numyrs)

• needed special methods
__init__
__repr__

• method we design: newdorm()

class Student:

self.dorm

Let's	build-our-ow
n...

Designing	a	student	class	!

Data in each instance (e.g., self)

Methods provided by the class

self.name self.year

• method we design: defer(numyrs)

• needed special methods
__init__
__repr__

• method we design: newdorm()

class Student:

self.dorm

One-page	example

Student		is	a	class

fr	and	so	are	objects

define

use

1. constructor, init

2. its string representation

3. we change and access
information via methods

as	are	jr	and	sr	and	fi	and	za

all are variables

Fix!

Next, let's construct several students!
sr = Student("Melissa", "West", 2023)
jr = Student("Anadel", "New Dorm", 2024)
so = Student("Nico", "Case", 2025)
fr = Student("Madeline", "Atwood", 2026)
fi = Student("Maya", "Linde", 2026)

za = Student("zach", "The Cafe", 2042)
all are variables of type Student ("software objects") all are self !

Objects Like	a	list,	an	object	is	a	container,	
but	much	more	customizable:

(1)	Its	data	elements	have	names	chosen	by	the	programmer.

(2)	An	object's	class	provides	its	functions,	called	methods

(4)	Python	signals	special	methods	with	two	underscores:

I guess we should doubly
underscore these two methods!

__init__ is	called	the	constructor;	it	creates	new	objects

__repr__ tells	Python	how	to	print	its	objects

(3)	Inside	methods,	objects	refer	to	themselves	as		self

A Date class	and	object,	d

memory	location	~	42042778

month day year

d

12 201311

A Date class	and	object,	d

memory	location	~	42042778

month day year

d

12 201311

A Date class	and	object,	d

memory	location	~	42042778

month day year

d

12 201311

It's an alien
date!

A Date
class	
and	

five	objects,	
named…

today = Date(11,8,2022)
wd = Date(11,12,2013)
ny = Date(1,1,2023)
grad = Date(5,17,2026)
nc = Date(1,1,2100)

class Date:
 """ a blueprint (class) for objects
 that represent calendar days
 """

 def __init__(self, mo, dy, yr):
 """ the Date constructor """
 self.month = mo
 self.day = dy
 self.year = yr

The Date
class

This is the constructor for Date objects
As is typical, it assigns input data to the data attributes.

This is the start of a new type called Date
It begins with the keyword class

These are data attributes –
they are the information
inside every Date object.

Why self ?
today = Date(11,8,2022)
wd = Date(11,12,2013)
ny = Date(1,1,2023)
grad = Date(5,17,2026)
nc = Date(1,1,2100)

class Date:
 """ a blueprint (class) for objects
 that represent calendar days
 """
 def __init__(self, mo, dy, yr):
 """ the Date constructor """
 self.month = mo
 self.day = dy
 self.year = yr

 def __repr__(self):
 """ used for printing Dates """
 m = self.month
 d = self.day
 y = self.year
 string = f"{m:02d}/{d:02d}/{y:04d}"
 return string

The Date
class

Python's f"strings"
are f"antastic"!

This is the repr for Date objects
It tells Python how to show these objects.

today = Date(11,8,2022)
wd = Date(11,12,2013)
ny = Date(1,1,2023)
grad = Date(5,17,2026)
nc = Date(1,1,2100)

today = Date(3,28,2024)
wd = Date(11,12,2013)
ny = Date(1,1,2024)
grad = Date(5,17,2027)
nc = Date(1,1,2100)

Quiz	~	names!
point each name to its piece of the code...

class start (class keyword)

constructor

methods (3)

data attributes (3)

Extra1: today > wd is True. Why?!

what prints Dates?

Extra2: What int should ny – today be? What about grad – today (ish)?

class end (end of class block)

Your name(s): _________________________

Extra4: The method isLeapYear is wrong. How can it be corrected?

Date objects made (5)

Extra3: For which of the five objects does isLeapYear return True?

Extra1: today > wd is True. Why?!

Extra2: What int should ny – today be? What about grad – today (ish)?

Extra4: The method isLeapYear is wrong. How can it be corrected?

Extra3: For which of the five objects does isLeapYear return True?

Quiz	~	names!
point each name to its piece of the code...

class start (class keyword)

Date objects made (5)

constructor

methods (3)

data attributes (3)

what prints Dates?

class end (end of class block)

Solutions! Try this on the back page first....

includes __init__
and __repr__

in __init__
usually

"Later ~ greater!"

54 1286

fixed!Five objects here...

if self.year % 400 == 0: return True
if self.year % 100 == 0: return False
if self.year % 4 == 0: return True
return False

nc
no longer!

today = Date(3,28,2024)
wd = Date(11,12,2013)
ny = Date(1,1,2024)
grad = Date(5,17,2027)
nc = Date(1,1,2100)

class Date:
 def __init__(self, mo, dy, yr): (constructor)
 def __repr__(self): (for printing)

 def isLeapYear(self):
 """ here it is """
 if self.year%400 == 0: return True
 if self.year%100 == 0: return False
 if self.year%4 == 0: return True
 return False

In : wd = Date(11,12,2013)
In : wd.isLeapYear()
Out: False

In : od = Date(1,1,2020)
In : od.isLeapYear()
Out: True

self is a name for the
method's target object, used
by convention to make our

code clearer to others

>>> od = Date(1,1,2020)

>>> print(od)

1/1/2020

self

>>> od.isLeapYear()
True

>>> wd = Date(11,12,2013)
>>> print(wd)

11/09/2021

>>> wd.isLeapYear()

False

is	the	target	object	that's
calling	the	method

Every	method	need	access	
to	the	object	that	calls	it:	
that	object	is	self

self?

>>> od = Date(1,1,2020)

>>> print(od)

1/1/2020

>>> od.isLeapYear()
True

>>> wd = Date(11,12,2013)
>>> print(wd)

11/09/2021

>>> wd.isLeapYear()

False

Every	method	need	access	
to	the	object	that	calls	it:	
that	object	is	self

(there's no way for the class code to know what the variable
name will be -- days, months, or years before it's used)

self is	the	target	object	that's
calling	the	method

You'll	create	a	Date class	with

no	computer	required…

Prof.	Benjamin	!

Lab	next	week…

yesterday(self)
tomorrow(self)
addNDays(self, N)
subNDays(self, N)
isBefore(self, d2)
isAfter(self, d2)
diff(self, d2)
dow(self)

methods

-= 1

+= 1

+= N

-= N

<

>

-

operators!

What's	the	diff?	
In : today = Date(11,8,2022)
In : wd = Date(11,12,2013)
In : today.diff(wd)
Out: 3283

In : today - wd
Out: 3283

In : wd - today
Out: -3283

In : eraday = Date(1,1,1)
In : today.diff(eraday)
Out: 738466

In : today - eraday
Out: 738466

method

operator

operator

method

operator

This gives
me pause

Where's	the	dow?
In : sm1 = Date(10,28,1929)
In : sm2 = Date(10,19,1987)

In : sm1.dow()
Out: 'Monday'

In : sm2.dow()
Out: 'Monday'

In : Date(1,1,1).dow()
Out: 'Monday'

In : Date(1,1,2100).dow()
Out: 'Friday'

In : Date(10,10,2010).dow()
Out: 'Sunday'

uses a named object...

unnamed!

The dow looks
down to me!

uses a named object...

unnamed!

popular!

Special	Dates?

Special	Dates?

Special	Dates?

Problems	with		==

>>> wd = Date(11,12,2013)

>>> wd

11/12/2013

>>> wd2 = Date(11,12,2013)

>>> wd2

11/12/2013

>>> wd == wd2
False

How can this be False ?

this constructs a different Date object,
but with the same mo/dy/yr

Problems	with		==

>>> wd = Date(11,12,2013)

>>> wd

11/12/2013

>>> wd2 = Date(11,12,2013)

>>> wd2

11/12/2013

>>> wd == wd2
False

Object	identity!
==	compares	ids!

this constructs a different Date object,
but with the same mo/dy/yr

How can this be False ?

Two Date objects:

memory	location	~	42042778

day month year

d

11 201312

originals	underneath…

==	compares	memory	locations,	not	contents

wd wd2

class Date:

 def __init__(self, mo, dy, yr):
 def __repr__(self):
 def isLeapYear(self):

 def equals(self, d2):
 """ returns True if they
 represent the same date;
 False otherwise
 """
 if self.year == d2.year and \
 self.month == d2.month and \
 self.day == d2.day:
 return True
 else:
 return False

equals

wd.equals(wd2) wd2.equals(wd)

Let's	write
	

our	own	

equality-
tester

class Date:

 def __init__(self, mo, dy, yr):
 def __repr__(self):
 def isLeapYear(self):

 def equals(self, d2):
 """ returns True if they both
 represent the same date;
 False otherwise
 """
 if self.year == d2.year and \
 self.month == d2.month and \
 self.day == d2.day:
 return True
 else:
 return False

equals

wd.equals(wd2)

which
goes

where?

wd2.equals(wd)

>>> wd = Date(11,12,2013)

>>> wd

11/12/2013

>>> wd2 = Date(11,12,2013)

>>> wd2

11/12/2013

>>> wd.equals(wd2)
True

this constructs a different Date object,
but with the same mo/dy/yr

Solution:		equals

.equals	compares	mo/dy/yr	–	
because	we	wrote	it	to!

Who is this
convenient for?!

class Date:

 def __init__(self, mo, dy, yr):
 def __repr__(self):
 def isLeapYear(self):

 def __eq__(self, d2):
 """ returns True if they both
 represent the same date;
 False otherwise
 """
 if self.year == d2.year and \
 self.month == d2.month and \
 self.day == d2.day:
 return True
 else:
 return False

__eq__

L==k! This is T== C==L!

To use this, write d == d2

redefined for our
convenience!

__eq__(self, other) defines the equality operator, ==
__ne__(self, other) defines the inequality operator, !=
__lt__(self, other) defines the less-than operator, <
__gt__(self, other) defines the greater-than operator, >
__le__(self, other) defines the less-or-equal-to operator, <=
__ge__(self, other) defines the gr.-or-equal-to operator, >=

__add__(self, other) defines the addition operator, +
__sub__(self, other) defines the subtraction operator, -

DIY	operators	…

I should underscore this unusual syntax!there are two under-
scores on each side here

… and many more! Use dir('')

More operators!
Booleans

arithmetic

"in-place"	
arithmetic

+=
-=
*=

@=

+
-
*
@

https://docs.python.org/3/reference/datamodel.html#special-method-names

You'll	create	a	Date class	with

no	computer	required…

Prof.	Benjamin	!

Lab	next	week!

yesterday(self)
tomorrow(self)
addNDays(self, N)
subNDays(self, N)
isBefore(self, d2)
isAfter(self, d2)
diff(self, d2)
dow(self)

methods

-= 1

+= 1

+= N

-= N

<

>

-

operators!

class Date:

 def isBefore(self, d2):
 """ True if self is before d2, else False """
 if self.year < d2.year:
 return True
 elif self.month < d2.month:
 return True
 elif self.day < d2.day:
 return True
 else: return False

isBefore

Date(11,8,2022).isBefore(Date(12,31,1999))

(with bugs!)

No wonder I was late to all
my millenium parties!

I	<3	Elf!	But	what	
about	Elif?

class Date:

 def isBefore(self, d2):
 """ True if self is before d2, else False """
 if self.year < d2.year:
 return True

 elif self.month < d2.month and self.year == d2.year :
 return True

 elif self.day < d2.day and self.year == d2.year \
 and self.month == d2.month :
 return True

 else:
 return False

isBefore
(correct)

class Date:

 def __lt__(self, d2):
 """ if self is before d2, this should
 return True; else False """

 if self.isBefore(d2) == True:
 return True
 else:
 return False

Say	LESS	!

__lt__ <

that's	really	LESS	!__lt__ <
class Date:

 def __lt__(self, d2):
 """ is self less than d2? (before) """
 return self.isBefore(d2)

 def __gt__(self, d2):
 """ is self greater than d2? (after) """
 return ____.isBefore(____)

class Date:

 def __lt__(self, d2):
 """ is self less than d2? (before) """
 return self.isBefore(d2)

 def __gt__(self, d2):
 """ is self greater than d2? (after) """
 return ____.isBefore(____)

so	LESS	
really	is	
MORE!

__lt__

>__gt__

<

The	two	most	timely	methods	~

In1: wd = Date(11,12,2013)

In2: print(wd)

11/12/2013

construct with the
CONSTRUCTOR …

In1: wd.tomorrow()
In2: print(wd)

11/13/2013

In1: wd.yesterday()

In2: print(wd)

11/12/2013

the tomorrow method returns
nothing at all. Is it doing anything?

yesterday does not return anything!
But it does change the date that calls it ("self")

wd has changed!

d += 1

d -= 1yesterday is pretty much just like
tomorrow (is this a good thing!?)

print uses __repr__

class Date:

 def tomorrow(self):
 """ moves the self date ahead 1 day """

 DIM = [0,31,28,31,30,31,30,31,31,30,31,30,31]

Don't return anything.
We CHANGE the date

object itself.

add 1 to
self.day

then, adjust the month and
year, but only as needed

Use another if!

Extra			How	could	we	make	this	work	for	leap	years,	too?

Use	this	for	hw10pr1	this	week!

self.day += 1

if test if we have gone
"out of bounds!"

if

self.day =

self.month =

Try writing tomorrow!

class Date:

 def tomorrow(self):
 """ moves the self date ahead 1 day """

 DIM = [0,31,28,31,30,31,30,31,31,30,31,30,31]

Don't return anything.
We CHANGE the date

object itself.

DIM	looks	pretty	
bright	to	me!first, add 1 to

self.day

then, adjust the month and
year, but only as needed

Use another if!

Extra			How	could	we	make	this	work	for	leap	years,	too?

Use	this	for	hw10pr1	this	week!

self.day += 1

if test if we have gone
"out of bounds!"

if

self.day =

self.month =

Try writing tomorrow!

class Date:

 def tomorrow(self):
 """ moves the self date ahead 1 day """

 DIM = [0,31,fdays,31,30,31,30,31,31,30,31,30,31]

 self.day += 1 # add 1 to the day!

 if self.day > DIM[self.month]: # check day
 self.month += 1
 self.day = 1

 if self.month > 12: # check month
 self.year += 1
 self.month = 1

better	as	a	variable!

Extra			How	could	we	make	this	work	for	leap	years,	too?

class Date:

 def tomorrow(self):
 """ moves the self date ahead 1 day """

 if self.isLeapYear() == True: fdays = 29
 else: fdays = 28

 DIM = [0,31,fdays,31,30,31,30,31,31,30,31,30,31]

 self.day += 1 # add 1 to the day!

 if self.day > DIM[self.month]: # check day
 self.month += 1
 self.day = 1

 if self.month > 12: # check month
 self.year += 1
 self.month = 1

Extra			Is	there	any	more	leap-year	craziness	available?!

class Date:

 def tomorrow(self):
 """ moves the self date ahead 1 day """

fdays = 28 + self.isLeapYear() # What ?!

 DIM = [0,31,fdays,31,30,31,30,31,31,30,31,30,31]

 self.day += 1 # add 1 to the day!

 if self.day > DIM[self.month]: # check day
 self.month += 1
 self.day = 1

 if self.month > 12: # check month
 self.year += 1
 self.month = 1

Yes!

class Date:

 def yesterday(self):
 """ moves the self date backwards 1 day """

 fdays = 28 + self.isLeapYear() # Yay!

 DIM = [0,31,fdays,31,30,31,30,31,31,30,31,30,31]

 self.day

For	lab:				how	will	"wrap-around"	work	in	this	case?			What	cases	do	we	need	to	worry	about?!

Use	for	hw10pr1	this	week!You'll take on yesterday --
tomorrow and today -- in lab...

Not	all	years	are	the	same!

Feb.	30,	1712

https://www.tondering.dk/claus/cal/gregorian.php

Feb.	30,	1712

https://www.tondering.dk/claus/cal/gregorian.php

Now,	that's	a	unique	
wedding	day!

