It's an alien
date!

Lec 18 ~ Python gets *classy*

What are classes and objects?
What are their methods?

And why do they matter?




Let's

Lec 18 ~ Classes and Objects...  immerse

CS-specific names

CS-specific topics

Also!

ourselves!

class, type, user-defined type, template
object, instance, target, self,
attribute, container
method, function
constructor, initializer, __init__
__repr__, printer

syntax needed to define a class

syntax needed to create an object

the use of self to refer to a specific object
+ within the definition of a class!

All Python values are objects...
Examples:

+ Student class (that we define)
+ strclass (Python-defined)

+ Date class (that we define)



Lists are all you need... (and yet...

n

(@)

O H#

=+

Represent "Hello" as a list of characters
— [ IHI, lel’ lll) lll, lol ]
= [ 72, 101, 108, 108, 111 | # or just ASCII values

Instead of the complex number 3 + 7j
=[317]

Instead of the dictionary { 'a': 1, 'b': 2 }
=[['a':1]:['b':2]]

The time 3:45:02 PM
= [ 15, 45, 02 ]




Two ways to do complex numbers

make list type make complex-number type
c=13%7] C = complex(3, 7)
Re = C[0] Re = C.real
Im = C[1] Im = C.1imag

LN LY

N N

index syntax attribute syntax




Different types “behave” differently!

doesn't mean the same thing!

eA:”/////A\\\\f::3:>>ﬁr———

S = "Hello" * 2 N =21 * 2
complex numbers have additional operations compared to floats
ool = 3 1 Cplexl = 3 + 73
Floatz - ;1 o Cplex2 = -Cplex1l
Od = -~ri10d
/4‘ Cplex3 =/’Cplex1

negation operation

complex conjugate operation

this is how mathematicians write it, can't do overbar in Python!




Methods — Identity-based functions

et
Cplex3 =\Cplexl.conjuga’ce()

I = 1234
Bits = I.bit length() # How many bits do we need?

harvey mudd college
.strip() # remove leading/trailing whitespace
.upper() # convert to upper case

.split() # split into words at whitespace

— n n n
(| I |
n nh ”n

.sort() # sort the list

.reverse() # reverse the list

.remove( 'COLLEGE") # remove the word 'COLLEGE'
.extend(['CS', 'DEPT']) # add two words to the list

r r r



Special Methods

Examples:
N = -22
N =N. add (1) # same as N + 2
N =N. mul (2) # same as N * 2
N =N. neg () # same as -N
S = "Hello"
S =5S. add_ ("World") # same as S + "World"

n
|

S. mul_ (2) # same as S * 2




Classes and Objects

An object-oriented programming language
allows you to build your own customized types.

e Aclassis atype

e An object is an instance of that type

Objects




o ctomizing
Customl _
python | Classes and Objects

An object-oriented programming language
allows you to build your own customized types.

Class




Designing a Student class!

Student:

in each instance (e.g., self)

self.name self.dorm self.year

Methods provided by the class

* needed special method

Let's build-our

gesign: defer(numyrs)




Designing a student class!

Student:

in each instance (e.g., self)

self.name self.dorm self.year

Methods provided by the class
__init__

* needed special methods _ repr__

 method we design: newdorm()

 method we design: defer(numyrs)



# we define a Student class (our own class/type)
#
class Student: (:) - 1
"3 class representing students """ ne page examp e
# the CONSTRUCTOR method (function)
# [sets initial datal
def __init_ (self, name, dorm, yr):
""" this is the constructor """
self.name = name
self.dorm = dorm # self.var = var is co
self.year = yr # but not required
print("Welcome to Claremont,", self.name) # add some pri

Student is a class

# the "REAPER" or "REPPER" method (for printing)

# [let's change from 2025 to '25 or 2021 to '21]

def __repr__(self):
""" print uses __repr__ to get a string representation """
s = self.name + " " + str(self.year) + " (" + self.dorm + ")"
return s

1. constructor, init

+t—

2. its string representation

# here's a method of our own

def newdorm(self, dorm):
nnn sets the Student'sM 3- We Change and access
self.dorm = dorm - . .
/ information via methods
# here's another method of our own

def defer(self, numyrs):
" odefer graduation for numyrs years """
self.year += numyrs

# Thus ends the Student __class__ (for now) (1(3f111(3

# Next, let's construct several students!

sr = Student("Melissa", "West", 2023 ) f o use
jr = Student("Anadel", "New Dorm", 2024 ) (1 l)

so = Student("Nico", "Case", 2025) r an So are O .]eCtS

fr = Student("Madeline", "Atwood", 2026) ) d d £i and

za = Student("zach", "The Cafe", 2042) .
# all are variables of type Student ("software objects") a” are varlables G_”GI’E self!



. Like a list, an object is a container,
Ob] eCtS but much more customizable:

(1) Its data elements have names chosen by the programmer.
(2) An object's class provides its functions, called methods

(3) Inside methods, objects refer to themselves as self

(4) Python signals special methods with two underscores:

init is called the constructor; it creates new objects

repr  tells Python how to print its objects

I guess we should doubly
&¥S underscore these two methods!

—



11

12

A Date class and object, d

month

day

2013

year

memory location ~ 42042778




$ USATODAY

NEWS SPORTS LIFE MONEY

11/12/13: A good day for a wedding?

There are 12 sequential dates in this century. The next big sequential date is 12/13/14.

"That's on a Saturday so we're hoping to see even bigger numbers," Mills said.

If you put any stock in the idea that sequential dates bode well for a long and happy

marriage, though, you better start looking for that special someone — your next

opportunity for a wedding on such a date won't happen until 2103.

%

a

-

11

N

/

month

a

-

12

~

bject, d

/

day

2013

year

memory location ~ 42042778




11

month

12

A Date class and object, d

-

day

2013

~

year

memory location ~ 42042778

's an alien



class Date:

Date is a user-defined class (data stucture)
that stores and transforms dates

# the CONSTRUCTOR

def __init_ (self, mo, dy, yr):
""" the constructor for objects of type Date
self.month = mo
self.day = dy
self.year = yr

# the REPPER
def __repr__(self):
"M oprint uses __repr__ to get a string representation
of the self object (of type Date)

d = self.day

m = self.month

y = self.year

s = f"{m:02d}/{d:02d}/{y:04d}" # d for "decimal int"
return s

# is it a leap year?
def isLeapYear(self):
"M returns True if self, the calling object, is
in a leap year; False otherwise. """

if self.year % 400 == 0: return True
if self.year % 100 == 0: return False
if self.year % 4 == 0: return True

return False

today = Date(11,8,2022)
wd = Date(11,12,2013)

ny = Date(1,1,2023)
grad = Date(5,17,2026)
nc = Date(1,1,2100)

A Date
class

and

five objects,
named...



Date:
""" a blueprint (class) for objects The Date

that represent calendar days

. class

This is the start of a new type called Date
It begins with the keyword class

__init ( self, mo, dy, yr ):
""" the Date constructor """
self.month = mo These are data attributes —

1f.day = d ] :
se r.cay & ¥ they are the information

self.year = yr o _
inside every Date object.

This is the constructor for Date objects
As is typical, it assigns input data to the data attributes.

today = Date(11,8,2022)
wd = Date(11,12,2013)
ny = Date(1,1,2023) Why self ?
grad = Date(5,17,2026)
nc = Date(1,1,2100)




Date:

wiriw

wrww

a blueprint (class) for objects
that represent calendar days

__init ( self, mo, dy, yr ):
""" the Date constructor """
self.month = mo

self.day = dy

self.year = yr

__repr ( self ):
""" used for printing Dates """
m = self.month

d self.day
y = self.year

string = £"{m:02d}/{d:02d}/{y:04d}"

return string

The Date
class

Python's f"strings"

ér/////////////////// = are f"antastic"l

This is the repr for Date objects
It tells Python how to show these objects.

today = Date(11,8,2022)
wd = Date(11,12,2013)
ny = Date(1,1,2023)
grad = Date(5,17,2026)
nc = Date(1,1,2100)



Your name(s):

Quiz ~ names!

point each name to its piece of the code...

Date is a user-defined class (data stucture)
that stores and transforms dates

# the CONSTRUCTOR

def __init_ (self, mo, dy, yr):
""" the constructor for objects of type~ate
self.month = mo
self.day = dy
self.year = yr

class start (class keyword)

class end (end of class block)

# the REPPER
def __repr__(self):
"M oprint uses __repr__
of the self object (of type Dat®

“Methods 3

d = self.day constructor

m = self.month

y = self.year

s = f'{m:02d}/{d:02d}/{y:04d}" # d for "decidq "data attributes (3)
return s

‘what prints Dates?

# is it a leap year?
def isLeapYear(self):
""oreturns True if
in a leap year; False otherwise.

self, the calling object, is

Date objects made (s)

if self.year % 4 == 0: return True .
y Extral: today>wd is True. Why?!
tday = Date(3,28,2024) Extra2: What int should ny — today be? What about grad — today (ish)?
wd = Date(11, 12 2013)
ny = Date(1, 1,2024) Extra3: For which of the five objects does isLeapYear return True?

grad = Date(5,17,2027)

nc = Date(1,1,2100) Extrad: The method isLeapYear is wrong. How can it be corrected?



class Date:

Solutions! Try this on the back page first....

Quiz ~ names!

point each name to its piece of the code...

Date is a user- d class (data stucture)
that stores and transfo

# the CONSTRUCTOR

def __init_ (self, mo~gY
""" the constructor f0
self.month = mo
self.day = dy
self.year = yr

OYects of type Date

class start (class keyword)

class end (end of class block)

# the REPPER
def __repr__(self):

""" print uses __ . 10 get a SNSRI SR Co A mEthOdS 3) includes __init__
of the self object (D& type Date) ’ and __repr__

d = self.da D
m = self.moﬁth , N\ constructor
y = self.year /
= f"{m:02d}/{d:02d}/{y:04d}" # d fpPMecimal int : in __init
° - D moady/Adiezd/tyioad giecinat A data attributes 3) "~
# is it a leap year? what prints Dates?
def isLeapYear(self):
""oreturns True j# self, the calling object, is .
in a leapg®far; False otherwise. """ Date ObJeCtS made (5)
if self.year % 400 == 0: return True
if self.year % 10@ == 0: return False ter!”
if self.year % 4 = : return True . . ~ greatet:
/ return Fglse Extral: today>wd is True. Why?! "Later g

today = Date(3,28,2024) Extra2: What int should ny5—4today be? What about graldz—géoday (ish)?

wd = Date(11,12,2013)
ny = Date(1,1,2024) Extra3: For which of the five objects does isLeapYear return True? nc
grad = Date(5,17,2027) lonee

nc = Date(1,1,2100) ve objects here... fixed! Extrad: The method isLeapYear is wrong. How can it be corrected?



2.2.1 What year S are leap yeal‘S? o Lespshifing o the Gregorancalendar

The Gregorian calendar has 97 leap years every 400 years:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.

Date:

self is a name for the
method's target object, used
by convention to make our

isLeapYear( self ):

" here it is """ code clearer to others
self.year%400 == O: True
self.year%$100 == O: False
self.year%4 == 0: True
False
In : wd = Date(11,12,2013) In : od = Date(1,1,2020)
In : wd.isLeapYear () In : od.isLeapYear ()

Out: False Out: True



is the target object that's

self calling the method
od = Date(1,1,2020)

print (od)
1/1 -

True

dCCesSS

u)the(ﬂnectthatcaH51t

P that object is self

11/09/2021
wd.isLeapYear ()

False



is the target object that's

self calling the method
od = Date(1,1,2020)
print (od)

1/1/2020

od.isLeapYear ()
True

Every method need access
wd = Date(11,12,2013)/ tg the object that calls it:

print (wd) that object is self
11/09/2021
wd.isLeapYear () O ame il e caye, manthe, o yoas before it seed)

False



Lab next week...

You'll create a Date class with

diff (self,
dow (self)

methods

d2)

operators!

Prof. Benjamin !

no computer required...




What's the dif£f£?

In

In
In

Out:

In

Out:

In

Out:

In
In

Out:

In

Out:

today = Date(11,8,2022)

: wd = Date(11,12,2013)

today.diff (wd)

3283
today - wd
3283
: wd - today
-3283
eraday = Date(1,1,1)

today.diff (eraday)
738466

today - eraday
738466

method

operator

operator

method

This gives
me pause
operator b0n!



Where's the dow?

In
In

In

Out:

In

Out:

In

Out:

In

Out:

In

Out:

The dow looks

down to me! t

=

Date (10,28,1929)
Date (10,19,1987)

sml

sm2

sml.dow () uses a named object...
'"Monday'
sm2 .dow ()

uses a named object...
'"Monday'

Date(1l,1,1) .dow()
'"Monday'

unnamed!

Date(1,1,2100) .dow() ,,nnamed!
'Friday'

Date (10,10,2010) .dow ()

opular!
'Sunday' pop



Special Dates?

Il
&
Jo

&he New ork Times 2

U.S.

10/10/10: They Love Just Thinking About It
By JOHN SCHWARTZ OCT. 8, 2010 0 o o EI

Sunday is the big day for saying “I do.”

More than 39,000 couples chose 10/10/10 as their wedding
day — a nearly tenfold increase over the number of nuptials
on Oct. 11, 2009, the comparable Sunday last year, according
to figures gathered by David’s Bridal, the wedding superstore
chain.

The reason for the surge is a blend of superstition and
symbolism, said Maria McBride, the wedding style director




Special Dates?

Il
&
Jo

&he New ork Eimes 2

U.S.

10/10/10: They Love Just Thinking About It
By JOHN SCHWARTZ OCT. 8, 2010 o o ° I:I

- Kevin Cheng and Coley
Wopperer of San Francisco have been waiting nearly two years
for their wedding date to roll around, having realized over
dinner with friends in 2008 that, as one suggested, “you could
have a binary-themed wedding!” he recalled.

“Both of our eyes just lit up,” he said.

“We're very much technology people,” Mr. Cheng explained, as if
it were necessary to point this out.




Special Dates?

Il
&
Jo

&he New ork Eimes 2 0w

U.S.

10/10/10: They Love Just Thinking About It
By JOHN SCHWARTZ OCT. 8, 2010 o o c I:I

- Kevin Cheng and Coley
Wopperer of San Francisco have been waiting nearly two years

for their wedding date to roll around, having realized—==-==
dinner with friends in 2008 that, as one suggested,| The dinner group quickly
have a binary-themed wedding!” he recalled. calculated the more
familiar base-10 value of
the binary number 101010,
and found that it was 42.
“That totally sealed the
deal!” he recalled.

“Both of our eyes just lit up,” he said.

“We're very much technology people,” Mr. Cheng ey
it were necessary to point this out.




Problems with ==

>>> wd = Date(11,12,2013)
>>> wd

11/12/2013

this constructs a different Date object,

/ but with the same mo/dy/yr

>>> wd2 = Date(11,12,2013)
>>> wd2
11/12/2013

>>> wd == wd2
False

How can this be False ?



Problems with ==

>>> wd = Date(11,12,2013)
>>> wd

11/12/2013

this constructs a different Date object,

/ but with the same mo/dy/yr

>>> wd2 = Date(11,12,2013)

>>> wd2
11/12/2013

ject identity!
>>> wd == wd2 Object ident :cy
False == compares ids!

How can this be False ?



Two Date objects:

wd wd2

. S
e

month year month day year

\ DR /

memory location ~ 42042778 memory location ~ 42042742

== compares memory locations, not contents



Date:

equals
" retu.:ns '

represent r OW“
False oth O u

self.year =

self month e qua\ity -

self.day ==
return

e teSteY

wd.equals (wd2) wd2 .equals (wd)



Date:

equals

equals (self, d2):

""" returns True if they both
represent the same date;
False otherwise

mwiwmw

self.year == d2.year \
self .month == d2.month \
self.day == d2.day:
return
return X o
goes
where?
wd.equals (wd2) wd2 .equals (wd) .=



Solution: equals

>>> wd = Date(11,12,2013)
>>> wd

11/12/2013

this constructs a different Date object,
but with the same mo/dy/yr

>>> wd2 = Date(11,12,2013)
>>> wd2
11/12/2013

>>> wd.equals (wd2) .equals compares mo/dy/yr -

i 4]
True because we wrote it to!

Who is this
convenient for?!



Date:

—ed__

L==k! Thisis T== C==L!
L
eq (self, d2): —
""" returns True if they both
represent the same date;
False otherwise

mwiwmw

self.year == d2.year \
self.month == d2.month \
self.day == d2.day:
return True redefined for our

convenience!

return False

To use this, write == d2



DIY operators ...

eq_ (self, other) defines the equality operator, ==

ne (self, other) defines the inequality operator, !=
__It__(self, other) defines the less-than operator, <
__ gt (self, other) defines the greater-than operator, >
__le__(self, other) defines the less-or-equal-to operator, <=
__ge (self, other) defines the gr.-or-equal-to operator, >=

__add__ (self, other) defines the addition operator, +
__sub__(self, other) defines the subtraction operator, -

... and many more! Use dir("")

there dare tWO Under' | should ur;derscore this unusual syntax!
scores on each side here -




1t__ (self, other)
le (self, other)
eq__ (self, other)

More operators!

Booleans
_ _ ne__ (self, other)
arithmetic

__gt__(self other)

__ge__(self, other)
__add__(self, other)1 __iadd__(self other) 4=
__sub__(self, other) — __isub__(self other) —=
__mul__(self, other) * __imul__ (self other)y % =—
__matmul__(self, other) imatmul__(self, other) @=
__truediv__(self, other) o .

__itruediv__ (self, other)

__floordiv__(self, other) __ifloordiv__(self other)

__mod__ (self, other)

__divmod__ (self, other) _:!.mod_(self, other) "in-place "
__ipow__(self, other[, modulo])

ow__ (self, other|, modulo : :
:ishi_fi_(se,ﬁ O[t,,e,) b ~_ilshift_ (self other) arithmetic
__rshift__ (self, other) __irshift__(self, other)
__and__ (self, other) __iand__(self other)
__xor__ (self, other) __ixor__(self other)

__or__(self, other) __ior__ (self other)

https://docs.python.org/3/reference/datamodel.html#special-method-names



Lab next week!

You'll create a Date class with

yesterday (self) -= 1
tomorrow (self) += 1
+= N
-= N
isBefore (self, d2) <
isAfter (self, d2) >

Prof. Benjamin !

no computer required...

methods operators!



isBefora\
Date:

isBefore (self, d2):

""" True if self is before d2, else False """
self.year < d2.year:

return True

self.month < d2.month:
return True

self.day < d2.day:
return True

return False

Date(11,8,2022).isBefore(Date(12,31,1999))

NdewIttIIt

my millenium partie

v



isBefore

Date: @

isBefore (self, d2):
""" True if self is before d2, else False """

self.year < d2.year:

True
self .month < d2.month self.year == d2.year -
True
self.day < d2.day self.year == d2.year \
self.month == d2.month .
True

I <3 EIf! But what
False about Elif? S

.
A



1t <

Date:

1t (self, d2):
""" jf self is before d2, this should
return True; else False """

self.isBefore(d2) == True:
return True

return False

Say LESS !

=



l t < that's really LESS ! >

A

Date:

1t (self, d2):
""" js self less than d2? (before) """
return self.isBefore (d2)




1t <

Date:

1t (self, d2):
""" js self less than d2? (before) """
return self.isBefore (d2)

_ gt % >

gt (self, d2):
""" is self greater than d2? (after) """
return .isBefore ( )

really is [

MORE! Qs




The two most timely methods ~

wd = Date (11,12,2013) (pumuc i he

print (Wd) print uses __repr__
11/12/2013
the tOMOrrow method returns d += 1
Wd . tomorrow ( ) nothing at all. Is it doing anything?

print(wd) «

11/13/2013

wd has changed!

wd.yesterday ()  vesterdayispretty much justlike
tomorrow (is this a good thing!?)

print (wd)
11 / 12 /2 013 yesterday does not return anything!

But it does change the date that calls it ("self")



Date: Try writing tomorrow! Use this for hw10pr1 this week!

tomorrow (self) :
""" moves the self date ahead 1 day """

self.day += 1 e

self.day



Date: Try writing tomorrow!

tomorrow (self) :

Use this for hwl0pr1 this week!

""" moves the self date ahead 1 day """

pimMm = [0,31,28,31,30,31,30,31,31,30,31,30,31]

self.day += 1

DIM looks pretty

' |
first, add 1 to bright to me! t

.
—

self.day
test if we have gone
"out of bounds!"
self.day =
self .month =
- N then, adjust the month and
year, but only as needed
Use another if!
& J
4 )
Don't return anything.
\ J We CHANGE the date

How could we make this work for leap years, too?

object itself.



Date: ”MQQ&

tomorrow (self) :
""" moves the self date ahead 1 day """

better as a variable!
DIM = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day +=1 # add 1 to the day!
self.day > DIM[self.month]: # check day
self .month += 1
self.day =1
self .month > 12: # check month

self.year +=1
self month =1

How could we make this work for leap years, too?



v

\&

Date: /l///»/

— <

tomorrow (self) : NS
""" moves the self date ahead 1 day """

if self.islLeapYear () == True: fdays = 29
else: fdays = 28

DIM = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day +=1 # add 1 to the day!

self.day > DIM[self.month]: # check day
self month +=1
self.day =1

self.month > 12: # check month
self.year +=1
self . month =1

Is there any more leap-year craziness available?!



. 1 =
Date: qgagéé

tomorrow (self) :
""" moves the self date ahead 1 day """

fdays = 28 + self.isLeapYear ()
DIM = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day +=1 # add 1 to the day!

self.day > DIM[self.month]: # check day
self .month +=1
self.day =1

self.month > 12: # check month
self.year +=1
self . month =1

Yes!



You'll tak terday - '
oulltake on yestercay Use for hw10pr1 this week!

tomorrow and today -- in lab...

Date:

yesterday (self) :
""" moves the self date backwards 1 day """

fdays = 28 + self.isLeapYear() # Yay!

piMm = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]

self .day

For lab: how will "wrap-around" work in this case? What cases do we need to worry about?!



Not all years are the same!

Calendar for year 1752 (United States) Calendar for year 1712 (Sweden)

<1751 | 1753> | 2007>> <1711 | 1713> | 2007>>

January February March January February March

Su Mo Tu ¥ Fr s Su M Fr s Su Mo Tu .
S0 LD Wik ”? T:f 3 O = S '\'2 Tg "J': T}; 5 S Who Mo Tu We Th Fr Sa Su Wno Mo Tu We Tk;. Fr sa su Azo Mo Tu We Th Su

6 7 8 910 11 5 6 7 8 8 9 10 11 12 13 14 S P A P O -

12 13 14 15 16 17 18 12 13 14 15 15 16 17 18 19 20 21 g B 840 ag do g B g U Bl LR G
15 20 21 22 23 24 25 1 19 20 21 22 23 24 25 26 27 28 2t el el Iy 28D Lo L S

27 28 25 30 31 26 27 28 29 30 31 4 2 23 24 25 26 27 8 g8 19 20 23 12 17 18 19

5 29 30 31 3 26 27 30 13 24 28

14 31

O 25:0 4@ 11:© 18:0 26:P

)
®
=
N
e
o
(=]
O
N
N
=~
IS
®
o
=
e
o
@

50 13.0 21:p 27.@ 4:© 1220 190 26:@ 40 1220 18:D 26:@
April May June -

June

>
=

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 1 2 1 2 3 4 5 & = = = - -
6§ 7 8 9 10 11 4 5 6 7 8 9 & 9 10 11 12 13 Wno Mo Tu We Th Fr Sa Su Wno Mo Tu Wno Mo Tu We Th Fr Sa Su
S A S i G e L S 14 1 2 3 4 5 6 18 22 1
13 14 15 16 17 18 11 12 13 14 15 16 15 16 17 18 19 20 Py - = = = = 55 5 s & £ 7
o o Balaal5al BE T o e e T e G e S 15 7 g 9 10 11 12 19 F 6 23 2 4 5 6 7 8
20 21 22 23 24 25 18 19 20 21 22 23 1 22 23 24 25 26 27 e S _ = E = ~ Pty
37 28 25 30 25 26 27 28 29 30 & 23 30 16 14 15 16 17 18 19 20 12 13 24 9 10 11 12 13 1
' . - . - 17 21 22 23 24 25 26 21 1% 20 25 16 17 18 19 20 21
B 18 28 29 30 22 26 27 26 23 24 25 26 27 28
27 30

3@ 9.0 17.0 25:0 2@ 9.0 16:0 250 31.@| | 7.© 150 23:P 30.@

3.0 10:0 1720 24.@ 2.0 9.0 16:0 24.@ 1.0 80 140 22:@ 30:©

August September

E

July August September

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 1 1 2 14 15 16
6 7 8 9 10 11 3 4 5 6 7 8 18 19 20 21 22 23 Wno Mo Tu We Th Fr Sa Su Wno Mo Tu We Th Fr Sa Su Wno Mo Tu We Th Fr Sa Su
2% a4 a5 E G aF B L 5 AN aA A sl e 27 1 2 3 4 5 31 1 2 3 3 1 2 3 4 5 6
B é; 55 ;j o ZE v ié = éé 57 e el e 1) k) el 26 7 8 9 10 11 12 32 4 5 6 7 8 91 37 8 9 10 11 12 13 14
S GE e e S B of o ol or 29 14 15 16 17 18 19 33 11 12 13 14 15 16 1 38 15 16 17 18 19 20 21
' : . = ' : 30 21 22 23 24 25 26 34 18 13 20 21 22 23 39 22 23 24 25 26 27 28
- 31 28 23 30 31 35 25 26 27 28 29 30 31 40 29 30
EORCCRZ0RS0N [EONEOIEOIES UED 259 CHY 70 140 220 300 50 130 21:@ 280 40 110 190 260
November December
Octobe ovembe ecembe October November December
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa ; ; . N N —— . — , ; . —
1 2 3 4 5 6 17 1 2 3 4 1 2 Tu We Th Fr Sa Su Wno Mo Tu We Th Fr Sa Su Wno Mo Tu We Th Fr Sa Su
: ST P : T AN e . 1 2 3 4 1 49 1 2 3 4 5 &
g 9 10 11 12 13 14 3 g 9 10 11 4 5 6 7 8 9 g £ SRR S - 2
15 16 17 18 19 20 21 3 14 15 16 17 18 10 11 12 13 14 15 16 4 @ W 8y dd R S N C T I R
55 B B B o R 2R 5h o oo o B a6 oh Bn oh o 2 13 14 15 16 17 18 46 10 11 12 13 14 15 51 15 16 17 18 19 20
ol 25 ae o : S oG 5o of oo o 3 20 21 22 23 24 25 : 47 17 18 19 20 21 22 52 22 23 24 & 27
R ° ° e 44 27 28 23 30 31 48 24 25 26 27 28 29 1 23 30 31

2.0 10:0 17.:@ 23.© 31.0

C)
»
o]
S
=)
3
(]
R
C)

7@ 150 22.0 29:0 5@ 140 21:0 27:0 5@ 13:0 20:0 27:0 30 11:0 19.@ 25:




Feb. 3(), 1712

e ———

- --m

Géﬁemdnabt ‘

A ‘O‘fn L 7" 370600 4 23, I’ala ¥ 28 l}ﬂ“.'l:}f}ta

@i il S, w - 9ipa St
xl‘lbti 303 o 1
T e@miemadic o 1 8 tadert 1z
& f%fﬁﬂﬁf Lot - QWintte 17
s Dnhsﬂﬂﬂt'd‘ acakets Rat; b 14.. :
AP BTN ) 2l 14
‘4 “(::Xil‘c . Wivess 38
o D Derelhea . : . (-
ComeRicharoug  mx Ondd 17
3T Befena 1 G - R
i 9140 TRartorer § ©12 /46,5019
1o Uredoning w2 -‘26-3 30 ¢

§7 Omipe 10 Jungfrar - Wateh, 25 1.

oS o @ e b e Difiinges 2t
}- naQ’ukﬁa  RE@n2/28e 22,
330 J‘mpooms R i 3 QBA)M T

'Le.~ e S e A s L o

v e e -

https://www.tondering.dk/claus/cal/gregorian.php

Ecm XYY Dagat, {
SO U153, ned. s/g_o bag m!sz (Im N. wm |
; I.g.(buid‘ﬂﬂ & LY 24.
' xy*fui g @ B zr
. 16¢Suliara g% ’8toﬁ/
17f Guparus . g3 : a.7 5
a5 Dm&zbcfamauQBiucﬁtbrnxmattb zo/:. 8!
18\ e W@ Concordig: - ']
xpu%u{bnm (¥ (!1:/18-4. zg "
el R S D ﬂ%zk f-!
zu“ ¢ 15 4 Jal :

This is a Swedish almanac from February 1712.
The two words to the right of the number “30” are:

e “Tillokad”, that is, “added”.
e “Snoo”, that is, “snow”. It was customary to include weather forecasts for
the entire year in almanacs. Very convenient!

z7adeoer om0

b e
23 b SRouwrenpg ¥

T 200 RHflor T o .
: ac:.&liﬁhdb‘ of q;?)ﬁgém}é/




Feb. 30,1712

) Sl s ) Sl o ad

Baat KXY &:ﬂzgan

O u0 5/ 39, ued. s!ao ‘Dag. 10/31. tint. N, 137 28 3

- — ————

' x.ubs.nrﬂn 5 & o"‘bi‘ 24

The image below 1S a copy from the
church registry in St. Petr1 Parish in the
Swedish town of Ystad."

The text reads: Anno 1712. d: 30 Februarij wijdes fullmdchtigen pa Jordbdrga Svven Hall wid hust Elena
Jappdotter Duue. (That is: “Anno 1712. On 30 February the clerk Svven Hall of Jordbédrga was married to Elena
Jappdotter Duue.”)
IS ATCUTTUNYS WE R0
g"-"* Omthe |q Sungfrar - Wareh, 2 1 oy
S o Tin e Difiinger 2t 290 Meflor T o8- Qob Q-
10 Q‘u‘uﬁa CURE@12/250 22,

ac:.itﬂﬁ!mb' of L em};s/
Sy Jimpoo:us R i 3 QBA):&/ z;

-
.
A Yoy c
7 . > . > -
- T " - Y
e e . . J v
e Mbe ~ ¥ »
. =) AN e - -
- - Y S—— e PrIg N

Now, that's a unique
PR TS TN TS e WG S 5 wedding day! L

226 "Ron*mvé I -"ﬂ'dblgt ‘9

{A‘bk'.—--—‘u— --M\_ ‘__

https://www.tondering.dk/claus/cal/gregorian.php



