
CS 5 Today

Text generation, Dictionaries,
and the final countdown!

Markov	Models

Techniques	for	modeling	any	
sequence	of	natural	data		

Each	item	depends	only	on	the	one	
immediately	before	it	.	 1st-order		Markov	

Model	(defining	property)

speech,	text,	sensor	data...

I like spam and 42 and
poptarts and poptarts and
poptarts and 42 and spam.

Markov	Models

Techniques	for	modeling	any	
sequence	of	natural	data		

Each	item	depends	only	on	the	one	
immediately	before	it	.	 1st-order		Markov	

Model	(defining	property)

speech,	text,	sensor	data...

I like spam and 42 and
poptarts and poptarts and
poptarts and 42 and spam.

Let’s	revis
it	an	old	

classy	frie
nd!

(a helpful data structure)

Lists	are	sequential	containers:
L = [42, 5, 47, 42]

elements are looked up by their location, or index, starting from 0

0 1 2 3

element

index

Lists	are	sequential	containers:
L = [42, 5, 47, 42]

Dictionaries	are	arbitrary	containers:	

elements are looked up by their location, or index, starting from 0

0 1 2 3

d = { 5: 1, 42: 3 }

elements (or values) are looked up by a key starting anywhere you want! Keys don't have to be ints!

key key
value value

element

index

"associative"

Lists	are	sequential	containers:

Dictionaries	are	arbitrary	containers:	
d2 = {'b': 2, 42:'yay'}

elements (or values) are looked up by a key starting anywhere you want! Keys don't have to be ints!

key key
value value

element

"associative"

L = [42, 5, 47, 42]

elements are looked up by their location, or index, starting from 0

0 1 2 3
index

an	example	dictionary:				NL

...	it	just	looks	up	the	next	letter!

NL = { 'a':'b', 'b':'c', 'c':'d', 'd':'e', 'e':'f',
 'f':'g', 'g':'h', 'h':'i', 'i':'j', 'j':'k',
 'k':'l', 'l':'m', 'm':'n', 'n':'o', 'o':'p',
 'p':'q', 'q':'r', 'r':'s', 's':'t', 't':'u',
 'u':'v', 'v':'w', 'w':'x', 'x':'y', 'y':'z',
 'z':'a' }

Dictionaries	
have	value!

Dictionaries	are	lookup	tables!
zd = {'monkey':2004, 'goat':2003}

elements (values) are looked up by a key – which can be anything needed!

 Keys don't have to be ints!

key key
valuevalue

Now	I	see	the	key		to	
dictionaries'	value…

What's zd's

data here?

zd_small

Dictionaries	are	lookup	tables!

Now	I	see	the	key		to	
dictionaries'	value…

12-year zodiac!

zd = {'monkey':2004, 'goat':2003}

key key
valuevalue

elements (values) are looked up by a key – which can be anything needed!

 Keys don't have to be ints!

Dictionaries	are	lookup	tables!
zy = {'goat':[2003,1991,1979, ...],

 'monkey':[2004,1992,1980, ...],

 'rooster':[2005,1993, ...], ... }

What type are
the keys?

What type are
the values?

zi

z.keys() z.values()

z.items()

these	seem	key	to	
dictionaries'	value

Dictionaries	are	in:	
zy = {'goat':[2003,1991,1979, ...],

 'monkey':[2004,1992,1980, ...],

 'rooster':[2005,1993, ...], ... }

What?	
How	do	I	get	in?!

Is 'rooster' a
key in z? if 'rooster' in z

if 'alien' in z

???

???

Is 'alien' a
key in z?

zi

Dictionaries	are	in:	
zy = {'goat':[2003,1991,1979, ...],

 'monkey':[2004,1992,1980, ...],

 'rooster':[2005,1993, ...], ... }

What?	
How	do	I	get	in?!

if 'rooster' in z

if 'alien' in z

True

Fals
e

zi

Is 'rooster' a
key in z?

Is 'alien' a
key in z?

Given	these	two	dictionaries: What	are	these	expressions?

Given	this	list	+	algorithm: What	is	the	resulting	dictionary?!

d = {

 }

NL = {'a':'b', 'b':'c',
 'c':'d', 'd':'e',
 ... ,
 'y':'z', 'z':'a' }

dc = { 42 : 'answer',
 'cs' : 5,
 'seis' : 6,
 'a' : 'o',
 'e' : 'g',
 5 : NL } # uh oh

imagine they're all here...

NL['a'] ==
NL['v'] ==

len(NL) ==
len(dc) ==
 5 in dc (True or False?)
 6 in dc (True or False?)
dc[NL['z']] ==
dc[dc['cs']][dc['e']] ==

LoW = ['spam', 'spam',
 'poptarts', 'spam']

d = {}
for w in LoW:
 if w not in d:
 d[w] = 1
 else:
 d[w] += 1

Hint!		There	will	be	
only	TWO	keys	in	d!! Name(s)	_______________________

Given	these	two	dictionaries: What	are	these	expressions?

NL = {'a':'b', 'b':'c',
 'c':'d', 'd':'e',
 'e':'f', 'f':'g',
 'g':'h', 'h':'i',
 'c':'d', 'd':'e',
 'c':'d', 'd':'e',
 'c':'d', 'd':'e',
 'c':'d', 'd':'e',
 'c':'d', 'd':'e',
 'y':'z', 'z':'a' }

dc = { 46 : 'CMC',
 'cs' : 5,
 'seis' : 6,
 'a' : 'o',
 'e' : 'g',
 5 : NL }

NL['a'] ==
NL['z'] ==
NL['v'] ==

len(NL) ==
len(dc) ==
len(dc) ==

 'g' in NL (True or False?)
 'Z' in NL (True or False?)

 5 in dc (True or False?)
 6 in dc (True or False?)

dc[NL['z']] ==
dc[dc['cs']][dc['e']] ==

Given	these	two	dictionaries: What	are	these	expressions?

Given	this	list	+	algorithm: What	is	the	resulting	dictionary?!

d = {

 }

NL = {'a':'b', 'b':'c',
 'c':'d', 'd':'e',
 ... ,
 'y':'z', 'z':'a' }

dc = { 42 : 'answer',
 'cs' : 5,
 'seis' : 6,
 'a' : 'o',
 'e' : 'g',
 5 : NL } # uh oh

imagine they're all here...

NL['a'] ==
NL['v'] ==

len(NL) ==
len(dc) ==
 5 in dc (True or False?)
 6 in dc (True or False?)
dc[NL['z']] ==
dc[dc['cs']][dc['e']] ==

LoW = ['spam', 'spam',
 'poptarts', 'spam']

d = {}
for w in LoW:
 if w not in d:
 d[w] = 1
 else:
 d[w] += 1

Hint!		There	will	be	
only	TWO	keys	in	d!! Name(s)	_______________________

I can't tell you any of the
questions -- but I can tell

you all the solutions!

dictionaries	are	o
ne	of	

Python's	built-in	c
lasses

Given	these	two	dictionaries: What	are	these	expressions?

Given	this	list	+	algorithm: What	is	the	resulting	dictionary?!

d = {

 }

NL = {'a':'b', 'b':'c',
 'c':'d', 'd':'e',
 ... ,
 'y':'z', 'z':'a' }

dc = { 42 : 'answer',
 'cs' : 5,
 'seis' : 6,
 'a' : 'o',
 'e' : 'g',
 5 : NL } # uh oh

imagine they're all here...

NL['a'] ==
NL['v'] ==

len(NL) ==
len(dc) ==
 5 in dc (True or False?)
 6 in dc (True or False?)
dc[NL['z']] ==
dc[dc['cs']][dc['e']] ==

LoW = ['spam', 'spam',
 'poptarts', 'spam']

d = {}
for w in LoW:
 if w not in d:
 d[w] = 1
 else:
 d[w] += 1

Hint!		There	will	be	
only	TWO	keys	in	d!! Name(s)	_______________________

I can't tell you any of the
questions -- but I can tell

you all the solutions!

dictionaries	are	o
ne	of	

Python's	built-in	c
lassesPass	th

ose	

Mount
ainwa

rd!

LoW = ['spam', 'spam', 'poptarts', 'spam']

Hochsgiving	menu!

d = {}

for w in LoW:

 if w not in d:

 d[w] = 1

 else:

 d[w] += 1

d starts...

vc_print(LoW)

vc_print("a.txt")

{}

{'spam':1}

{'spam':2}

{'poptarts':1, 'spam':2}

final d

{'poptarts':1, 'spam':3}

"The	algorithm..."

w is...
next, d is

then, d is

then, d is

LoW = ['spam', 'spam', 'poptarts', 'spam']

The	Hoch's	menu!

d = {}

for w in LoW:

 if w not in d:

 d[w] = 1

 else:

 d[w] += 1

vc_print(LoW)

vc_print("a.txt")
final d

"The	algorithm	that	counts!"

{}

{'spam':1}

{'spam':2}

{'poptarts':1, 'spam':2}

{'poptarts':1, 'spam':3}

w ='spam'

w ='spam'

w ='poptarts'

w ='spam'

What	do	you	think	len(d)	is?

w is...

d is...

next, d is

then, d is

then, d is

{ '$': 3,
'I': 3,
'like': _,
'poptarts':2,
'and': 3,
'42': 1,
'Will': 1,
'the': _,
'spam': 2,
'get': 1,
'for': 1 }

dictionary

A	counting	model...

Counting	Model

keys values

What	are	the	
missing	values?

What	types	are	the	
keys?

What	types	are	the	
values?

What	is	the	'$'?

dictionary's	
end

Original	file

Why	is	the	key	
holidays	missing?

{ '$': ['I', 'Will', 'I'],
'I': ['like', 'get', 'like'],

'like': __________________
'poptarts':['and', 'for'],
'and': ['42', 'spam.', 'poptarts'],

'42': ['and'],
'Will': ['I'],

'the': __________________
'spam': ['and', 'poptarts!'],

'get': ['spam'],

'for': ['the'] }

dictionary

A	Markov	Model

Markov	Model

keys values

dictionary's	
end

What	are	the	
missing	values?

What	types	are	the	
keys?

What	types	are	the	
values?

What	is	the	'$'?

Original	file

Why	is	the	key	
holidays	missing?

{ '$': ['I', 'Will', 'I'],
'I': ['like', 'get', 'like'],

'like': ['poptarts', 'spam'],
'poptarts':['and', 'for'],
'and': ['42', 'spam.', 'poptarts'],

'42': ['and'],
'Will': ['I'],

'the': ['holidays?'],
'spam': ['and', 'poptarts!'],

'get': ['spam'],

'for': ['the'] }

A	dictionary!

A	Markov	Model

Markov	Model

keys values

dictionary's	
end

What	are	the	
missing	values?

What	types	are	the	
keys?

What	types	are	the	
values?

What	is	the	'$'?

Why	is	the	key	
holidays	missing?

Original	file

strings

lists
(of strings

that
follow!)

filled in:

start-of-

sentence

symbol

punctuation

counts!

solutions

['I','like','spam.','I','eat','poptarts!']

pw

nw

$: [I, I]
I : [like, eat]
like : [spam.]
eat : [poptarts!]

Markov's	algorithm

d's final form
(with unquoted strings)

d = {}
pw = '$'

for nw in LoW:
 if pw not in d:
 d[pw] = [nw]
 else:
 d[pw] += [nw]

 pw = ________

LoW
cdi_print(PT2)

cdi_print("a.txt")

$:
I : [like, eat]
like : [spam.]
eat : [poptarts!]

d in creation
(with unquoted strings)

pw	~	previous	word

nw	~	next	word

$

['I','like','spam.','I','eat','poptarts!']

pw

nw

$: [I, I]
I : [like, eat]
like : [spam.]
eat : [poptarts!]

Markov's	algorithm	...

d's final form
(with unquoted strings)

d = {}
pw = '$'

for nw in LoW:
 if pw not in d:
 d[pw] = [nw]
 else:
 d[pw] += [nw]

 pw = ________

LoW
cdi_print(PT2)

cdi_print("a.txt")

$

pw	~	previous	word

nw	~	next	word

I

I

like

like

spam.

$

[nw]

[nw]

nw
for hw10pr3: check if pw

ends with punctuation

and, if so, set to '$'

I eat poptarts!

I eat

solutions & starting point

['I','like','spam.','I','eat','poptarts!']

pw

nw

$: [I, I]
I : [like, eat]
like : [spam.]
eat : [poptarts!]

Markov's	algorithm	...

d's final form
(with unquoted strings)

d = {}
pw = '$'

for nw in LoW:
 if pw not in d:
 d[pw] = [nw]
 else:
 d[pw] += [nw]

 pw = ________

LoW
cdi_print(PT2)

cdi_print("a.txt")

$

pw	~	previous	word

nw	~	next	word

I

I

like

like

spam.

$

[nw]

[nw]

nw
for hw10pr3: check if pw

ends with punctuation

and, if so, set to '$'

I eat poptarts!

I eat

solutions & starting point

But	where	
do	we	get	a

ll	

these	"wor
ds"	to

	1. create new models ...

2. generate new texts ...

FILES	!

Files...
f = open('a.txt')

text = f.read()

f.close()

text
'I like poptarts and 42 and spam.\nWill I

LoW = text.split()
['I', 'like', 'poptarts', ...]

In	Python	reading	files	is	smooth…

opens	the	file	and	calls	it		f

reads	the	whole	file	into	the	string	text

text.split()		returns	a	
list	of	each	"word"

closes	the	file			(optional)

def get_text(filename):
 """
 return all text from
 the file, filename
 """

 f = open(filename, "r")
 text = f.read()
 f.close()

 return text

file	handling

This	functi
on	is	provi

ded	

in	hw10pr
3.py	...			try

	it!

def word_count(text):

 LoW = text.split()
 result = len(LoW)
 print("There are",result,"words")

 return result

string	handling

What	if	we	wanted	the	
number	of	different	
words	in	the	file?

This	would	be	the	author's	
vocabulary	count,	instead	of	

the	total	word	count.

def vocab_count(text):
 """ vocabulary-counting program """
 LoW = text.split()
 d = {}

 for w in LoW:
 if w not in d:
 d[w] = 1
 else:
 d[w] += 1

 print("There are", len(d), "distinct wds.")

 return d

list	of	words

"the	algorithm"

most/least
common?

Our counting

model, as be
fore...

the	dictionary,	d

Vocabulary	counting...

return	for	later	use	...

Vocabulary!

Shakespeare	used	31,534	different	words	--	and	a	
grand	total	of	884,647	words	across	all	his	works....

http://www-math.cudenver.edu/~wbriggs/qr/shakespeare.html

Shakespearean	coinages

successful unsuccessful

http://www.pathguy.com/shakeswo.htm
http://www.shakespeare-online.com/biography/wordsinvented.html

gust
besmirch

unreal
superscript
watchdog
swagger

affined
rooky

attasked
out-villained

Your	CS-Essay...	!

Find	a	file,	could	be	your	own	~	or	one	you	find	online...		
~	then	~
Copy	its	text	into	VSCode	and	save	under	a	new	name

Your	CS-Essay...	!

Find	a	file,	could	be	your	own	~	or	one	you	find	online...		
~	then	~
Copy	its	text	into	VSCode	and	save	under	a	new	name

Create	a	Markov	Model,	perhaps	named		d

Generate	a	500-word	CS-Essay	using	your	model!

Your	CS-Essay...	!

Find	a	file,	could	be	your	own	~	or	one	you	find	online...		
~	then	~
Copy	its	text	into	VSCode	and	save	under	a	new	name

Create	a	Markov	Model,	perhaps	named		d

Generate	a	500-word	CS-Essay	using	your	model!

Share	the	whole	essay	you	generate,	plus...

...	2-3	of	your	favorite	Markov-generated	insights!

Generating	prose?					Academic	Opportunity!

...	2-3	of	your	favorite	Markov-generated	insights!

WMSCI	2005

Markov-generated	submission	
accepted	to	WMSCI	'05	

http://pdos.csail.mit.edu/scigen/

Not	a	first-order,	but	a	third-order,	model

Not	a	first-order	model	...	but	a	third-order	model

Not	a	first-order	model	...	but	a	third-order	modelthe third-order wardrobe?

Your	CS-Essay...

Find	a	file,	could	be	your	own	~	or	one	you	find	online...		
~	and/or	~
Copy	its	text	into	VSCode	and	save	it	under	a	new	.txt	
filename	(!)

Create	a	Markov	Model,	perhaps	named		d

Generate	a	500-word	CS-Essay	using	your	model!

Share	the	whole	essay	you	generate,	plus...

...	2-3	of	your	favorite	Markov-generated	insights!

Setting	our	homework	timeline…

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

hw10
4/9

hw11
4/16

hw12
4/23

Setting	our	lab	timeline…

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

Lab 11 4/12
is the last
required lab

Lab time 4/19 & 4/26
optional final project
and homework help

Setting	our	final	project	timeline…

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

Final project
4/26 5 PMMilestone

4/23

Starter
4/17

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

Final exam
5/9 2-5 PM

Final review
5/5 7-9 PM
(optional)

Senior exam
options
5/2-5/3

Setting	our	final	exam	timeline…

Setting	our	final	timeline…

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

Final exam
5/9 2-5 PM

Final review
5/5 7-9 PM
(optional)

Senior exam
options
5/2-5/3

Final project
4/26 5 PMMilestone

4/23

Starter
4/17

hw10
4/9

hw11
4/16

hw12
4/23

Setting	our	final	timeline…

SUN MON TUE WED THU FRI SAT
3/31 4/1 4/2 4/3 4/4 4/5 4/6
4/7 4/8 4/9 4/10 4/11 4/12 4/13
4/14 4/15 4/16 4/17 4/18 4/19 4/20
4/21 4/22 4/23 4/24 4/25 4/26 4/27
4/28 4/29 4/30 5/1 5/2 5/3 5/4
5/5 5/6 5/7 5/8 5/9 5/10 5/11

Final exam
5/9 2-5 PM

Final review
5/5 7-9 PM
(optional)

Senior exam
options
5/2-5/3

Final project
4/26 5 PMMilestone

4/23

Starter
4/17

hw10
4/9

hw11
4/16

hw12
4/23

Final	projects

Final	CS	hw

open-ended

comprehensive

Working in teams of 1-3 is OK

same	projects	across	sections

Teams need to work together and at the same
time, and need to share the work equally...

Teams of 1, 2, or 3 are welcome.

Teaming is extra-encouraged on the final project!

several	choices…

Eye, eye!
in '20:
Zoom,

etc. is a
place...

Final-project	options...

Choices of final project:

Labs do meet after lab 11

TextGame

MoreLife

TextID

vPython

we’ve	already	covered	the
background	you’ll	need!

you	may	want	to	wait	to	see
lab/homework	11

Picobot

(they're extra-optional)

Picobot!

Life+1

TextID

vPython

TextGame

Project	space…

Picobot

TextID

algorithms!

analysis

open-ended
(and, perhaps, 3d!)

Life+1

TextGame

vPython

Picobot!

Life+1

TextID

vPython

TextGame

(1)	Implement	Picobot	in	Python
					(2)	Train	Python	to	write	successful	Picobot	programs!

The	Picobot	project

talk	about	going	full	circle...

Big	
idea	

Picobot,	behind	the	curtain...

What	dat
a	structur

es	

(classes)	
could	hel

p	

implemen
t	Picobot?

design	
thoughts?

Picobot's	classes?

class Program: 0 xxxx -> N 0
0 Nxxx -> W 0
0 NxWx -> S 0
0 xxWx -> S 0
0 xxWS -> E 0
0 xxxS -> E 0
0 xExS -> N 0
0 xExx -> N 0
0 NExx -> S 1
1 xxxx -> S 1
1 Nxxx -> E 1
1 NxWx -> E 1
1 xxWx -> N 1
1 xxWS -> N 1
1 xxxS -> W 1
1 xExS -> W 1
1 xExx -> S 1
1 NExx -> W 0

class World:
+++++++++++++++++++++++++
+oooooPooooooooooooooooo+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+ooooooooooooooooooooooo+
+++++++++++++++++++++++++

what	classes	

could	we	adap
t	

for	these	two?
-- ones we've already used! --

Picobot's	classes

class Program:

What	type	should	
self.rules	be?

0 xxxx -> N 0
0 Nxxx -> W 0
0 NxWx -> S 0
0 xxWx -> S 0
0 xxWS -> E 0
0 xxxS -> E 0
0 xExS -> N 0
0 xExx -> N 0
0 NExx -> S 1
1 xxxx -> S 1
1 Nxxx -> E 1
1 NxWx -> E 1
1 xxWx -> N 1
1 xxWS -> N 1
1 xxxS -> W 1
1 xExS -> W 1
1 xExx -> S 1
1 NExx -> W 0

How	in	Python	could	we	most	
usefully	hold	all	of	these	rules?

a	Pyth
on	

dictio
nary

Picobot's	classes 0 xxxx -> N 0
0 Nxxx -> W 0
0 NxWx -> S 0
0 xxWx -> S 0
0 xxWS -> E 0
0 xxxS -> E 0
0 xExS -> N 0
0 xExx -> N 0
0 NExx -> S 1
1 xxxx -> S 1
1 Nxxx -> E 1
1 NxWx -> E 1
1 xxWx -> N 1
1 xxWS -> N 1
1 xxxS -> W 1
1 xExS -> W 1
1 xExx -> S 1
1 NExx -> W 0

How	in	Python	could	we	most	
usefully	hold	all	of	these	rules?

What	type	should	
self.rules	be?

self.rules[(1,"NExx")] = ("W",0)

a	Python	
dictionary

key value

both tuples

class Program:

Picobot's	classes

class World:

What	type	in	Python	could	most	
usefully	hold	the	environment?

What	class	we've	already	
written	will	be	similar	to	

Picobot's	World?	

+++++++++++++++++++++++++
+oooooPooooooooooooooooo+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+ooooooooooooooooooooooo+
+++++++++++++++++++++++++

What	will	self.room	be?

a	Conn
ect-

Four	B
oard

'+'
'o'
'P'Picobot:

Visited:

Wall:

' 'Empty:

Picobot's	classes
What	type	in	Python	could	most	
usefully	hold	the	environment?

What	class	that	you've	
already	written	will	be	most	
similar	to	Picobot's	World?	

+++++++++++++++++++++++++
+oooooPooooooooooooooooo+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+o o+
+ooooooooooooooooooooooo+
+++++++++++++++++++++++++

'+'
'o'
'P'Picobot:

Visited:

Wall:
What	will	self.room	be?

The	same	as	the	
Connect-Four	board's	

self.data!

class Board

' 'Empty:

a list-of-lists-of-one-character-strings….

class World:

++++++++++
+o++o+o+++
+oooooo ++
++++o++ +
+oooo+++++
++++o +
+oooo+++ +
++++o+++++
+Pooo +
++++++++++

Picobot's	project First,	build	an	
ASCII	simulation

Picobot	started	
here…

and	is	now	here…

Your terminal graphics may be more monochromatic...
http://rednuht.org/genetic_cars_2/ or http://boxcar2d.com/

Box2d: https://www.youtube.com/watch?v=uxourrlPlf8

then,	evolve	it…Current State: 1
Current Rule: 1 N*W* -> X 2

Genetic	algorithms	~	program	evolution
An	example	of	genetic	algorithms,	which	are	used	for	optimizing	

hard-to-describe	functions		with		easily-splittable	solutions.

Suppose	we	start	with	200	
random	Picobot	programs…	

program	p1
		

program	p2
		

An	example	of	genetic	algorithms,	which	are	used	for	optimizing	
hard-to-describe	functions		with		easily-splittable	solutions.

Suppose	we	start	with	200	
random	Picobot	programs…	

Genetic	algorithms	~	program	evolution

(1) How might we measure each program's "fitness"?
(2) How might we "mutate" a program?
(3) How might we "mate" two programs, to create a
new, "child" program?
 (*) What else should we worry about?!!

Program	evolution

program	p1
fitness	=	0.03

program	p2
fitness	=	0.05

Coverage–as–fitness!
...	using	several	starting	points

Measure?	
How??

An	example	of	genetic	algorithms,	which	are	used	for	optimizing	
hard-to-describe	functions	with	easily-splittable	solutions.

program	p1
fitness	=	0.03

program	p2
fitness	=	0.05

mate	+	mutate	the	fittest	
10-20%	of	programs

to	create	a	new	generation	
of	~200	programs…

program	c1
fitness	=	0.19

What	the	goal?

combine states from parent 1 with states from parent 2

... plus, change some
rules randomly!

Picobot!

Life+1

TextID

vPython

TextGame

Text	ID	algorithms...

Authorship	
analysis

https://www.youtube.com/watch?v=PTziNb-otPE&ab_channel=VG @ 11:30 ish

"Stylometry"

textual	features being	
compared

"Stylometry"

textual	features being	
compared

word-frequencies
stem-frequencies
word-lengths
sentence-lengths
[punctuation	use]

5	feature	
models

Here	are	two	word-count	models	from	known	authors,	Alexander	Hamilton	
+	Lin-Manuel	Miranda.			An	unknown	author	created	the	middle	model.									

All	of	the	models	have	been	made	into	Python	dictionaries:

Algorithmic Intuition... Dictionary-comparing

LMM

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

word-count	model	for	
an	unknown	author

{ "shot": 50,
 "Burr": 8,
 "story": 42 }

model	for	Lin-
Manuel	Miranda

~?~ AH

{ "shot": 25,
 "Burr": 275,
 "money": 700 }

word-count	model	
for	A.	Hamilton

Which	is	the	better	match	for	the	
unknown-author	model?

Algorithm:		Bayesian	classification

Model	scale Suppose	we	have	two	text	models:

LMM: { "shot": 50,
 "Burr": 8,
 "story": 42 }

These	must	have	been	some	
really	avant-garde	texts!

AH : { "shot": 25,
 "Burr": 275,
 "money": 700 }

aargh! the totals
are different...

Unknown-author text:

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

Step	1:	adjust	our	word	counts	to	be	non-zero
LMM: { "shot": 50,
 "Burr": 8,
 "story": 42 }

These	must	have	been	some	
really	avant-garde	texts!

AH : { "shot": 25,
 "Burr": 275,
 "money": 700 }

Add 1 to each word in the
shared vocabulary for

each model
LMM: { "shot": 51,
 "Burr": 9,
 "story": 43,
 "money": 1,
 "spam": 1 }

AH : { "shot": 26,
 "Burr": 276,
 "money": 701,
 "story": 1,
 "spam": 1 }

Unknown-author text:

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

Step	2:	normalize	our	counts	to	sum	to	1

Unknown-author text:
These	must	have	been	some	
really	avant-garde	texts!

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

Divide by the total # of
words in each

LMM: { "shot": 51,
 "Burr": 9,
 "story": 43,
 "money": 1,
 "spam": 1 }

AH : { "shot": 26,
 "Burr": 276,
 "money": 701,
 "story": 1,
 "spam": 1 }

LMM: { "shot": 0.4857,
 "Burr": 0.0857,
 "money": 0.0095,
 "story": 0.4095,
 "spam": 0.0095 }

AH : { "shot": 0.0259,
 "Burr": 0.2746,
 "money": 0.6975,
 "story": 0.0010,
 "spam": 0.0010 }

Step	3:	estimate	probability	for	each	known	author

Unknown-author text:

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

LMM: { "shot": 0.4857,
 "Burr": 0.0857,
 "money": 0.0095,
 "story": 0.4095,
 "spam": 0.0095 }

AH : { "shot": 0.0259,
 "Burr": 0.2746,
 "money": 0.6975,
 "story": 0.0010,
 "spam": 0.0010 }

pretend	the	

words	are	all	

independent

shot shot shot story
money

money
spam spam spam spam

= ???? ? ? ? ? ? ? ? ? ?

What’s	the	likelihood	of	each	
author	making	this	text?

Step	3:	estimate	probability	for	each	known	author
Unknown-

author
text:

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

LMM: { "shot": 0.4857,
 "Burr": 0.0857,
 "money": 0.0095,
 "story": 0.4095,
 "spam": 0.0095 }

shot shot shot story
money

money
spam spam spam spam

= ~4.82x10-12.49 .49 .49 .41 .01 .01 .01 .01 .01 .01

What’s	the	likelihood	of	each	
author	making	this	text?

Step	3:	estimate	probability	for	each	known	author
Unknown-

author
text:

{ "shot": 3,
 "story": 1,
 "money": 2,
 "spam": 4 }

LMM: { "shot": 0.4857,
 "Burr": 0.0857,
 "money": 0.0095,
 "story": 0.4095,
 "spam": 0.0095 }

shot shot shot story
money

money
spam spam spam spam

= ~4.82x10-12.49 .49 .49 .41 .01 .01 .01 .01 .01 .01

What’s	the	likelihood	of	each	
author	making	this	text?

=
3 1 2 4

shot shot shot story
money

money
spam spam spam spam

OK!

take the log2 of everything!

-37.593*log(.49) + log(.41) + 2*log(.01) + 4*log(.01)

Model	matching from	two	normalized	models:

-37.59 -66.68
the (much) better match…

Unknown text:
{ "shot": 3, "money": 2,
 "story": 1, "spam": 4 }

LMM: { "shot": 0.4857,
 "Burr": 0.0857,
 "money": 0.0095,
 "story": 0.4095,
 "spam": 0.0095 }

AH : { "shot": 0.0259,
 "Burr": 0.2746,
 "money": 0.6975,
 "story": 0.0010,
 "spam": 0.0010 }

Picobot!

Life+1

TextID

vPython

TextGame

Life+1
[1]		Should	create	a	Life	class:				similar	to	C4's	Board			

Building	from	Week	9's	Lab...

[2]		Should	allow	any	"Life-like"	rules

enable methods for analysis + data members for data-storage

Python dictionaries, e.g.,

and, you need to visualize your code with the Pyglet 2d library

{ 'B': [3], 'S': [2,3] } # B3/S23 Life!

Life+1
[1]		Should	create	a	Life	class:				similar	to	C4's	Board			

Building	from	Week	9's	Lab...

[2]		Should	allow	any	"Life-like"	rules

enable methods for analysis + data members for data-storage

Python dictionaries, e.g.,

and, you need to visualize your code with the Pyglet 2d library

{ 'B': [3], 'S': [2,3] } # B3/S23 Life!

Cells	are	Born,	if	there	
are	3	living	neighbors

Cells	Survive,	if	
there	are	2	or	3	
living	neighbors

Rules	~	Behavior?

{'B': [2],
 'S': []}

{'B': [3],
 'S': [2,3]}

{'B': [3],
 'S': list(range(9))}

Life+1

Can follow more Birth/Survived rulesets, add more states,
or something completely different...

[1]		Should	create	a	Life	class:				similar	to	C4's	Board			

Building	from	Week	9's	Lab...

[2]		Should	allow	any	"Life-like"	rules

enable methods for analysis + data members for data-storage

Python dictionaries, e.g.,

[3]		Should	track	generations'	evolution	
Grow? Fade? What % of the world is alive?!

[4]		Should	create	+	explore	your	own	variation(s)

and, you need to visualize your code with the Pyglet 2d library

{ 'B': [3], 'S': [2,3] } # B3/S23 Life!

Demo!
hw9pr1

_...

Picobot!

Life+1

TextID

vPython

TextGame

TextGame

The "I" does not have to be lookahead

[1]		Should	have	a	"Board":			some	visible	game-state	

Varying	based	on	hw11pr2...

[2]		Should	have	multiple	turns	(per	game)

doesn't really need to be a board: Jotto, Wordle, Nim, Hangman are all ok...

Jotto, Nim, Hangman all fit this, but RPS does not (that's the starter code)

[3]		Should	track	the	human/machine	rivalry
A starting point for this is provided that you can modify…
…for some games (e.g. Wordle) you may have to figure out how to
add an AI “player”…

[4]		Should	have	an	AI	of	some	sort

You should be able to play vs. the machine
Keys:

The machine should be able to play vs. the machine!

conversational AI
random AI

Misère AI
or ...

Examples	
beyond	C4

Picobot!

Life+1

TextID

vPython

TextGame

Past	
examples...

Santa?

poptarts

From	Lab	11

add	features,	characters,	...

vPython
Olaf!

Physics	engine...

Let's play!

I'll take
your cue...

A	few	constraints…

need		³4	physically	interacting	objects

allow	the	user	to	direct	1+	objects,	either	by	
keyboard	or	mouse	or	both

needs	a	game	goal	+	be	winnable!

… it's not really very constrained at all!

must	detect	some	"linear"	and	some	
"spherical"	collisions	and	implement	their	

results	on	the	motion	of	the	objects

More	vPython?

More	vPython	details...

• Linear	collisions	should	be	somewhere	("walls")

• Spherical	collisions	should	be	somewhere	("points")	

• You	need	"pockets"	–	or	some	other	game	objective

• You	need	user	control	of	at	least	one	object	(mouse/kbd)

VPython was designed to make
3d physics simulations simpler
to program – as a result, the
library itself is physics-free!

"surreal	physics"	
is	welcome...

Surreal? Sounds like
Spec.Rel. to me!

Project	space…

Picobot

TextID

algorithms!

analysis

open-ended
(and, perhaps, 3d!)

Life+1

TextGame

vPython

Tips	across	projects:
Surreal? Sounds like
Spec.Rel. to me!

• Think	about	your	plan!	This	is	the	ongoing	“design”	part	of	
the	project.
• Test	your	code	with	every	change	you	make.	Making	a	large	
number	of	changes	at	once	is	where	things	could	be	going	
wrong.
• Use	good	documentation	practices:
• A	docstring	for every function	and	method	that	you	write.
• Comments	to	explain	tricky	pieces	of	code.
• Descriptive	variable	names	for	nontrivial	values	(avoiding	
“magic”	values)

•Make	the	basic	version	work	first.
• Build	your	game	out	of	entirely	spheres/ASCII	characters
• Start	with	a	less-than-intelligent	AI

