
whether it's black's move or red's,
they're eye-ing the same column!

This	week's	classes...

Three-eyed? This
week, we're 3d'ed! Connect 4

aiMove

Homework #11, due 4/16

Notice	that	the	value	of		
(dimension		+	eyes)	is	
conserved	~	at	5!

Connect	4,	Part	2 hw11pr2.py

colsToWin(self, ox)

aiMove(self, ox)

hostGame(self)

	X	O				
	X	O		X	X	
O	O	O		X	O	X

 0 1 2 3 4 5 6

b.colsToWin('O')

b

b.colsToWin('X')

b.aiMove('O')

b.aiMove('X')

what	methods	will	help?

what	methods	will	help?

Covering	on	Thursday!

VPython	~	GlowScript!

built	by	and	for	
physicists	to	simplify	

3d	simulations

Try	this	out	in	lab	on	
Friday!

https://vpython.org/index.html

stonehenge.py

bounce.py

Our	3D
	final-

project
	option

VPython	~	GlowScript! https://vpython.org/index.html

Try	it!		(See	if	you	can	Zoom	/	Rotate...)

VPython	~	GlowScript! https://vpython.org/index.html

Let's	try	an	example...	

Python	features,	motivated	by	VPython…

Tuples are similar to lists, but they're parenthesized:

examples of default and
named inputs in a

function definition

Python	features,	motivated	by	VPython…

Tuples are similar to lists, but they're parenthesized:

def f(x=3, y=17):
 return 10*x + y

examples of default and
named inputs in a

function definition

Python	features,	motivated	by	VPython…

T = (4,2) x = (1,0,0)

Tuples are similar to lists, but they're parenthesized:

T = (4,2)
example of a two-element tuple named T and a three-element tuple named x

x = (1,0,0)

def f(x=3, y=17):
 return 10*x + y

examples of default and
named inputs in a

function definition

not vectors!

Python	features,	motivated	by	VPython…

Tuples are similar to lists, but they're parenthesized:

T = (4,2)
example of a two-element tuple named T and a three-element tuple named x

x = (1,0,0)

def f(x=3, y=17):
 return 10*x + y

example of default inputs
in a function definition

not vectors!

Python	features,	motivated	by	VPython…

Tuples! Lists that use parentheses
are called tuples:

+	Tuples	are	more	memory	+	time	efficient
+	Tuples	can	be	dictionary	keys:	 lists	can't
-		But,		you	can't	change	tuples'	elements!

T = (4, 2)

T
(4, 2)

T[0]
4

T[0] = 42
Error!

T = ('a',2,'z')

Tuples are immutable
lists: you can't change

their elements...

...but you can always
redefine the whole

variable, if you want!

Tuple	surprises…

W = 4 # for example
s = " ",
for col in range(W):
 s += str(col), " "

yields a surprising result for s

Creating	0-	and		1-tuples	
would	seem	like	a	problem!

" 0 1 2 3 "
trying for

A bug from last week's Board class:

Tuple	surprises…

W = 4 # for example
s = " ",
for col in range(W):
 s += str(col), " "

yields a surprising result for s

Creating	0-	and		1-tuples	
would	seem	like	a	problem!

" 0 1 2 3 "
trying for

A bug from last week's Board class:

actually creates a tuple:

(' ','0',' ','1',' ','2',' ','3',' ')

Default	–	and	named	–	inputs!

Functions can have default input values and can take named inputs

def f(x=3, y=17):
 return 10*x + y

example of default input
values for x and y

function
def'n

f(4,2)function CALL

inputs in order!

Calling	functions

Functions can have default input values and can take named inputs

def f(x=3, y=17):
 return 10*x + y

function
def'n

f(4,2)function CALL inputs in order!

Function-call	inputs	look	like	tuples,	
but	they're	not	quite	the	same…	

Named	inputs!

Functions can have default input values and can take named inputs

def f(x=3, y=17):
 return 10*x + y

function
def'n

function CALL

inputs by name!

f(x=4,y=2) example of named input
values for x and y

Inputs	by	name	override	inputs	by	order f(y=2,x=4)

Default	inputs!

Functions can have default input values and can take named inputs

def f(x=3, y=17):
 return 10*x + y

example of default input
values for x and y

Default	inputs	fill	in	only	where	there	are	gaps

f(x=4,y=2) example of named input
values for x and y function CALL

function
def'n

inputs by name!

f(y=2)

def f(x=3, y=17):
 return 10*x + y

f(y=1)example of a
named input

f()

f(1)

Functions can have default input values and can take named inputs

example of
default inputs

example using only
one default input

f(4,2)example of an ordinary
function call – totally OK

Default	–	and	named	–	inputs!

but they all share a factor with it! - Eli B. '17

Named	inputs

f(3,1) f()

f(3) f(y=4,x=2)

Input	name(s)	=		_____________________________

What	will	the	above	function	calls	return?

Extra!		What	does	this	return?			y = 60; x = -6; f(y=x,x=y)

What		is		f((),		(1,0))	?		These	are	tuples!	They	work	like	lists:

def f(x=2, y=11):
 return x + 3*y

42

Not one of the above is 42!

This	is	a	different	function,	f:

What	is	the	shortest	call	to	f	returning	42?
it's only four characters, too!

What	call	to	f	returns	the	string		'Lalalalala'	?											
you can pass strings into f!

you can pass tuples into f!

(1,0,1,0,1,0)

f('Lala','la')

f(9)

Mind Muddler:

1414

but they all share a factor with it! - Eli B. '17

Named	inputs

f(3,1) f()

f(3) f(y=4,x=2)

~	Solutions	~

Extra!		What	does	this	return?			y = 60; x = -6; f(y=x,x=y)

What		is		f((),		(1,0))	?		These	are	tuples!	They	work	like	lists:

def f(x=2, y=11):
 return x + 3*y

42

This	is	a	different	function,	f:

What	is	the	shortest	call	to	f	returning	42?
it's only four characters, too!

What	call	to	f	returns	the	string		'Lalalalala'	?											
you can pass strings into f!

you can pass tuples into f!

(1,0,1,0,1,0)

f('Lala','la')

f(9)

6
36

35
14

What	will	the	above	function	calls	return? Not one of the above is 42!

Mind Muddler:

Using	GlowScript	/	vPython... www.glowscript.org/

VPython	~	GlowScript!

built	by	and	for	
physicists	to	simplify	

3d	simulations

lots	of	available	
classes,	objects	and	
methods	in	its	API

www.glowscript.org/

stonehenge.py

bounce.py

API ...	stands	for	Application	Programming	
Interface

shapes	+	docs!

constr
uctors

	+	

metho
ds!

cool	stuff...

API ...	stands	for	Application	Programming	Interface

a programming description of how to access the
functionality of a software library

Classes!

Methods!

Conventions!

How	do	we	learn	an	API?

Documentation

Examples

Running	things!

the simplest possible vpython program:
box(color = vector(1, 1, 0))

A demo of vPython's API:

I'm hAPI
about APIs!

API

the simplest possible vpython program:
box(color = vector(1, 1, 0))

try changing the color: the components are
red, green, blue each from 0.0 to 1.0

then, add a second parameter: size=vector(2.0,1.0,0.1)
the order of those three #s: Length, Height, Width

then, a third parameter: axis=vector(2,5,1)
the order of those three #s: x, y, z

What's	box?
What's	color?
What's	vector?

vPython	example	API	call(s)

Examples

API

constructo
r	

+	default	

argument
s;	

data!

Documentation

vectors b.pos,	b.vel,…		are	vectors

b.vel = vector(1,0,0)

b.pos = b.pos + b.vel*0.2

component-by-component	
addition

vel.x
vel.
y

vel.z named	
components

scalar	multiplicationb.pos = vector(0,0,0)

compare	with	tuples…

vectors act	like	3D	"arrows"

www.glowscript.org/docs/GlowScriptDocs/vector.html

lots	of	support!	
(don't	write	your	own)

vectors!

(-10,0,0)

(-10,0,-10)

(-10,0,10)

(10,0,-10)

(0,0,-10)

(0,0,0)

(10,0,10)

lin
e x =

 -1
0

line z = -10

this "floor" is the X-Z plane

the Y direction is "vertical" relative to the floor...

+Z

+X

Axes!

vPython!

floor = box(length=4, width=4, height=0.5, color=vector(0,0,1))

ball = sphere(pos=vector(0,4.2,0), radius=1, color=vector(1,0,0))
ball.vel = vector(0,-1,0) # this is the velocity

RATE = 30
dt = 1.0/RATE

while True:
 rate(RATE)

 ball.pos = ball.pos + ball.vel*dt

 if ball.pos.y < ball.radius:
 ball.vel.y *= -1.0
 else:
 ball.vel.y += -9.8*dt

what is the
if doing?

what is this
doing?

Let's	run	this	f
irst...

what is the
else doing?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Look over this VPython
program to determine:

(1) How many distinct vPython classes are here? _____
(2) How many named inputs are here? _________________
(3) Tricky! How many vPython objects are here? ________
(4) What lines of code handle collisions ?
(5) How does "physics" work? Where is it?
(6) Wind! Add a line to create a horizontal acceleration ...

vPython

floor = box(length=4, width=4, height=0.5, color=vector(0,0,1))

ball = sphere(pos=vector(0,4.2,0), radius=1, color=vector(1,0,0))
ball.vel = vector(0,-1,0) # this is the velocity

RATE = 30
dt = 1.0/RATE

while True:
 rate(RATE)

 ball.pos = ball.pos + ball.vel*dt

 if ball.pos.y < ball.radius:
 ball.vel.y *= -1.0
 else:
 ball.vel.y += -9.8*dt

what is the
if doing?

what is this
doing?

what is the
else doing?

Let's	bounce!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Look over this VPython
program to determine:

(1) How many distinct vPython classes are here? _____
(2) How many named inputs are here? _________________
(3) Tricky! How many vPython objects are here? ________
(4) What lines of code handle collisions ?
(5) How does "physics" work? Where is it?
(6) Wind! Add a line to create a horizontal acceleration ...

vPython

floor = box(length=4, width=4, height=0.5, color=vector(0,0,1))

ball = sphere(pos=vector(0,4.2,0), radius=1, color=vector(1,0,0))
ball.vel = vector(0,-1,0) # this is the velocity

RATE = 30
dt = 1.0/RATE

while True:
 rate(RATE)

 ball.pos = ball.pos + ball.vel*dt

 if ball.pos.y < ball.radius:
 ball.vel.y *= -1.0
 else:
 ball.vel.y += -9.8*dt

Let's	bounce!

objects

classes
PHYSICS!

COLLISIONS!

GRAVITY! ball.vel.x += .5*dt

Wind!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

named inputs

Look over this VPython
program to determine:

(1) How many distinct vPython classes are here? _____
(2) How many named inputs are here? _________________
(3) Tricky! How many vPython objects are here? ________
(4) What lines of code handle collisions ?
(5) How does "physics" work? Where is it?
(6) Wind! Add a line to create a horizontal acceleration ...

3
7

6

1 2

3 4

4

5

6

What	makes	things	go?

floor = box(length=4, width=4, height=0.5, color=vector(0,0,1))

ball = sphere(pos=vector(0,4.2,0), radius=1, color=vector(1,0,0))
ball.vel = vector(0,-1,0) # this is the velocity

RATE = 30
dt = 1.0/RATE

while True:
 rate(RATE)

 ball.pos = ball.pos + ball.vel*dt

 if ball.pos.y < ball.radius:
 ball.vel.y *= -1.0
 else:
 ball.vel.y += -9.8*dt

rate tells	us	the	loops	
per	second!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

dt is	the	duration	of	
one	iteration	(1/rate)
Computing	dt	and	updating	pos	

are	our	responsibility!

(0)	Try	out	VPython:				Get	your	bearings	(axes!)

(1)	Make	guided	changes	to	the	starter	code...

(2)	Expand	your	walls	and	wall-collisions…

	 (3)	Improve	your	interaction/game!

(4)	Optional:	add	scoring,	enemies,	or		a	moving	
target,	hoops,	traps,	holes,	etc.	~	final	project…

Lab	goals

can expand to become a final project...

Collisions…

Idea:
When	the	ball	hits	a	wall,
	 	 	 the	ball	should	bounce

When	the	ball	hits	the	alien,
	 	 	 the	alien	should	ascend

boundary	collisions

point-to-line	collisions

point-to-point	collisions

How	do	we	
operationalize	

these?

Collisions…

if the ball hits wallA
 if ball.pos.z < wallA.pos.z: # hit - check for z
 ball.pos.z = wallA.pos.z # bring back into bounds
 ball.vel.z *= -1.0 # reverse the z velocity

 # if the ball hits wallB
 if ball.pos.x < wallB.pos.x: # hit - check for x
 ball.pos.x = wallB.pos.x # bring back into bounds
 ball.vel.x *= -1.0 # reverse the x velocity

 # if the ball collides with the alien, give a vertical velocity
 if mag(ball.pos - alien.pos) < 1.0:
 print("To infinity and beyond!")
 alien.vel = vector(0,1,0) point-to-point	collisions

point-to-line	collisions

Demo!

point-to-point	collisions

point-to-line	collisions

Why	does	this	alien	only	
have	two	eyes?

compound

compound

compound

What's	what	here?

alien_body = sphere(size=1.0*vector(1,1,1), pos=vector(0,0,0), color=color.green)
 alien_eye1 = sphere(size=0.3*vector(1,1,1), pos=.42*vector(.7,.5,.2), color=color.white)
 alien_eye2 = sphere(size=0.3*vector(1,1,1), pos=.42*vector(.2,.5,.7), color=color.white)
 alien_hat = cylinder(pos=0.42*vector(0,.9,-.2), axis=vector(.02,.2,-.02),
 size=vector(0.2,0.7,0.7), color=color.magenta)
 alien_objects = [alien_body, alien_eye1, alien_eye2, alien_hat]

 com_alien = compound(alien_objects, pos=starting_position)

key	presses…

Idea:
When	the	user	presses:
	 	 	 	 the	ball	should	accelerate:

	 up,	W	 	 	 away	from	us	(-z)
	 left,	A	 	 	 left	(-x)
	 down,	S	 	 	 towards	us	(+z)
	 right,	D	 	 	 right	(+x)

+++ start of EVENT_HANDLING section - separate functions for
keypresses and mouse clicks...
.

def keydown_fun(event):
"""This function is called each time a key is pressed."""
ball.color = randcolor() # This turns out to be very distracting!
key = event.key
ri = randint(0, 10)
print("key:", key, ri)

amount = 0.42 # "Strength" of the keypress's velocity changes
if key == 'up' or key in 'wWiI':

ball.vel = ball.vel + vec(0, 0, -amount)
elif key == 'left' or key in 'aAjJ':

ball.vel = ball.vel + vec(-amount, 0, 0)
elif key == 'down' or key in 'sSkK':

ball.vel = ball.vel + vec(0, 0, amount)
elif key == 'right' or key in "dDlL":

ball.vel = ball.vel + vec(amount, 0, 0)
elif key in ' rR':

ball.vel = vec(0, 0, 0) # Reset! via R or the spacebar, " "
ball.pos = vec(0, 0, 0)

key	presses…
random change of the sphere's color

printing is great
for debugging!

variables make it easy to
change behavior across

many lines of code
(here, all four motion directions)

have shortcuts to make your
game easier -- or to reset it!

GlowScript	/	vPython	examples…

Why	do	I	feel	
cornered?

GlowScript	/	vPython	examples…

Try	out	vP
ython	in	l

ab	

this	week
!

~	if	you	enjoy	it,	consider	it	for	a	final	project!

Why	do	I	feel	
cornered?

How	can	we	write	a	
program	that	plays	
with	optimal	
strategy	for	
Connect	4?

Looking	further	ahead…

Game	AI...

The	Player	class						(Final	project)

Player
pForX

What	data	does	a	computer	AI	player	need?

ox? tbt? ply?

string
ox

string
tbt

'X' 'LEFT'
int
ply

2

DATA MEMBERS

tiebreakTypechecker, O or X moves to look ahead

…	perhaps	surprisingly,	not	so	much.x = Player('X', 'LEFT', 42)
x0rn
o0rn
b.playGame(x0rn, o0rn)

vPython	examples…

I	hope	you
	find	

vPython	v
Fun!

