
Intelligent		CS?!

X	to	move.

Is	there	a	way	to	
ensure	a	win?

If	so,		how	far	
ahead?	

			X			
	X		X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b.playGame('human', o0rn), x3rn vs. 'human'

Hw11	due	Tuesday	@	22:22:22

Final	project	option	#1 Final	project	option	#2

vPython	+	2-ply	AI!

or,	at	least,	a	
game	w/an	AI

or,	at	
least,	
your	
own	
space	
+	

time!

Connect	4	AI	~	how	could	it	work?

It	could	just	play	randomly...			Let's	try!

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

Who won?!

Oh,	I	won!

randomC4(ply=0)

C4	AI	~	how	could	it	work?

It	could	just	play	randomly...			Let's	try!

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

Who won?!

Or,	it	could	always	play	as	far	left	as	possible...				Let's	try	that,	too!

Oh,	I	won!

col = -1
while b.allowsMove(col) == False:
 col = random.choice(range(7))

b.addMove(ox, col)

if ox == 'O': ox = 'X'
else: ox = 'O'

check if game is over!

while True:

C4	AI	~	how	could	it	work?

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

tiebreaking to the LEFT
when possible...

not	Overly	strategic...

O	O	O				
X	X	X				
O	O	O				
X	X	X				
O	O	O				
X	X	X	X			

 0 1 2 3 4 5 6

leftC4(ply=0)

Or,	it	could	always	play	as	far	left	as	possible...				Let's	try	that,	too!

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I feel ahead
of the game
here...

It	should	(1)	win	and	(2)	block	wins,	if	possible.	

C4	AI	~	how	should	it	work?

Otherwise	it	should	just	play	as	well	as	it	can...	?!

hw11pr2

EC +
C4 tourney

b12
b12.aiMove('O')
b12.aiMove('X')

Connect	4,	Part	2 hw11pr2.py

colsToWin(self, ox)

aiMove(self, ox)

hostGame(self)

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

b.colsToWin('O')

b.colsToWin('X')

b.aiMove('O')

b.aiMove('X')

1 "ply"

+ intuition-based tiebreaking2 "ply"

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I feel ahead
of the game
here...

It	should	(1)	win	and	(2)	block	wins,	if	possible.	

C4	AI	~	how	should	it	work?

Otherwise	it	should	just	play	as	well	as	it	can...	?!

Machine-style	game	AI:	
looking	ahead	at	possible	
future	moves	(plies!)

Human-style	game	AI:	
"intuitive"	evaluation	of	
how	good/bad	a	board	is

C4	AI	~	"intuitive"	moves?

			O			
	O		X		X	
X	O	O	X	X	O	

 0 1 2 3 4 5 6

If	there	isn't	a	win	or	loss...	where	should	you	go?						Why?

C4	AI	~	"intuitive"	moves?
			O			
	O		X		X	
X	O	O	X	X	O	

 0 1 2 3 4 5 6

for col in range(W):
 if b.allowsMove(col):
 return col

for col in [3,4,2,5,1,6,0]:
 if b.allowsMove(col):
 return col

Is	there	difference	between	these	two?

C4	AI	~	"intuitive"	moves?
			O			
	O		X		X	
X	O	O	X	X	O	

 0 1 2 3 4 5 6

for col in range(W):
 if b.allowsMove(col):
 return col

for col in [3,4,2,5,1,6,0]:
 if b.allowsMove(col):
 return col

[0,1,2,3,4,5,6]

Difference:		tie-breaking!

C4	AI	~	"intuitive"	moves?

			O			
	O		X		X	
X	O	O	X	X	O	

 0 1 2 3 4 5 6

We'll	run	a
	C4	tourna

ment	with
	

all	of	the	a
iMoves	su

bmitted...	

• (ex.	cr.)			b
etter	than

	random?	
		+5

• also,	a	rou
nd-robin!

Machine-style game AI:
looking ahead at possible

future moves (plies!)
If	there	isn't	a	win	or	loss...	maybe	we	just	

haven't	looked	far	enough	ahead!?!

"Plies"		~	turns	of	"lookahead"

			X			
	X	X	X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b1

Zero ply is no lookahead at all!

At zero ply,
a player
will NOT
see this

win!!

b1
x0.scoresFor(b1)
zero_ply.scoresFor(b1)

Machine-style game AI:
looking ahead at possible

future moves (plies!)

At ZERO ply, every allowable

move looks the same!

legal but random moves...

One	ply:			check	for	win

			X			
	X	X	X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b1

Imagine 'X' at ONE ply...

b1
x0.scoresFor(b1)
zero_ply.scoresFor(b1)

Machine-style game AI:
looking ahead at possible

future moves (plies!)

At ONE ply, the machine can

detect its own wins!

At one ply,
a player
WILL see
this win!!

wins when possible...

Two	plies:		look	to	block

			X			
	X	X	X	O		
	O	O	O	X	O	

 0 1 2 3 4 5 6

b1b

Imagine 'X' at TWO ply...

b1
x0.scoresFor(b1)
zero_ply.scoresFor(b1)

Machine-style game AI:
looking ahead at possible

future moves (plies!)

At TWO ply, the machine can

detect opponent threats!

At two ply,
a player
WILL see

this threat!

blocks when possible...

Challenge	#2:	What	
are	the	next	three	
moves?	It's	X's	turn,	
both	X	and	O	are	at	
2	ply,	tiebreaking	to	
the		LEFT?		Who	wins?	

Plying	our	intuitions…

Challenge	#1:			What	
are	the	next	three	
moves?	It's	X's	turn,	
and	both	X	and	O	are	
playing	at	1	ply,	
tiebreaking	LEFT?	

O						
X	O	X	O			
O	X	O	O			
X	X	O	X			

 0 1 2 3 4 5 6

O	X					
X	X					
O	O	O				
X	O	X	O			

 0 1 2 3 4 5 6

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 1 ply == 2

Find + circle the reason why X moves to col. #3 for each...

bDbA|X|O|O| | | | |
X	X	X				
O	X	O				
O	X	X				
O	O	O				
X	X	O				

 0 1 2 3 4 5 6

ply == 0

bC | | | | | | | |
X	O					
O	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 3

bB

In all 4 of these boards, X will move to col 3,
even if both players tiebreak to the LEFT Why?

Name(s) _______________

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6

Plus: full-game challenges...

next to move: Xnext to move: X

Challenge	#2:			
What	about	2-ply	
for	each	of	X	and	O?

Plying	our	intuitions…

Challenge:			What	
will	happen	if	you	
run	X	at	1	ply	and				
O	at	1	ply,		each	
tiebreaking	LEFT?	

O	O	X	X	O	O	
X	X	O	O	X	X	
O	O	X	X	O	O	
X	X	O	O	X	X	
O	O	X	O	O	O	O
X	X	X	O	X	X	X

 0 1 2 3 4 5 6

Find + circle the reason why 'X' moves to col. #3 for each...

O	O					
X	X					
O	O					
X	X					
O	O	O				
X	X	X	X			

 0 1 2 3 4 5 6

O			X			
X	O	X	O			
O	X	O	O			
X	X	O	X			

 0 1 2 3 4 5 6

O	X					
X	X					
O	O	O	X			
X	O	X	O			

 0 1 2 3 4 5 6

ply == 1 ply == 2

bDbA|X|O|O| | | | |
X	X	X				
O	X	O				
O	X	X				
O	O	O				
X	X	O	X			

 0 1 2 3 4 5 6

ply == 0

bC | | | | | | | |
X	O					
O	X					
O	O					
X	X		X			

 0 1 2 3 4 5 6

ply == 3

bB

No lookahead!

In all 4 of these boards, X will move to col 3,
even if both players tiebreak to the LEFT

Try this on the back page first...

win, if possible
block, if possible set up a

"checkmate"!

next to move: X

next to move: X

Challenge	#2:			
What	about	2-ply	
for	each	of	X	and	O?

Plying	our	intuitions…

Challenge:			What	
will	happen	if	you	
run	X	at	1	ply	and				
O	at	1	ply,		each	
tiebreaking	LEFT?	

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6

Find + circle the reason why 'X' moves to col. #3 for each...

In all 4 of these boards, X will move to col 3,
even if both players tiebreak to the LEFT

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6 Let's try these!

O			X			
X	O	X	O			
O	X	O	O			
X	X	O	X			

 0 1 2 3 4 5 6

O	X					
X	X					
O	O	O	X			
X	O	X	O			

 0 1 2 3 4 5 6

ply == 1 ply == 2

bDbA|X|O|O| | | | |
X	X	X				
O	X	O				
O	X	X				
O	O	O				
X	X	O				

 0 1 2 3 4 5 6

ply == 0

bC | | | | | | | |
X	O					
O	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 3

bB

No lookahead!
Try this on the back page first...

PLY THESE

NORTHWARD...

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I feel ahead
of the game
here...

It	should	(1)	win	and	(2)	block	wins,	when	it	can.	

C4	AI	~	lookahead	moves...

Otherwise	it	should	just	play	as	well	as	it	can...	?!

Both	we	–	and	machines	
–	can	look	ahead	much	
further	than	this!

How	many	ply?

			X			
	X		X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6How many moves ahead might we have to look?

b0

x5.scoresFor(b0) let run!

How	many	ply	of	
lookahead	would	
we	need	to	play	a	
perfect	game	of	
Connect	Four?

Looking	further	ahead...	!!!

And	how	is	it	going	
to	“really	work”?

‘X’
‘O’

100.0 50.0 0.0A simple system:
for a win for a lossfor anything else

Score for

Score for

Score for

Score for

Arithmetizing	C4...

"Plies"		~	turns	of	"lookahead"

			X			
	X	X	X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b1

zero_ply is playing 'X' (black)

At zero ply,
a player
will NOT
see this

win!!

Every possible move

will score a 50!

b1
x0.scoresFor(b1)
zero_ply.scoresFor(b1)

Zero	Ply

			X			
	X	X	X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b1

zero_ply.scoresFor(b1) [50,50,50,50,50,50,50]

zero_ply is playing 'X' (black)

One	Ply

			X			
	X	X	X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

b1

one_ply.scoresFor(b1) [100,50,50,50,50,50,50]

one_ply is playing 'X' (black)

At one ply,
a player
WILL see
this win!!

Two	Ply

			X			
	X	X	X	O		
	O	O	O	X	O	

 0 1 2 3 4 5 6

b1b

two_ply.scoresFor(b1b) [50, 0, 0, 0, 0, 0, 0]

At two ply, a player will
see the chance for the
OPPONENT ('O') to win

two_ply is playing 'X' (black)

I	want	3-ply!

After	Deep	Blue…

After	Deep	Blue…

Would	human	

chess	fade	away?

The	Player	class											(EC	for	hw11	~	by	April	18)

Player
pForX

What	data	does	a	computer	AI	player	need?

ox? tbt? ply?

string
ox

string
tbt

'X' 'LEFT'
int
ply

2

DATA MEMBERS

tiebreakTypechecker, O or X moves to look ahead

…	perhaps	surprisingly,	not	so	much.x = Player('X', 'LEFT', 42)
x0rn
o0rn
b.playGame(x0rn, o0rn)

Player

__init__(self, ox, tbt, ply)
__repr__(self)

scoreBoard(self, b)
scoresFor(self, b)
tiebreakMove(self, scores)
nextMove(self, b)

oppCh(self)

Board

__init__(self, width, height)

allowsMove(self, col)

__repr__(self)

addMove(self, col, ox)

isFull(self)

winsFor(self, ox)

hostGame(self)

delMove(self, col)

playGame(self, pForX, pForO)

Demos?

Player's	algorithms...

b

scoresFor(b)
ox == 'O' and ply == 0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The same move is evaluated at

each ply... it's just evaluated
farther into the future!

Fill in the list of scores
returned by scoresFor

Each row is different in at least 1 score…

scoresFor(b)
ox == 'O' and ply == 1

scoresFor(b)
ox == 'O' and ply == 2

scoresFor(b)
ox == 'O' and ply == 3

So many ply!

b42

b

scoresFor(b)
ox == 'O' and ply == 0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

50
col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The same move is evaluated at

each ply... it's just evaluated
farther into the future!

Fill in the list of scores
returned by scoresFor

Each row is different in at least 1 score…

scoresFor(b)
ox == 'O' and ply == 1

scoresFor(b)
ox == 'O' and ply == 2

scoresFor(b)
ox == 'O' and ply == 3

So many ply!

b42

-1 50 50 50 50 50 50

-1

-1

-1

0

0

b

scoresFor(b)
ox == 'O' and ply == 0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The same move is evaluated at

each ply... it's just evaluated
farther into the future!

Fill in the list of scores
returned by scoresFor

Each row is different in at least 1 score…

scoresFor(b)
ox == 'O' and ply == 1

scoresFor(b)
ox == 'O' and ply == 2

scoresFor(b)
ox == 'O' and ply == 3

So many ply!

b42

-1 50 50 50 50 50 50

-1 50 50 100 50 50 50

-1 0 0 0 0 50

-1 0 0 0 0

100

100

?

(self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50]

Opponent's scores
for each col

[50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Opponent's scores
for each col

Here, imagine we're

playing for 'X' (black)

scoresFor		 Minimax!	

(self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50]

Opponent's scores
for each col

[50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Opponent's scores
for each col

scoresFor		 Minimax!	

(self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50][50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Which	score	will	the	
opponent	choose?

max(os) = 100

max(os) = 100

max(os) = 100
max(os) = 100 max(os) = 0

max(os) = 50

max(os) = 100

0

0
0 0 100

50

0

self	gets	the	OPPOSITE	
score	as	a	result!

Opponent's	scoresFor

scoresFor		 Minimax!	

(self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

(0) Suppose you're
playing at 2 ply...

(1) Make ALL moves!

(2) Ask OPPONENT its
scoresFor at ply-1

(3) Compute which
score the opp. will take

(4) Compute what
score you get…

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50][50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Which	score	will	the	
opponent	choose?

max(os) = 100

max(os) = 100

max(os) = 100
max(os) = 100 max(os) = 0

max(os) = 50

max(os) = 100

0

0
0 0 100

50

0

self	gets	the	OPPOSITE	
score	as	a	result!

Opponent's	scoresFor

scoresFor

Two-player	games	have	been	a	key	focus	of	AI	
as	long	as	computers	have	been	around…

Strategic	thinking	==	intelligence?

In	1945,	Alan	Turing	
predicted	that	computers	
would	be	better	chess	
players	than	people	in					

~	50	years…

and	thus	would	have	
achieved	intelligence.Alan	Turing	memorial	

Manchester,	England

Remarkable timing!

and even more remarkable premise!!!

Strategic	thinking		!=		intelligence

humanscomputers	

good at evaluating
the strength of a

board for a player

good at looking to find
winning combinations

of moves

…	humans	and	computers	have	different	
relative	strengths	in	these	games.

Humans	play	via	"look-up	table"

-	experts	reconstructed	these	(near)	perfectly
	-	novice	players	did	far	worse…

A. deGroot, a psychologist & chess player, experimented:
Chess-game positions were shown to chess novices and
chess experts ... each for a couple of seconds…

Humans	play	via	"look-up	table"

-	experts	reconstructed	these	(near)	perfectly
	-	novice	players	did	far	worse…

A. deGroot, a psychologist & chess player, experimented:
Chess-game positions were shown to chess novices and
chess experts ... each for a couple of seconds…

Random chess-piece positions, not from a
game, were also shown to the two groups:

-	experts	and	novices	did	equally	badly
	 		reconstructing	them!

Connecting	Connect	Four	...

...	to	other	strategy	games.

Connect 4

How complex are these
games? Least? Most?

Connecting	Connect	Four	...

...	to	other	strategy	games.

tic-tac-toe
reversi

checkers

Rank these six games from least
complex (1) to most complex (6)

Go

Connect 4
chess

Games'	Branching	Factors

Branching Factors
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Reversi 30
Chess 40
Go 300
Arimaa 17,000

1 Ply

2 Ply

Boundaries for
qualitatively

different games…

0 Ply
On	average,	Connect	4	players	
have	seven	choices	per	ply.

Chess	players	have	more,	
around	40	choices	per	ply							
(on	average,	not	every	time)

“solved”	games

computer-dominated

human-dominated

Games'	Branching	Factors

Branching Factors
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Reversi 30
Chess 40
Go 300
Arimaa 17,000

1 Ply

2 Ply

0 Ply
On	average,	Connect	4	players	
have	seven	choices	per	ply.

Chess	players	have	more,	
around	40	choices	per	ply							
(on	average,	not	every	time)

“solved”	games

computer-dominated

human-dominatedonly until 2016

Boundaries for
qualitatively

different games…

(Games'
Branching
Factors)

Connect	4	was	solved	in	1988.

draw/tie with
perfect play

first-player wins
(with perfect play)

first-player loses
(with perfect play)

Good luck w/ hw#11 ~ against your own program

Checkers	was	solved	in	2007.

