CS 5: The Home Stretch

CS 5: Welcome!

The "spherical cow" strategy:

for physics and CS! And especially vPython!

Start with the MOST BORING
 version of your design

Ex: make your game with only spheres!
Keenan

Once that works, you can add detail iteratively Make it "work", then make it better!

What's left to do...

Wednesday, 4/17: Final project "starter" (see page)

starter.txt - team member names, project goals
starter.py - initial progress with initial steps complete (check out the website for what to do)

Tuesday, 4/23: hw12pr0 - reading hw12pr1- jsFLAP
Final project "milestone" (see page)
milestone.txt - reflection on how work has gone so far
milestone.py - more progress with 6-7 functions complete (check out the website for what to do)

What's left to do...

Wednesday, 4/17: Final project "starter" (see page)

Tuesday, 4/23: hw12pr0-reading hw12pr1-jsFLAP
Final project "milestone" (see page)

Friday, 4/26:
Final project (final version)

Thus. 5/9 @ 2pm
Final exam ~ similar to midt.

Remaining Labs are optional

```
no "signing in" - no lab problems
```


work on projects:

 start/milestone/finaland/or work on hw 12's finite-state machines
we won't be able to get you graded feedback on the milestone before the final project is due - so join us for lab!

AI Wrap Up

Two kinds...

Classical (search)

- Explore a search space
- Human written heuristics
- Explicitly programmed for task
- Understandable

Connect 4

Machine Learning

- Learns from training data
- Simple parts (e.g., neurons in network)
- Less understandable

Back on January 15...

CS != Programming

CS5's broad view:

TextGame
 Final Projects

CS Applications
biological
analysis +
algorithms
recursion variables loops
functions

robots and computer vision
data: classes and objects

CS5's broad view:

Theory of Computation

(1) How do we define a "computer"?
(2) How do we "compute" with (1)?
(3) Given (1) and (2), what can we provably do (or not do?)

A kind of computation?

Takes an input:
 a sequence of numbers + \#

Only "accepts" some inputs:
either opens lock (correct) or blinks red light (incorrect)

A kind of computation?

Code: 1042

Input: 1042

Takes an input:
a sequence of numbers + \#
Only "accepts" some inputs:
either opens lock (correct) or blinks red light (incorrect)

A kind of computation?

Input: 1038

Code: 1042

A kind of computation?

Input: 1031042

Code: 1042

computers \sim state machines

computers \sim state machines

What is this

computers \sim state machines

What is this

Unifying idea: State

The state of a computation is
all the internal information

states help specify subtasks

State Machine:

each oval represents a different Picobot state

transitions move from state to state

Computation is a deliberate

 sequence of state changes| | | 1 |
| :---: | :---: | :---: |
| | | |
| \|x| | | \| |
| \|x| | 111 | \| |
| | | |

0123456

X's move: 4

02 jeqzn r1 08
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 nop
07 nop
08 write r2
09 halt

Computation is a deliberate

 sequence of state changes

Computers ~ Finite State Machines

What if we just assume we have binary strings as inputs?

What if we just assume we only get one input?

What if we're only allowed to have one Boolean output?

OK! All data can be written in binary!

OK! We can concatenate our inputs into one!

OK! Like with circuits, we can use multiple FSMs to handle bigger outputs.

Finite state machine

Finite state machine

an input
 001011

Finite state machine

aninput 001011
"where to go"

start state(s)
"input funnel"
accepting state(s) double circled

FSM: Finite state machine

an input
sequence
always left-to-right

001011

output for this input

What does each state MEAN ? What does this FSM do overall?

FSM: Finite state machine

an input
sequence
always left-to-right

001011

output for this input
accepted!

> "I've seen an
> EVEN \# of $\underline{\mathbf{1}}$'s

What does each state MEAN ? What does this FSM do overall?

FSM: Finite state machine

an input

sequence
always left-to-right

0010111

output for this input

> "I've seen an
> EVEN \# of $\underline{\mathbf{1}}$'s

What does each state MEAN ? What does this FSM do overall?

graphical state-machine builder for hw12

https://elijahcirioli.com/jsflap/

graphical state-machine builder for hw12

State your name:
Quizz
Label each state with 1-2 inputs that "land" there...

In general, what English phrase describes the rejected inputs?

This machine rejects strings with ...
$\ldots 11 \ldots$

Extra Could fewer states produce the same accept-and-reject behavior here? What's the minimum \#?

Hint: which strings have to
be in separate states?

Quiz
 inputs that "land" there...

In general, what English phrase describes the rejected inputs?

This machine rejects strings with ...
two 1's in a row (anywhere in the string)

Extra Could fewer states produce the same accept-and-reject behavior here? What's the minimum \#?

3 states min.
Hint: which strings
have to be in
separate states?

Quiz

In general, what English phrase describes the rejected inputs?

This machine rejects strings with ...
two 1's in a row (anywhere in the string)

Extra Could fewer states produce the same accept-and-reject behavior here? What's the minimum \#?

3 states min.
Hint: which strings have to be in
separate states?

FSMs are everywhere!

mechanical vending machine

(some transitions not shown)

FSM ~ Game AI

FSM ~ Game AI

Build-your-own FSMs

Draw a FSM accepting strings with at least two 1s (anywhere). Others are rejected.

Accepted examples: 0101, 00010110, 111011, 11
Rejected examples: 0100, 1000, 000000, 1, 0

Draw a FSM accepting strings in which the number of zeros (0 s) is a multiple of 3 , so there are $0,3,6, \ldots$ zeros. 1 s don't matter!

Accepted: 110101110, 11, 0000010
Rejected: 101, 0000, 111011101111
Hint: 1s never change the state!

Another hint: make a triangle!

Build-your-own FSMs

2 Draw a FSM accepting strings with at least two 1s (anywhere). Others are rejected.

Accepted examples: 0101, 00010110, 111011, 11
Rejected examples: 0100, 1000, 000000, 1, 0

Hint - modify this starter FSM by adding
labels, transitions, and one more state:

more stuff needed!
Draw a FSM that accepts strings that don't contain the pattern 110 anywhere.

Accepted: 1010001, 011 Rejected: 101001100, 01101

Draw a FSM accepting strings in which the number of zeros (0 s) is a multiple of 3 , so there are $0,3,6, \ldots$ zeros. $1 s$ don't matter!

Accepted: 110101110, 11, 0000010
Rejected: 101, 0000, 111011101111

Hint: 1s never change the state!

Another hint: make a triangle!

What's the minimum number of states needed?
Draw a FSM accepting strings in which the third digit (3 d from the left) is a $\mathbf{1}$.

Accepted: 1010001, 011 Rejected: 11000100, 11, 0

Extra! Draw a FSM accepting strings whose third-to-last digit (3 d from the right) is a 1.

Acc: 0100 and 01101
Rej: $101 \underline{0} 01$ and 11

Has at least two 1s...?

Draw a FSM accepting strings with at least two 1s (anywhere). Others are rejected.

Accepted: 0101, 00010110, 111011, 11
Rejected: 0100, 1000, 000000, 1, 0

has ZERO 1's

What do we need to complete this machine?

Number of $\mathbf{0 s}$ is div. by 3

Draw a FSM accepting strings in which the number of zeros (0 s) is a multiple of 3 , so there are $0,3,6, \ldots$ zeros. 1 s don't matter.

Accepted: 110101110, 11, 0000010
Rejected: 101, 0000, 111011101111

No occurrences of 110 ?

Draw a FSM accepting strings that do NOT anywhere contain the pattern 110

Accepted: 1010001, 0001011
Rejected: 101001100, $0 \underline{11001}$

Third character is a 1

Draw a FSM accepting strings in which the third digit (from the left) is a $\mathbf{1}$.

Accepted: 1010001 and 0110
Rejected: $11 \underline{000100}$ and 11

Third character is a 1

Draw a FSM accepting strings in which the third digit (from the left) is a $\mathbf{1}$.

Accepted: 1010001 and 0110
Rejected: $11 \underline{000100}$ and 11

Why must $s 1$ and $s 2$
be separate states? $\left\{\left.\begin{array}{c|cc|c|}\hline 1 & & 11 & \text { rejected } \\ 11 & & \text { add } 1 & 11 \underline{1}\end{array} \right\rvert\, \begin{array}{l}\text { accepted }\end{array} \quad \mathbf{5} \begin{array}{l}\text { Minimum number of states? }\end{array}\right.$

Third-to-last character is a 1 ?

Draw a FSM accepting strings whose third-to-last digit (from the right) is a $\mathbf{1}$.

Accepted: 0100 and 01101

Rejected: $101 \underline{0} 01$ and 11

Third-to-last character is a 1

Third-to-last character is a 1

Build-your-own FSMs

Draw a FSM accepting strings with at least two 1s (anywhere). Others are rejected.

Accepted examples: 0101, 00010110, 111011, 11
Rejected examples: 0100, 1000, 000000, 1, 0

Hint - modify this starter FSM by adding
labels, transitions, and one more state:

Draw a FSM accepting strings in which the number of zeros (0 s) is a multiple of 3 , so there are $0,3,6, \ldots$ zeros. $1 s$ don't matter!

Accepted: 110101110, 11, 0000010
Rejected: 101, 0000, 111011101111

Hint: 1s never change the state!

Another hint: make a triangle!

Draw a FSM that contain t.

Accepted: 1010001

Acc: 0100 and 01101
Rej: $101 \underline{0} 01$ and 11

An autonomous vehicle's FSM

Fig. 9. Situational Interpreter State Transition Diagram. All modes are sub-modes of the system RUN mode (Fig 4(b)).

Why is an FSM a good
design idea for an autonomous vehicle?

An autonomous vehicle's FSM

Fig. 9. Situational Interpreter State Tr _am. All modes are sub-modes of the system RUN mode (Fig 4(b)).

Robots use FSM control

What states can you "factor out" from watching this towel-folding?

Towel-folding states!

Fig. 2. The state machine model of the procedure: dashed lines indicate failure recovery cases. The images show an actual run.

blogs // Automaton
U.S. Senator Calls Robot Projects Wasteful. Robots Call Senator Wasteful
POSTED BY: ERICO GUIZZO / TUE, JUNE 14, 2011
QEmail DPrint EShare

Tom Coburn, a senator from Oklahoma, and PR2, a robot from Calfornla.

Towelfolding?

State-machine limits?

Are there limits to what FSMs can do?

they can't necessarily drive safely...

But are there any binary-string problems that FSMs can't solve?

State-machine limits?

accepting

rejected
011
001
How about a FSM that accepts strings with

$$
\begin{aligned}
& \text { accepted } \\
& 000111 \\
& 0011 \\
& 01 \\
& \lambda
\end{aligned}
$$

State-machine limits?

accepting

rejected
How about a FSM that accepts strings with

011
001
11100
00110

any \# of 0 s followed by the same \#of 1 s
FSMs "can't count"
accepted 000111 0011 01
λ

State-machines are limited.

FSMs can't count

at least not arbitrarily high...

We need a more powerful model than FSMs...
What do we need to add?

Thursday: Turing Machines

Lab sessions this week: State machines + final
projects...

Or is it state projects and final machines!?

