heard (of) these four songs?

finite-state machines ~ capture patterns
"state machine" "finite automaton"

CS 5 today:

Final ideas...

more machines!

Turing Machines and the MANY

 things computers can't compute...!This machine doesn't look allpowerful to me!

Final projects

- final tutoring hrs/labs meet this week + next
- hw12 + milestone due on Tuesday, 4/23
- 5 finite-state machines due as part of hw12

Final project state machine

Final project state machine

store a copy somewhere else!

Our current-domain: (binary) int-bool problems

an input 001011 "where to go" transitions

transition on 1
start state(s)
"input funnel"
accepting state(s)
double circled

State-machine limits?

Surprising things FSMs can do...

Accept inputs whose third-to-last digit is a $1 . . .!$

State-machine limits?

Surprising things FSMs can do...

Pretend we started with 000!
only 8 states needed...

Accepting inputs whose third-to-last digit is a 1...!

State-machine limits?

accepting

A possible language: binary strings with rejected 011

001 any \# of 0 s followed by the same \#of 1s

$$
\begin{aligned}
& \text { accepted } \\
& 000111 \\
& 0011 \\
& 01 \\
& \lambda
\end{aligned}
$$

State-machine limits?

rejected
011
001
11100
00110
A possible language: binary strings with any \# of 0s followed by the same \#of 1s

> accepted
> 000111
> 0011
> 01
> λ

FSMs can't count...

So, let's build a better machine!

(that can model any software, hardware, and computation!)

What if we could save our input somewhere?

The Tape

(with infinite length)

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

Finite state machines have to move one step right at each step

What if we were allowed three motions:
L(eft), R(ight), and S(tay)
Could this solve our problem from before?
" n 0s followed by $n 1 s "$

What if we were allowed three motions:
L(eft), R(ight), and S(tay)

AND we could also replace the character at the location we read?

This is called a (or TM

AND we could also replace the character at the location we read?

So far, all known computational devices can compute only what Turing Machines can...

some are faster than others...

Quantum computation

http://www.cs.virginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf

Molecular computation

Parallel computers
 Integrated circuits

Electromechanical computation
Water-based computation
Tinkertoy computation

Turing machine

So far, all known computational devicon compute only what Tu. "Church-Turing

Water-based computation
Tinkertoy computation
Turing machine

Empty input: Accepted!

a Turing Machine rule:

a Turing Machine rule:
$0 \rightarrow 1$

READ
WRITE

a Turing Machine rule:
$0 \rightarrow 1$

the tape

0

01

Is this input accepted or rejected by this TM?

Try it!

What does one "loop" of (q0-q1-q2-q3-q0) do?

$$
\begin{aligned}
& 0-0, L \\
& 1-1, L
\end{aligned}
$$

What inputs are accepted in general?

now, with room to work...

What inputs are accepted in general?
Extra: How could you change this TM to accept palindromes?

State-machine limits?

rejected
011
001
11100
00110
Let's build a FSM that accepts strings with any \# of 0 s followed by the same \#of 1 s

FSMs "can't count"
at least, not arbitrarily high
accepted
000111
0011
01
λ

State-machine limits?

Turing Machine Limits?

Turing Machine Limits?

can't be "pred them to completion). (without actually running $\longrightarrow \mathrm{E}$

What does this do...?

Turing Machine Limits?

$\square-1, ~ L$

A 745-state binary Turing machine has been constructed that halts if and only if ZFC is inconsistent. A 744-state Turing machine has been constructed that halts if, and only if, the Riemann hypothesis is false. A 43 -state Turing machine has been constructed that halts if, and only if, Goldbach's conjecture is false.
A 15-state Turing machine has been constructed that halts if and only if the following conjecture formulated by Paul Erdős in 1979 is false: for all $n>8$ there is at least one digit 2 4 in the base 3 representation of 2^{n}

Alan Turing

Enigma machine \sim The axis's encryption engine

Alan Turing

Aan Mathicon Twing
 Father of Computer Science Mathematician, Logician Wartime Codebreaker Victim of Prejudice

Wathematies, rightly viewed possesses not only truth but supneme beauty, a beauty cold and anstere like that of sculpture." - Bertrard Russell

CS 5 spokesperson of the day!

The Imitation Game (2014)

Can TMs compete with other models?

Alan Turing says yes...

the tape elsewhere do not arfect the behaviour of the machine. However the tupe can bo Turing called them LOMical COMDuting MaChines ally have orerere Turing called them Logical Computing Machines an inuration

These aachines will here be called 'Logical Comiating Machines'. They are chiefly of interest when we wish to consider what a machine could in principle be designed to do, when we are willing to sllow it both unlimited time and unlimited storage capacity.

Universal Logical Computing Luchines. It is possible to describe L.C. his in a very standard way, and to put the description into a form which can be 'undergtood" (i. ©. applied by) a special machine. In particular it is possibly to design a 'universal machine' which is an L.C. other L.c. Lee is 1mposed on the otherm Turing's Intelligent Machines, 1948 machine then set going it will carry whose description it was given. Por details the reader must/refer to Turing (1).

The importance of the universal machine is elear. ife do not need to have an infinity of different machines doing different jobs. $A /$ single one will suffice. The ongineering problem of producing various machines for rarious jobs is replaced by the office mork of 'programing' the universal machine to do these jobs.

It is found in practice that L.C.bs can do anything that could be described as 'rule of thumb' or 'purely mechanical'. This is surficiently well established that it is now agreed amongst logicians that 'calculable by means of an L.C.C. ' is the correct accurate rendering of such phrases. There are several mathematically equivalont but superficially very different renderings.

TheoComp loves to "hack" TMs

But the computational power is still the same!

Can TAMS compute everything?

Alan Turing says No!

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM decision problems!

By A. M. Turing.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers. it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope

... there are many problems computers can't solve at all!

Perhaps this is not that surprising...

- rising sea levels
- disbelief in aliens
- losing to your own Connect4 (at 0 ply!)
- crashfree driving and fast towel folding!

Unprogrammable functions?

| There arewell-defined
 mathematical
 functions | that no | computer
 program | can compute
 even with any
 amount ofmemory! |
| :---: | :---: | :---: | :---: | :---: |
| even int-bool | | or TM | |

how? why?

functions

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \text { is odd } \\
0 \text { if } x \text { is even }
\end{array}\right.
$$

programs

def prog1(x): return $\times 2$

Unprogrammable functions!

There are \begin{tabular}{c|c|c|c|c|}
\hline well-defined

mathematical

functions

 that no

computer

program

can compute

even with any

amountofmemory!
\end{tabular}

There are many more functions

than

programs!

Real \#'s vs.

Natural \#'s

mathematical that no
There are

well-defined functions

There are many more functions
computer program
or $\mathrm{TM}^{\mathrm{TM}}$
can compute

than

 programs!VS.

functions
 int - bool

$$
\begin{aligned}
& f_{A}(x)=1 \\
& f_{B}(x)=\left\{\begin{array}{l}
1 \text { if } x \text { is odd } \\
0 \text { if } x \text { is even }
\end{array}\right. \\
& f_{C}(x)= \begin{cases}1 & \text { if } x \text { is } 0,1, \text { or } 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Some example"int-bool" mathematical functions

These are also sometimes called "integer predicates."

- Input is an integer, $\mathrm{x}>=0$
- Output is $0 / 1$ (boolean or bit)
even if we only use functions $w /$ input ints + output bools!

int-bool programs

def prog1(x): return $x \% 2$

all int inputs: $\mathbf{x}>=0$

Example programs

def prog2 (x): return $x<3$

- Input is one integer, $\mathbf{x}>=0$
- Output is $\mathbf{0} / \mathbf{1}$ (boolean or bit)

If programs look different they are different - even if they compute the same function!
def prog3(x): return 1
def prog4(x):
return $\operatorname{len}(\operatorname{str}(x+42))>1$

... and even if we allow ANY

 programs at all ~ even syntax errorsLet's match!

functions

$$
\begin{aligned}
& f_{A}(x)=1 \\
& f_{B}(x)=\left\{\begin{array}{l}
1 \text { if } x \text { is odd } \\
0 \text { if } x \text { is even }
\end{array}\right. \\
& f_{C}(x)= \begin{cases}1 & \text { if } x \text { is } 0,1, \text { or } 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

def prog1 (x):
return $x \div 2$
all int inputs: $\mathrm{x}>=0$
def prog2 (x):
return $x<3$
def prog3(x):
return 1
def prog4 (x):
return len (str $(x+42))>1$
def prog5 (x):
return \mathbf{x} in $[0,1,2]$
def prog6(x):
if $x<2$: return x
else: return prog6(x-2)

functions

programs

$$
\mathrm{f}_{\mathrm{A}}(\mathrm{x})=1
$$

$f_{B}(x)=\left\{\begin{array}{l}1 \text { if } x \text { is odd } \\ 0 \text { if } x \text { is even }\end{array}\right.$
$f_{C}(x)=\{1$ if x is 0.1 There are
1.m many more

How - or why - is the set of all fu \mathbb{R} larger than the set of all programs?
def prog1(x):
return $\times \% 2$
all int inputs: $\mathbf{x}>=0$
def prog2 (x):
return $x<3$
def prog3(x): return 1
def n -

than

programs!
def prog6(x):
if $x<2$: return x
else: return prog6(x-2)
Quiz! Name(s): \qquad

Programs are, like, integers...

programs

For each program, there is an integer.
For each integer, there is a "program."

from progs to ints \sim and back...

```
def prog(i):
    """ return the program whose int is i """
    # convert to a string (just a base-128 int!)
    if i <= 0: return
    last_char = chr(i % 128)
    return prog(i // 128) + last_char
```

def intify(prog):
""" return the int whose program is prog """
\# convert to an int (just interpret as base-128!)
if prog == '': return 0
last_char = prog[-1]
return 128 * intify(prog[:-1]) + ord(last_char)

```
In [7]: eval(prog(6706))
Out[7]: 42
In [8]: eval(prog(1229340410842616847622082154303469913707433))
Hello World
```


Programs are, like, integers...

Every sequence of bits is also an int!

To infinity - and beyond

Countably

 infinite:

If you give me an element from the set, I can tell you a programs finite counting number it corresponds to!

Lots of things are countable...

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

Integers
0
1
-1
2
-2
3

Odd
integers

$3-3$
5
-5

Strings with
only 'a's and 'b's
" 'a'
'b'
'aa'
'ab'
'ba'

Fractions
0/1 1/1
0/2
1/2
$2 / 2$
0/3

Lots of things are countable...

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Integers 01 countable:
What counts as an item (egg. if you give ${ }^{2 b b a b b b b b b a}$ ab
String 'aaaabbbaab you its index. only 'a's $\begin{array}{lllllll} & \text { then I can } & & & & & \\ & 0 / 1 & 1 / 1 & 0 / 2 & 1 / 2 & 2 / 2 & 0 / 3\end{array} \ldots$

functions vs. programs!

dumatat \mathbb{R}
$\mathbb{N}_{\substack{\text { natulese }}}^{\text {nate }}$
functions
VS.

programs

To infinity - and beyond

Positive integers
functions

Uncountably infinite

Countably infinite

There are lots of functions

uncountably many ~ "big"

Well-defined mathematical (int-bool) functions
(uncountable)
\mathbb{R}

> What's swimming around out here?

There are "a few" programs

How about an actual example !?!!

How about an actual example !?!!

