CS 5 “Black” Practice Final

This practice exam is intended to help you prepare for the final exam by giving you some example problems and a sense of how the final exam will be structured. However, the actual final exam may cover some topics that do not appear on this practice exam and some topics on this practice exam may not be on the final. To prepare for the exam, you should review all of your lecture notes and make sure that you are comfortable with all of the concepts.

Problem #1 [10 Points]

 (You do not need to write docstrings for any Python functions.)

Python has a built-in function called reduce that takes as input a function of two variables and a list. It returns a single value constructed by calling the function on the first two values in the list, then on the result of that function and the next item in the list, and so on.

For example, here is some sample input and output:

>>> def add(x,y): return x+y

>>> reduce(add, range(1, 11))

55

Notice that in this example, the list range(1, 11) is the list [1, 2, 3, …, 10]. The reduce function computed add(1, 2) to obtain 3. It then computed add(3, 3) to obtain 6. It then computed add(6, 4) to obtain 10, and so forth.

If the second argument is a list of length 1, reduce simply returns the single element in that list. If the list is empty, then reduce produces an error message (you can handle that in any way you want).

Your job is to write reduce in TWO different ways and then use it in a novel way.

1. Write reduce using recursion, list indexing, and slicing, but no imperative constructs.

2. Write reduce using imperative loop constructs (e.g. for, while, etc.).
3. Write a function called multipend that takes as input a list of lists and returns a single list containing all of the elements in the given lists. For example… multipend([[1, 2], [3, 4], [1, 6, 7]]) should return the list [1, 2, 3, 4, 1, 6, 7]. Use reduce and anonymous functions to keep your implementation of multipend to a single line of python code.
Problem #2 [10 Points]

(You do not need to write docstrings for any Python functions.)

Write a Python function symmetric(S), which takes in a list-of-list-of-numbers, S. You should assume that S is a square array, with an equal number of rows and columns. Then, symmetric should return True if the values of S are diagonally symmetric across the NW-SE axis (northwest-to-southeast axis); it should return False if the values of S are not symmetric across the NW-SE axis.

Write your program in two different ways. First write it using imperative constructs. Then write it using only recursion, slicing, and indexing.

Here are some examples of the correct behavior of this function.

>>> symmetric([[1]])

True

>>> symmetric([[1,42], [42,5]])

True

>>> symmetric([[1,42], [1,1]])

False

>>> symmetric([[1,2,3], [2,4,5], [3,5,6]])

True
Problem #3
[10 Points]

The Mudd-O-Matic 2000 computer uses an alphabet of only four symbols: “s”, “p”, “a”, and “m”. Internally, the letter “s” is encoded as the number 0, the letter “p” as the number 1, the letter “a” as the number 2, and the letter “m” as the number 3.

1. Use the Lempel-Ziv Algorithm to compress the string “ssssspspam”.

2. Use the Lempel-Ziv Algorithm to decode the string “023467”

3. Now consider a file in which the letters occurred with the following frequencies:

a. Frequency(“s”) = 0.5

b. Frequency(“p”) = 0.3

c. Frequency(“a”) = 0.1

d. Frequency(“m”) = 0.1

We will now encode strings using arithmetic coding. The compressed file will contain two numbers: The number of characters being compressed and the binary representation of a value between 0 and 1 represented as a bit string where the first bit is the coefficient on 2-1 , the second bit is the coefficient on 2-2 , etc. For example, the binary string “.101” represents the number 1/ 2 + 1/8.

Decode file “5 .01” where 5 represents the number of characters to be decoded and “.01” represents a fraction between 0 and 1.

Problem #4 [10 Points]

1. Use the minterm expansion principle to construct a digital “comparator” circuit that takes as input two 2-bit inputs and outputs a 1 if the first 2-bit number is less than or equal to the second 2-bit number.

2. Briefly explain what the instruction pointer (or “program counter”) does in a CPU.

3. Briefly explain what the instruction register does in a CPU.

4. The new Pen-T-Yum processor has 32 instructions and 16 general-purpose registers capable of holding 64 bits each. Assuming that all instructions are encoded with the same length binary code, all instructions operate exclusively on registers, and some instructions specify as many as three registers as arguments, what is the minimum number of bits the instruction register in the Pen-T-Yum must be able to store?

Problem #5 [20 Points]

Write a recursive HMMM program that takes a single input from the user, call it n, and computes tower(n). Recall that tower(n) is 2 raised to the power 2 raised to the power 2, and so forth, n times.

Note that this function is defined recursively as tower(n) = 2tower(n-1). So, tower(1) = 2, tower(2) = 4, tower(3) = 16, tower(4) = 216, etc. You should assume that your computer is capable of operating on very large numbers! You will find the HMMM instruction set at the end of this exam.
Problem #6 [20 Points]

Recall that in class we described the use of the Decimal class that is capable of representing arbitrary precision floating point numbers. Your task in this problem is to implement a part of this class.

In particular, your implementation of the Decimal class should have the following methods:

· A constructor that takes as input a string representation of the number. For example, we should be able to construct a new number with the syntax

foo = Decimal(“3.1415926535897932384626433832795”)

· A method called __eq__(self, other) that returns True if and only if self and other represent the same number. Notice that by calling the function __eq__, we have overloaded the == operator. That is, we can do the following:
bar = Decimal(“1.234000”)

spam = Decimal(“1.234”)

if spam == bar: # this will invoke __eq__(spam, bar)

print “Yay!”

This code should print “Yay” since “1.234000” is equal to “1.234” (even though they don’t look entirely the same!)

· A __repr__ method for returning the string representation of the number.

· [OPTIONAL BONUS CREDIT IF YOU HAVE TIME AT THE END OF THE EXAM] A method called __add__(self, other) that adds self to other and returns a new Decimal number that is the result of this addition. Notice that this overloads the + operator so that we can do things like:
Ben = Decimal(“0.123”)

Jerry = Decimal(“0.877”)

Sum = Ben+Jerry # assigns Sum to a new Decimal which

 # in this case is equal to 1

You may represent your numbers anyway you like within the Decimal class. The user only cares that the four methods above have been implemented.
Problem #7 [20 Points]

Professor I. Lai of the Pasadena Institute of Technology is interested in computability theory and needs your help with some problems…

1. Professor Lai has just read about a mathematical object called a “quaternion”. (You’ll hear more about these if you take higher-level physics courses.) A quaternion is just like a complex number except that it has three different “imaginary” parts. In particular, a quaternion is of the form a + bi + cj + dk where a, b, c, and d are real numbers and i, j, and k are just special names just as “i” is the special name in the imaginary part of a complex number. Consider the set of all quaternions in which the coefficients a, b, c, and d are restricted to be rational numbers. Is the set of all such quaternions countably infinite or uncountably infinite? Explain your answer carefully and precisely.

2. Professor Lai has defined a “string filter” for a given string X to be a program that takes a string as input and returns True if and only if that string is equal to X. That is, a string filter for X must return True if its input is X and must return False for all other input. Professor Lai would like a program called “FilterLength” that takes as input a string X and returns the length of the shortest python program that is a string filter for X. Prove carefully that “FilterLength” cannot exist.

3. Construct a finite state machine that accepts exactly those strings of 0’s and 1’s that have at most two identical consecutive bits. For example, “0”, “1”, “00”, “11”, “01”, “10”, “010”, and “00100110” should all be accepted. However, “111”, “000”, “01110”, and “10101000” should all be rejected.

4. Professor Lai forgot to read the two assigned articles on the Loebner Prize. Here are his questions…

a. In his article, Professor Shieber mentions the Kremer prize as a contrast to the Loebner Prize. What event or challenge did the Kremer Prize try to encourage?

b. Why does Professor Shieber believe that the Kremer Prize was appropriate for that event while the Loebner Prize is not appropriate for its event?

Assembly

HMMM Reference Page – tear off to use…

halt

program halts

read rX

stops for user input which is stored in

register rX (input is an 16-bit signed

integer). Prints "Enter number: " to

prompt user for input

write rX

prints the contents of register rX on

standard output

loadn rX, #

loads 8-bit twos-complement integer #

into register rX

load rX, rY

load register rX with memory word

addressed by rY: rX = memory[rY]

store rX, rY

store contents of register rX in memory

word addressed by register rY:

mem[rY] = rX

addn rX, #

adds the 8-bit twos-complement integer

to register rX

add rX, rY, rZ

rX = rY + rZ

sub rX, rY, rZ

rX = rY - rZ

mul rX, rY, rZ

rX = rY * rZ

div rX, rY, rZ

rX = rY / rZ

jump rX

set program counter to address in rX

jzero rX, rY

if rX == 0 then set program counter to

address in rY

jgtz rX, rY

if rX > 0 then set program counter to

address in rY

jltz rX, rY

if rX < 0 then set program counter to

address in rY

jequal rX, rY, rZ
if rX = rY then set program counter to

address in rZ
